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In-line prediction of drug release profiles for pH-sensitive coated pellets
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Anewmethod for the prediction of the drug release profiles during a running pellet coating process from

in-line near infrared (NIR) measurements has been developed. The NIR spectra were acquired during

a manufacturing process through an immersion probe. These spectra reflect the coating thickness that is

inherently connected with the drug release. Pellets sampled at nine process time points from thirteen

designed laboratory-scale coating batches were subjected to the dissolution testing. In the case of the pH-

sensitive Acryl-EZE coating the drug release kinetics for the acidic medium has a sigmoid form with

a pronounced induction period that tends to grow along with the coating thickness. In this work the

autocatalytic model adopted from the chemical kinetics has been successfully applied to describe the

drug release. A generalized interpretation of the kinetic constants in terms of the process and product

parameters has been suggested. A combination of the kinetic model with the multivariate Partial Least

Squares (PLS) regression enabled prediction of the release profiles from the process NIR data. The

method can be used to monitor the final pellet quality in the course of a coating process.
Introduction

Coated pellets can be used when a delayed or sustained drug

release in a patient’s digestive tract is necessary. The profile of an

active pharmaceutical ingredient (API) release is therefore the

most important criterion of the final product quality. The coating

material, its thickness and coating process conditions determine

the drug release kinetics.

Growth in quality standards is a pronounced trend in today’s

pharmaceutical production. The necessity to assure the intended

product quality during a manufacturing process encourages the

implementation of spectroscopic, in particular, NIR sensors for

in-/on-line measurements.1 These measurements can be con-

ducted without process interruption or sample isolation, and

therefore instantly reflect the current process state. The main

principles of this approach are formulated by the U.S. Food and

Drug Administration (FDA) in its Process Analytical Tech-

nology (PAT) initiative.2 Monitoring the final product quality in

the course of the production is one of the most challenging tasks

of process analysis today.3

Spectroscopic methods, such as NIR, infrared (IR), and

Raman spectroscopy are widely used for improved
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understanding and monitoring of pharmaceutical processes.4–7

NIR spectroscopy is a well-suited technique for in-line coating

monitoring.8–12 In particular, our previous study of the coating

process has proven the feasibility of the layer thickness estima-

tion from the in-line NIR spectra.13 Acquired in-line spectra

cannot be used directly, as relevant information contained in the

data is hidden by multiple interferences. Multivariate data

analysis, a.k.a. chemometrics, is a straightforward tool to extract

information from the spectroscopic data.14 Various pharmaceu-

tical applications of NIR measurements together with the che-

mometric data analysis have been reported.8,9,15–17

Prediction of the drug release profiles in the course of

manufacturing is a challenging analytical task, which is tightly

connected with the thickness and quality of the coating mate-

rial.18 At present, the dissolution test is the key method for

evaluating oral dosage form release. However, standard disso-

lution tests19 are time and labor consuming. A number of studies

were devoted to the prediction of the dissolution behavior of API

release using NIR spectroscopy and multivariate calibration

models.6,12,20,21 At the same time, in all these studies analysts were

aiming at establishing the direct dependence between NIR

spectra and specific point in dissolution curve, e.g. the percentage

of the released API measured at different time intervals (30 min,

1 h, etc.), or by correlation with the drug release percentage at

a specific level, say 50%, 75%, etc. All these studies used the

laboratory NIR data acquisition.

Our goal is to establish a procedure, which provides prediction

of the drug release profile in the whole range, from 0% to 100% of

the API release, using the in-line NIR measurements obtained in

the course of the coating process. The study is closely related to
This journal is ª The Royal Society of Chemistry 2011
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Table 1 Batch description

