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a b s t r a c t

The possibility of routine testing of pharmaceutical substances directly in warehouses is of

great importance for manufactures, especially taking into account the demands of PAT. The

application of NIR instruments with remote fiber optic probe makes these measurements

simple and rapid. On the other hand carrying out measurements through closed polyethy-

lene bags is a real challenge. To make the whole procedure reliable we propose the special

trichotomy classification procedure. The approach is illustrated by a real-world example.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Rapid, non-destructive analysis of chemical and physical
properties of pharmaceutical substances is achievable using
NIR measurements. Fiber optic probe can measure remote
samples in diffuse reflectance or transmission modes [1]. As
a result, testing can be performed not only in the lab but
also directly in a warehouse. Raw materials are quickly tested
for identity and quality conformance. Once a model for a
substance is developed, routine testing takes place in a few
seconds, making it possible to test every unit of incoming
ingredient to verify the identity. This procedure is an essen-
tial part of Process Analytical Technology (PAT) [2,3], which is
widely applied in pharmaceutical industry nowadays.

∗ Corresponding author. Tel.: +7 495 9397483; fax: +7 495 9397483.
E-mail address: rcs@chph.ras.ru (O.Ye. Rodionova).

At the same time the application of fiber probe diffuse
reflectance NIR spectroscopy is an especially challenging prob-
lem when measurements are carried out through closed
polyethylene (PE) bags. This could produce spectral artifacts
that are comparable with the substance physical or chemical
fingerprints. Additional problems arise due to changes in the
position of the probe held by an operator.

In this paper we consider a two-stage approach for classi-
fication that allows an operator to recognize raw substances
of satisfactory quality reliably in spite of these adverse cir-
cumstances. It is worthy of mentioning that each confident
classification implies some errors that manifest themselves
in two misclassification events. The first one is the case when
a sample of good quality is rejected, i.e. classified as a forgery
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or another substance (Type I error). The second event is the
recognition of a fake sample as a genuine one (Type II error)
[1,4].

Common approach to the classification problem is to con-
struct an acceptance area using the training (or calibration) set
of samples of the required quality. This area is further used in a
routine recognition in such a way that a new (or a test) sample
is accepted if its spectrum hits the area. The area size depends
on a given Type I error value that should be small enough, say,
� = 0.01, or 1%. However, the smaller the �, the wider the area,
and at � = 0 the acceptance area covers all possible samples.
Simultaneously, the Type II error is growing. Therefore, the
problem is to find the smallest (effective) acceptance area for
a given � value. This is a very complicated mathematical task,
which is fully solved only for some simple cases involving the
normal distributions. In this study we use a special procedure
[5] for building an effective acceptance area within the SIMCA
approach [6,7].

Typically, a pattern recognition result is a dichotomous
decision when a new sample is either accepted, or rejected. We
suggest applying a trichotomy recognition: accepted, rejected,
or extra measurements are required. The latter decision is
made if a new spectrum bears the signs of the abovemen-
tioned artifacts. Such an approach is in line with a method
of the sequential test of statistical hypotheses that was intro-
duced by Wald [8] as far back as in the 40s.

The advocated approach includes the following main steps:

• the appropriate splitting of the initial calibration objects
into two classes employing a global PCA model;

• the construction of two separate PCA models with an apt
number of principal components (PCs);

• the application of Soft Independent Modeling by Class Anal-
ogy (SIMCA) with the ad hoc method [5] for the acceptance
area calculation.

The approach is illustrated by a real-world example.

2. Theory

2.1. Principal component analysis (PCA)

Data sets with many variables can be simplified through
variable reduction and thereby be more easily interpreted.
Principal component analysis (PCA) [9] is a well-known vari-
able reduction technique, in which spectral matrix X is
decomposed as

X = TPt + E, (1)

Here X is the I × J data matrix, T the I × A matrix of score vec-
tors, P the J × A matrix of loading vectors, E the I × J residual
matrix, I the number of objects, J the number of variables
(which in our case is the number of wave numbers), and A
is the number of components calculated (i.e., principal com-
ponents, PCs). Matrix X is preprocessed by mean-centering.

The (A × A) matrix �

� = TtT = diag(�1, . . . , �A) (2)

is diagonal with the elements

�a =
I∑

i=1

t2
ia (3)

They are the first A eigenvalues of matrix XtX ordered
descendingly.

Two important characteristics of the PCA model with
respect to each calibration object can be defined. They are the
score distance (SD) and the orthogonal distance (OD). For a
given number of principal components, A, the SD is defined
as [9]

hi = tt
i (T

t
ATA)

−1
ti =

A∑

a=1

t2
ia

�a
, i = 1, . . . , I. (4)

It is equal to the squared Mahalanobis distance from the
model center to sample i within the score subspace. The aver-
age SD is calculated as [5]

h0 = 1
I

I∑

i=1

hi ≡ A

I
. (5)

The OD, vi, is calculated as the sum of the squared residuals
presented in matrix E = {eij}

vi =
J∑

j=1

e2
ij. (6)

The OD is the squared Euclidian distance from object i to the
model subspace. The average OD value is calculated as

v0 = 1
I

I∑

i=1

vi. (7)

2.2. Soft independent modeling of class analogy
(SIMCA)

SIMCA is a supervised pattern recognition method [10]. The
idea behind this method is that each group of objects is inde-
pendently subjected to PCA with its own complexity (the
number of PCs) and the acceptance area for each model is
defined. In this study we apply a modified SIMCA approach
that was earlier presented by one of the authors [5]. This
approach is based on the following principles.