Batch
ID Grade SRa, g min�1 SCb (%) CDc, min PTd, min ATe, �C
the drug release mechanism. A number of previous studies have

been devoted to the drug release modeling and to the analysis of

the physical/chemical changes taking place during dissolution of

the film-coated solid dosage forms. The term ‘‘release’’ encom-

passes several processes that contribute to the drug transfer from

a dose to the bathing solution. Many researchers tend to use a so-

called ‘‘hard’’ modeling of the drug release that relies on the

physical nature of the phenomena, such as diffusion, dissolution

and swelling.22–27 This straightforward approach may result in

very accurate and predictive models. Its main disadvantage is the

high mathematical complexity that in most cases leads to the

absence of the explicit analytical solution. Moreover, an

exhaustive understanding of the process nature is a necessary

prerequisite of the hard modeling in general. In contrast to it,

the ‘‘soft’’ models (the terminology is introduced in ref. 28) are

(semi-) empirical, or data-driven. The latter strategy has also

been successfully applied in dissolution studies.22,26,29

The pH-sensitive polymer coatings are designed for delayed

drug release. Due to the formation of an insoluble form in the acid

environment, it protects the API as it travels through the stomach

and then dissolves in the small intestine as the pH rises. A vast

majority of the release mechanism studies of the pH-sensitive

coatings deal with the final basic phase, when the dose disinte-

gration occurs. Premature drug release in acidic media, which

may happen in the case of insufficient coating thickness, is poorly

studied.30,31However, for the purpose of the real-timemonitoring

of the coating protective properties, this premature release from

the undercoated process pellets is of primary interest.

The study consists of two closely related parts. Firstly, the

drug release data have been modeled and a common kinetic

equation, that adequately describes the profiles in a wide range of

coating thicknesses and process conditions, was obtained.

Secondly, the results of kinetic modeling, namely the estimates of

a kinetic constant, were used as a response in PLS modeling. The

predictors are NIR spectra measured in-line by means of an

immersion probe in the course of the coating process. Therefore,

kinetic modeling of dissolution can be viewed as data pre-

processing, which extracts new variables tightly connected with

the spectral data.

It is also suggested that the autocatalysis equation applied for

drug release profile fitting can be considered not only as a formal

but also as a physicochemical model. We think this result to be

extremely important as this provides us with new information

regarding the process and gives the possibility to control the

process.
W1 white 24.6 10 152 170 65.7
W2 white 24.8 12.5 123 141 65.7
W3 white 26.6 15 96 113 65.8
W4 white 20 15 124 136 65.8
W5 white 28.9 15 88 104 70.8
W6 white 10.6 15 240 255 40.9
W7 white 20.5 15 124 139 58.7
Y1 yellow 16.4 15 155 167 50.8
Y2 yellow 23.6 15 108 120 60.8
Y3 yellow 14.2 15 179 190 50.7
Y4 yellow 12.9 15 198 208 53.9
Y5 yellow 26 15 98 109 72.9
Y6 yellow 20 15 127 139 59.0

a Average spray rate during the coating phase. b Solid coating contents.
c Coating phase duration. d Total process time (coating and drying).
e Inlet air temperature.
Material and methods

Fluid bed pellet coating

The coating material used in this study is Acryl-EZE� (Colorcon

AG, Germany), the enteric formulation on the basis of a copol-

ymer of methacrylic acid and ethyl acrylate. Two different

formulations of Acryl-EZE were used; we designated them as

White and Yellow grades. The difference in the coatings is that

the Yellow one contains the addition of iron and titanium oxides.

The final coat thickness applied was approximately 16 mm. This

target thickness was chosen to provide the drug release times

suitable for the kinetic study in the acidic medium.
This journal is ª The Royal Society of Chemistry 2011
The pellet coating was performed in a laboratory-scale MP1

Precision Coater� by GEA Aeromatic-Fielder AG (Switzer-

land) by spraying an aqueous Acryl-EZE suspension into a co-

current fluidization of pellets, preliminarily coated with an API.

The inlet air temperature was maintained at a fixed value during

the batch and the coating suspension spray rate was ramped to

a desired value and then held. When all the coating had been

applied, the pellets were dried to the moisture content of

approximately 2%. A number of the process parameters were

passively monitored in real time, including temperature, pres-

sure, and relative humidity.

Thirteen coating batches were carried out at different inlet air

temperatures and spray rates spanning the possible variability of

process conditions (Table 1). All batches started with 2.5 kg of

nonpareil sugar/starch pellet cores (sieve size between 710 and

850 mm) by Werner’s� Fine Drag�ees (Germany) coated with

acetaminophen by H€anseler AG (Switzerland). The API-coated

pellets used in this study were from a single production-scale

batch to provide the homogeneity of raw material. The total

sprayed mass (SM) of solid coating applied in all batches was 380

g. The coating suspension contained 15% of Acryl-EZE except

for batches W1 (10%), and W2 (12.5%).

Process samples (10–20 g) for the reference analysis and the

dissolution tests were taken directly from the pellet flow through

a built-in ‘‘thief sampler’’, located at approximately the same

height as the optical probe. Nine test samples were taken from

each batch at the process time points that corresponded to

12.5%, 25%, ., 100% of the total sprayed mass. The last, ninth

sampling, was performed at the end of the drying stage. In total

117 samples were collected.
In-line NIR spectra acquisition

The Lighthouse Probe� (GEA Pharma Systems nv - Collette�,

Belgium) is an immersion probe enabling in-line acquisition of

diffuse-reflectance NIR spectra within a process.13 A J&M

TIDAS 1121 SSG Spectrometer (J&M Analytik AG, Germany)

with a 256-pixel diode-array detector, operating in the range

from 1100 nm to 2100 nm, was used to collect spectra. SynTQ
Analyst, 2011, 136, 4830–4838 | 4831



software (Optimal Ltd., UK) with embedded J&M adaptor was

used with the NIR-LHP for spectrometer control and data

acquisition.

The time interval between the subsequent spectra was 1 min at

the integration time of 75 ms. Fig. 1 illustrates the typical spectral

changes during a coating process for batch W5 data. The process

spectra are similar. The main difference is related to the water

combination band at 1930 nm and reflects variations in the pellet

moisture content. Nevertheless, minor spectral differences due to

the compositional changes of pellets during the coating are

sufficient to track the process in-line.13
Drug release study

Dissolution tests were carried out to study the kinetics of API

release from the pellets in accordance with the USP paddle

method.32 The following dissolution testers were used: Optimal

DT-1 (Pharma Alliance Group, Inc., USA), Distek Dissolution

System (Distek, Inc., USA), VanKel VK 6010, VK 3000 and VK

650 (Varian, Inc., USA). Dissolution media was 900 ml 0.1 N

HCl, which corresponds to the pH value of about 1.1, with added

0.1% v/v of surfactant Tween 80 at 37� 0.5 �C. The paddle speed
was set to 50 rpm and increased for 20 min to 250 rpm for the end

samples. The samples of 5 ml for the API analysis were taken at:

15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h without fluid

replacement. Samples passed through the 0.45 mm membrane

filter before the high-performance liquid chromatographic

(HPLC) analysis. HPLC (LC2010A and LC2010C, Shimadzu

Corp., Japan) was conducted at 40 �C at a flow rate of 0.75 ml

min�1. The mobile phase was a 1 : 1 methanol/water mixture and

the sample volume was 20 mL. The spectrophotometric detection

was conducted at 243 nm.

The uncertainty in determination of the percentage of API

release was calculated using replicated measurements, where

present. Among all White batches the lowest standard error was

4.8% (absolute units, the percentage of the released drug) in

batch W2 and the highest was 13.4% in batch W5. Unfortu-

nately, no replicate measurements were conducted in dissolution

tests for the Yellow batches. However, as tests were performed at

the same certified laboratory using the same equipment as for

White batches, we have to rely on the uncertainty level obtained

in other tests.
Fig. 1 NIR spectra (SNV-corrected) corresponding to the time points

when sampling for the dissolution tests were performed. Batch W5.
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Mathematical methods

Nonlinear regression analysis,33 in particular, the method of

successive Bayesian estimation (SBE)34,35 was applied for pro-

cessing the dissolution tests results with the help of FITTER

software.36 Partial least squares (PLS)37 regression modeling

relating kinetic parameters to NIR spectra was performed with

Chemometrics Add-In38 software.

Results and discussion

Outline

This section starts with the kinetic modeling of the drug release

profiles. All of them, independent of the coating material, process

completeness and batch conditions, were shown to follow the

same autocatalytic equation with only two constants.