(1) It is supposed that both the SDs and ODs values are chi-
square distributed, namely

h

h0
∝ 1

Nh
�2(Nh)

v

v0
∝ 1

Nv
�2(Nv), (8)

notation z ∝ G means that variable z follows the G distri-
bution.

(2) These chi-squared distributions depend on parameters Nh

and Nv that are the numbers of degrees of freedom (DoF).
Their values are not derived from theoretical considera-
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Fig. 1 – Sampling (bars) and estimated (curves)
distributions for the SDs (a) and ODs (b).

tions, but estimated from the calibration set, employing
values hi and vi, i = 1, . . ., I.
These two principles are illustrated in Fig. 1. It represents
two histograms (bars) and the corresponding �2 densities
(curves). The plots are constructed using the calibration
data set of Group 1 which is described below. It consists of
160 objects and the estimated DoFs are Nh = 3, Nv = 4.

(3) For the construction of the acceptance area for a given Type
I error �, the following approach is applied. Firstly, the �2

distributed values Nhh/h0 and Nvv/v0 are converted with
the Wilson–Hilferty transformation [11]

(�2/N)
1/3 − (1 − s2)

s
∝ N(0, 1), s2 = 2

9N
, (9)

that gives two independent standard normal variates.
Then the acceptance area in the transformed coordinates
is easily calculated for a given �. At last, the area is trans-
formed back into initial coordinates h/h0 and v/v0.

3. Materials and methods

The substance under investigation is Taurine, a non-essential
sulfur-containing amino acid. The NIR spectra were recorded
on the Spectrum 100N FT-NIR spectrometer (PerkinElmer UK)
fitted with a hand held diffuse reflectance fiber optic probe.
The spectra were measured through closed polyethylene bags
in the 4000–10,000 cm−1 region with a 2 cm−1 spectral resolu-
tion. Prior it is known that all samples present the substance
of satisfactory quality. All spectra were pre-treated by the SNV
procedure.

For detailed data processing, model analysis, and general
approach elaboration various spectra were measured: those
of the substance in closed bags, substance without packag-
ing, and empty polyethylene bags. 246 spectra (each bag was
measured 3 times in different places) were recorded for 82
drums (substance in the closed bags). They comprise data set
A. Three bags were opened and NIR spectra of the substance
(5 replicates per drum) were recorded by means of the same
fiber optic probe. These 15 objects were collected in the S data
set. The spectra of 18 empty polyethylene bags folded several
times were measured by the same equipment. The 18 spectra
comprise data set P.

For testifying purposes spectra of another substance, Caf-
feine, used at the same pharmaceutical factory were also
measured. Pure Caffeine is a plant-based alkaloid which is
applied to enhance the heart function in the way similar
to Taurine. Spectra of 5 samples of Caffeine comprise data
set C.

4. Results and discussion

4.1. Explorative analysis

The explorative PCA analysis of set A shows an essential
difference between the samples. More than 60 objects (out
of 246) may be treated as doubtless outliers. The source of
such variations was found after comparing the spectra of
the substance in a bag (spectra A1, A2 in Fig. 2), the spec-
tra of unpacked substance (S1), and the spectra of empty
polyethylene bags (P). The addition of the PE spectrum (P)
to the substance spectrum (S1) may cause the distortion of
the main peaks. This is the case for spectrum A1 but not
for spectrum A2. The PE peak in the central part of the NIR
region (first overtone around 5770 cm−1) significantly shifts
the substance peak to the left (in MIR direction). Second PE
peak (combination bands around 4300 cm−1) amplifies the cor-
responding substance peak. Due to varying thickness of PE
bags caused by folds, the influence of the PE spectra on the
routine measurements results in different distortions of the
main substance peaks (compare spectra A1 and A2). A pre-
liminary PCA analysis, namely the first loading vector plot,
confirms this conclusion. The influence of packaging can
partly be decreased by a proper choice of spectral region.
In the present study we use the region of 4400–7400 cm−1.
It is worthy of mentioning that application of the averaged
spectra instead of three repeated measurements of one drum
does not improve the situation appreciably. The contrivance
that helps to solve the problem is the construction of two
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Fig. 2 – Spectrum S1 obtained from sample 1 without PE
bag (substance), P is a spectrum of PE bag, A1 is a spectrum
of sample 1 in PE bag, A2 is a spectrum of sample 2 in PE
bag. Spectral region between vertical lines is used for
further data processing.

PCA models and the application of sequential discrimina-
tion.