Two kinetic constants of individual release profiles were then

thoroughly investigated. One of them was found to be associated

with the coating material type, and thus, its common estimate

can be calculated from the release kinetic data of the entire set of

similar batches using the nonlinear regression modeling. The

other constant is closely related to the applied coating thickness,

and consequently, can be predicted from the process NIR

spectra. The combination of nonlinear fitting of the release

kinetic curves with PLS regression analysis of the spectral data

enables the prediction of drug release profiles from the in-line

NIR spectra. Besides, an interpretation of the autocatalytic

equation in terms of the release mechanism has been suggested

on the basis of the above findings.

The discussion of results is concluded by the method valida-

tion and the description of a routine procedure for the modeling

and prediction of the drug release kinetics.

Release profile modeling

The nonlinear regression method (NLR) was used for the

modeling of the API release curves, i.e. percentage of the API

release D versus time. For this purpose a kinetic model 4 (t, u),

i.e. a function that depends on time t and vector of unknown

parameters u, was selected. Parameter estimates were chosen so

that an objective function

Q(u) ¼ S(u) + B(u) (1)

is minimized. The first term in eqn (1) is the sum of squares

SðuÞ ¼
X
i

ðDi � 4ðti; uÞÞ2 (2)

where Di is the API release data value, and 4 is the API release

model. The second term in eqn (1) is the Bayesian information,

which is described below (see eqn (7)).

The minimization procedure provides the parameter estimate û

and the residual sum of squaresQ0¼Q(û). This further yields the

residual variance s2, and the residual standard deviation (RSD) s

calculated by eqn (3)

s2 ¼ Q0

N � p
; s ¼

ffiffiffiffi
s2

p
(3)

Here N–p is the number of degrees of freedom (DoF), N is the

number of samples and p is the number of unknown parameters.
This journal is ª The Royal Society of Chemistry 2011



It has been found that the following model

4ðt;m; kÞ ¼ 100k
exp½ðmþ kÞt� � 1

mþ k exp½ðmþ kÞt� (4)

adequately describes the API release kinetics for all pellet

samples. Here t stands for time, m and k are unknown parame-

ters, i.e. u ¼ (m, k).

Eqn (4) is a well-known autocatalytic model that corresponds

to the following reaction scheme:

Aþ B ���!r1 2B A ���!r2 B

where 4 is a percent concentration of B, and concentrations of A

and B are constrained by the following conditions %A + %B ¼
100% with initial value %B0 ¼ 0%. The parameters m ¼ 100r1
and k ¼ r2 have the inverse time (min�1) units. Autocatalysis is

a phenomenon when a process is catalyzed by its own product.39

Two kinetic constants correspond to two stages: the second-

order reaction catalyzed by product B (r1), and the first order

generation of B (r2). The product accumulation leads to accel-

eration, which accounts for the sigmoid shape of the concen-

tration profiles. Generally, the parameter m is responsible for the

profile growth rate (slope), while k reflects the length of the

induction period (delay).

Experimental justification of this mechanism is still important

but this is beyond the scope of this study. Nevertheless, it can be

shown that the suggested model has a solid physical background.

When applied to the modeling of a large number of release

profiles the model (eqn (4)) reveals interesting regularities that

could not appear in the case of a purely empirical fitting. A key

feature of the suggested model is the possibility to fit each release

profile in the whole studied range of the process conditions with

only two parameters.

The data under consideration comprise 13 batches, which are

numbered by index b. Each batch consists of 9 dissolution

profiles, which are numbered by index j. Each dissolution profile

consists of 9 time-consecutive measurements, numbered by index

i. For example, the data associated with each batch could be

described as a 9 � 9 matrix D where Dij corresponds to the i-th

time measurement associated with the j-th dissolution profile.

Such a hierarchical data arrangement challenges a multistep data

processing.
Fig. 2 Experimental data and fitting results for batch Y6. Left panel: percen

are solid lines. Right panel: estimates for parameter m; values m̂bj (j ¼ 1,.,9
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On the first step all dissolution profiles are fitted indepen-

dently. Minimizing 13 � 9 ¼ 117 objective functions given in

eqn (5)

Qbjðm; kÞ ¼
X
i

ðDi � 4ðti;m; kÞÞ2 (5)

one can find 13 � 9 ¼ 117 values m̂bj, k̂bj that estimate the

parameters m and k.

Fig. 2 (left panel) shows the fitting results of batch Y6 with the

autocatalytic model eqn (4). Estimates and the 99% confidence

intervals for parameter m, calculated separately for each process

time point (sample), are presented in Fig. 2 (right panel).

Comparing these values one can conclude that the m value is

common for all profiles within a batch.

Using this consideration, on the second step we minimized 13

objective functions given in eqn (6), which correspond to 13

batches (b ¼ 1, .,13)

Qbðm; kÞ ¼
X
ij

�
Dij � 4ðtij ;m; kÞ�2 (6)

and found 13 estimates m̂b for parameter m and 13 � 9 ¼ 117

estimates k̂bj for parameter k.

The results are presented in Fig. 3.

Analysis of all estimates of parameter m leads to further

generalization. All individual batches within the same Acryl-EZE

formulation can be fitted by the autocatalytic model with only

two parameters: mW that is common for theWhite subset and mY

that is common for the Yellow one. For the calculation of these

estimates it is necessary to minimize two objective functions Q

with many unknown parameters: for the White batches the

number of parameters is equal to 64 ¼ 1 + 9 � 7, and for the

Yellow batches the number of unknown parameters is equal to

55¼ 1 + 9� 6. Such NLR problems are rather complicated to be

solved directly. Therefore, we have applied the successive

Bayesian estimation method to calculate mW and mY from the

data of corresponding batches.
Successive Bayesian estimation (SBE)

The SBE idea is rather straightforward. Batches are processed

not simultaneously but successively, one by one. During such
tage of API release vs. time; experimental data are markers, fitting curves

) with the 99% confidence intervals.
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Fig. 3 Estimated values for parameters m̂b and the 99% confidence

intervals.
a fitting the estimates that have been found in the previous batch

are further used as a priori information for processing of the next

batch. The SBE algorithm is as follows. Let us consider the case

when the b�1 batches have already been processed and batch b is

to be fitted. The following objective function is minimized on the

b-th step

Qbðm; kÞ ¼ Sbðm; kÞ þ BbðmÞ ¼
X
ij

�
Dij � 4ðtij;m; kÞ�2

þ s2b�1½Nb�1 þHb�1ðm� m̂b�1Þ2� (7)

In eqn (7) the first term, S, is the sum of squares for batch b. The

second term B is a priori information that depends on the

following values found at previous step b�1.

s2b�1 is the residual variance estimate;

Nb�1 is the number of degrees of freedom;

m̂b�1 is the estimate for parameter m;

Hb-1 is the information matrix (in our case it is a scalar).

The first batch (b ¼ 1) is processed without a priori informa-

tion (H ¼ 0). The value of the common parameter m obtained at

the last step is further used as an ultimate estimate of m.

Thereupon the partial parameters k are consequently recalcu-

lated applying this m value and a posteriori information built

after the last SBE step. Detailed description of SBE is presented

in.33,34Results of the finalmW andmY estimations are presented in

Table 2.

Values in the last column of Table 2 can be compared with the

measurement errors in the dissolution tests (see section Drug

release study).

Simultaneously, we obtain a set of estimates k̂bj for the partial

parameters k. The analysis of these values reveals their profound

relation to the sprayed mass (SM) process macroparameter. The

logarithm of k (q ¼ �ln(k)) manifests a clear linear dependence
Table 2 Results of fitting of subsets White and Yellow

Subset Estimate � STDa DoFb RSDc

White mW 0.050 � 0.001 1290 5.0
Yellow mY 0.036 � 0.001 394 4.8

a Standard deviation. b Number of degrees of freedom. c Residual
standard deviation.
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on SM (Fig. 4) in all studied batches. This is in line with the result

reported in.40

Thus, parameter m in model eqn(4) seems to inhere in both

White and Yellow subsets as reflecting the material grade. In

contrast to it, k is individual for each profile with exponential

dependence on the sprayed mass. As the sprayed mass is directly

linked to the coating thickness, it can be concluded that

parameter k essentially reflects the polymer layer growth during

the coating process. At the same time, Fig. 4 (right panel) shows

that the linear dependences of q against SM in different batches

are not the same. This observation reflects the fact that the

kinetics of API drug release depends not only on the coating

thickness, but also on the coating quality. The latter, in its turn,

depends on manufacturing conditions (see Table 1), such as

coating temperature, spray rate, etc. This result shows that the

PAT procedure based on model eqn (4) has a possibility to

account for a batch singularity and therefore control each indi-

vidual coating process in its progress.