4.2. Models for pattern recognition

It is known that all measurements have been performed on
perfect samples; therefore, the main idea is to keep the out-
liers and to treat them as a special calibration set. The ‘outliers
set’ presents the PCA model that describes objects highly devi-
ated from average objects but still presenting the spectra of
satisfactory quality substances. In our case, all regular spec-
tra of 184 samples comprise Group 1. The corresponding PCA
(Model 1) employs three PCs to explain 98% of variance. The
main variation is referred to substance peaks directly. The
measurements attributed to outliers are collected in Group 2
(62 spectra). This group spans over rather a wide area in the
scores plots.

Fig. 3 – Score plot (PC1 vs. PC2) for Model 2. Squares are
calibration samples (Group 2) and dots are test samples
(Group 1).

Fig. 4 – Score plot (PC1 vs. PC2) for Model 1. Dots are
calibration samples (Group 1) and squares are test samples
(Group 2).

Fig. 5 – Classification plots for Model 1. Axes represent
normalized score (h) and orthogonal (v) distances. Dots are
calibration samples from Set 1 (Group 1), squares are
samples from Set 2 (Group 2), triangles are validation Set 3
samples (Groups 1 and 2). Acceptance area is limited with
curve A.

The corresponding PCA Model 2 with two PCs explains 99%
of total variance. The main variation in Model 2 is referred to
the impact of PE peaks. Being projected onto the PC hyper-
plaine of Model 2, the samples from Group 1 are located in a
compact cluster inside Hotteling T2 Ellipse (Fig. 3). Vice versa, if
Group 2 is projected onto the Model 1 hyperspace, many sam-
ples from Group 2 are located beyond the Hotteling T2 area
(Fig. 4).

4.3. Classification

For classification and validation purposes the data are split
into three sets. Set 1 (160 samples from Group 1) is used for the
construction of the model for perfect measurements (Model
1). Set 2 (56 samples from Group 2) is used to build the ‘out-
liers model’ (Model 2). Set 3 is used for validation and consists
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Fig. 6 – Classification of samples from the three drums with
three replicate measurements. Axes represent the
normalized score and orthogonal distances. Acceptance
area is limited by curve A (a) Model 1 and (b) Model 2.

of 24 samples from Group 1, and 6 samples from Group 2.
The results of testing of Set 2 and Set 3 against Model 1 are
presented in Fig. 5, which is a typical SIMCA plot adjusted in
accordance with the above-described method. The axes rep-
resent the scores, h (aka, leverage) and orthogonal, v (aka,
sample residual variance) distances. They are normalized to
the corresponding mean values (h0 and v0). To make the plot
more visual the fourth root is applied to both axes. The accep-
tance area is limited by curve A. It is constructed for Type I
error � = 0.01. As expected, all samples from Group 2 (Set 2
and 6 samples from Set 3) are located beyond the classifi-
cation limits. To avoid the rejection of such measurements
the classification against Model 2 is employed. The results of
the two-stage classification for three different drums are pre-
sented in Fig. 6 (the first two digits of point label correspond to
a drum number; the third digit corresponds to a replica num-
ber). There are no problems with the classification of drum
73. All three measurements are recognized by Model 1. For

Fig. 7 – The flowchart of the sample routine testing.

drum 55, first sample (55-1) is rejected by Model 1 (Fig. 6a), but
recognized by Model 2 (Fig. 6b), resulting in the decision “extra
measurements are required”. The repeated measurements 55-
2 and 55-3 identify the substance in drum 55 as of satisfactory
quality. The same holds for drum 62.

It is also important to verify that Model 2 is not “too wide”,
i.e. that the samples of other substances are classified by
Model 2 as aliens. In Fig. 6b samples of Caffeine (C1–C5) are
marked by diamonds. One can see that they are located beyond
the acceptance area. Both high OD and SD determine the loca-
tion of these samples.

To summarize, the routine testing is conducted as follows:

• if a sample belongs to Class 1, this is a sample of a satisfac-
tory quality (decision “accepted”);

• if a sample belongs to Class 2, measurement should be
repeated (no decision);

• if a sample does not belong to Class 2, such a sample is an
alien (decision “rejected”).

The flowchart of the routine testing is shown in Fig. 7.
It is important to be sure that such a sequential procedure

will end with a definite decision (accepted or rejected) after
a reasonable number of iterations. This totally depends on
the share of the outliers (Group 2) in the whole population
of objects. In our case this ration is p = 62/184 ≈ 0.25. There-
fore, the average number of repetitions is 1/p − 1 ≈ 3. The same
could be formulated differently: a chance that more than 5
measurements of the same sample will be necessary is lower
than 0.001.

5. Conclusions

Ordinary outliers are excluded from calibration. Nevertheless
there are situations when outliers of a special type can dra-
matically improve the data analysis. In case we know that all
measurements come from samples with satisfactory quality,
a special model for outliers helps to make substance classi-
fication more reliable and decrease the errors caused by the
measurements through closed bags and application of fiber
optic sampling.
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