In the left panel of Fig. 4 the 99% confidence intervals are

shown. Similar intervals in the right panel are not presented for

clarity of the picture. They are of similar sizes.
Analysis of NIR spectra

It has been shown that in the course of the kinetic data modeling,

it is possible to estimate the value of parameter m, which char-

acterizes the coating material. However, for the prediction of the

drug release profile it is necessary to estimate the value of k,

which is changing during the manufacturing process. As the

pellet coating thickness and the drug release process are tightly

connected, one can use the NIR data for the prediction of this

parameter.

The NIR spectra closest to the sampling process time points

were selected for modeling (Fig. 1). The predictor matrices X

comprise 7� 9 ¼ 63 NIR spectra from theWhite subset, and 6�
9¼ 54 NIR spectra from the Yellow subset. The response vectors

y consists of the qNLR ¼ �ln(k) values calculated by the kinetic

modeling of the release profiles. Prior to modeling, the NIR

spectra are pre-treated by the standard normal variate (SNV)

procedure.14 SNV is known to be effective to compensate for the

variable spectral baselines and intensities caused by the process

dynamics.

The partial least squares (PLS)37 regression method is applied

for the development of the calibrationmodels. Thenumber ofPLS

latent variables (LV) is determined using values of the root mean

square error (RMSE) of calibration, RMSEC, the segmented

10%-out cross-validation,37 RMSECV, and explained variances

for predictors and response (see Fig. 5, Fig. 6 and Table 3).

Two individual PLS regression models were built for theWhite

and Yellow subsets. The residual analysis has shown that samples

with the ordinal number 1 acquired at the beginning of the

Yellow process are outliers. Virtual absence of the protective

coating of the initial samples is a straightforward explanation of

this fact. Therefore, these samples were excluded from the PLS

modeling of the Yellow subset.

The model statistics are presented in Table 3. The good model

performances are illustrated byFig. 5 andFig. 6. Considering that

the modeling was based on the representative set of designed

coating batches, a reasonable number of latent PLS variables
This journal is ª The Royal Society of Chemistry 2011



Fig. 4 Dependence of q¼�ln(k) against sprayed mass: (left) BatchW1 from subsetWhite 99% confidence intervals are shown; (right) All batches from

subset Yellow.

Fig. 5 PLSmodel for the subsetWhite. Left panel: RMSEC and RMSECV vs. number of LV. Right panel: Performance in prediction of qPLS predicted

by cross-validation vs. qNLR, used as response in PLS modeling.

Fig. 6 PLSmodel for the subsetYellow; Left panel: RMSEC andRMSECV vs. number of LV. Right panel: Performance in prediction of qPLS predicted

by cross-validation vs. qNLR, used as response in PLS modeling.
(LV¼ 3 for theWhite subset and LV¼ 2 for theYellow) indicates

a high model sustainability in the prediction of new samples.
Test set validation

To validate the prediction capability of the proposed approach,

batches W2, and Y5, nine samples each, were excluded from the
This journal is ª The Royal Society of Chemistry 2011
calibration sets to be taken as a new data for prediction.

Consequently, for theWhite subset the calibration set comprised

six batches (W1, W3–W7) and for theYellow subset - five batches

(Y1–Y4, Y6). EstimatesmW andmY, calculated using the reduced

calibration subsets insignificantly differed from those calculated

using the whole data sets. Two PLS regression models for

q ¼ �ln(k) were established with the same numbers of LVs as in
Analyst, 2011, 136, 4830–4838 | 4835



Table 3 PLS modeling and validation statistics in prediction of
qNLR ¼ � ln(k) from the NIR spectra matrix, X

Subset LV X explained qNLR explained RMSEC RMSECV R2

White 3 88.2% 92.7% 0.58 0.64 0.93
Yellow 2 95.0% 92.9% 0.24 0.28 0.97

Table 4 Modeling and prediction statistics for nine process time points
(samples) in W2 and Y5

Sample

Batch W2 Batch Y5

qNLR
a qPLS

b RSDCc RSDPd qNLR
a qPLS

b RSDCc RSDPd

1 1.94 1.79 7.67 8.32 2.09 1.79 6.03 6.35
2 2.96 2.99 8.95 9.66 2.63 2.99 1.21 5.14
3 4.20 4.13 6.67 6.70 3.67 4.13 2.85 4.65
4 5.80 5.03 7.91 8.41 4.89 5.03 4.24 4.97
5 6.28 5.69 3.72 4.51 5.58 5.69 3.39 4.00
6 7.24 6.26 3.09 4.94 6.23 6.26 2.91 3.06
7 8.14 6.95 5.93 5.50 6.85 6.95 2.92 5.07
8 8.54 7.39 2.00 3.21 7.38 7.39 2.04 2.06
9 8.61 7.65 1.52 4.88 7.38 7.65 2.17 4.25

a NLR estimate of q. b PLS estimate of q. c Residual standard deviation
in calibration. d Residual standard deviation in prediction.
the full models (3 and 2 for the White and Yellow subsets

respectively). Then, these models were used to predict kinetic

parameters k for test batches W2 and Y5. Predicted API release

curves for W2 and Y5 are presented in Fig. 7 and Fig. 8

respectively.

Several data points (four in batch W2 and two in batch Y5)

can be considered as outliers. They are shown with the unfilled

marks.

The quality of prediction can be evaluated by comparison of

the residual standard deviations (RSD) obtained at different

levels of batches W2 and Y5 modeling. At the initial stage, when

both batches were included in the full datasets, they have been

modeled with individual ‘‘calibration’’ RSDs that were: sW2¼ 5.9,

sY5 ¼ 3.4. During the validation, when W2 and Y5 are in the test

set, ‘‘prediction’’ RSDs are: sW2 ¼ 6.5, sY5 ¼ 4.6. Furthermore

‘‘prediction’’ RSDs can be compared with the dissolution test
Fig. 7 Predicted API release curves for batch W2 (subsetWhite); hollow

markers designate outliers.

Fig. 8 Predicted API release profiles for batch Y5 (subset Yellow);

hollow markers designate outliers.
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standard error of 4.8 calculated from the replicated measure-

ments in batch W2.

Table 4 presents the prediction statistics of the drug release

kinetics in more details and a comparison with the fitting quality.

As a rule, the fitting accuracy (when a batch is a member of the

calibration set) is higher in comparison with the case when the

batch is used as a test set. Columns qNLR and RSDC present

values calculated when batches W2 and Y5 were included in the

calibration set and Columns qPLS and RSDP present corre-

sponding values in the case of W2 and Y5 only being used for

prediction.
Routine modeling and prediction procedure

To develop a routine procedure for the release profile predic-

tion from in-line process NIR spectra, the following steps are

performed. Primarily, the dissolution tests data are processed

by the SBE method. This provides the estimate for parameter

m in eqn (4), and also determines a set of parameters q ¼ {–ln

(kbj)}, values of which are changing in the course of the coating

process. After that, the PLS model, which regress q on spectral

data X is established. As a result, the calibration model q ¼ Xa

together with eqn (4), can be used in the routine analysis to

yield a whole dissolution curve for each spectral measurement

conducted in-line. Such a curve is obtained directly by means

of a kinetic model (eqn (4)) with the known parameter m

and parameter k ¼ exp(–q), which is calculated by the PLS

model as soon as the NIR spectrum is acquired. In the case

that the coating material is changed, the model should be

updated.

The modeling and prediction flowchart is schematically pre-

sented in Fig. 9.

Therefore, the suggested approach enables an accurate

prediction of the release profiles with the uncertainty that is

comparable to that of the dissolution tests (see section Drug

release study). Moreover, the constraints prescribed by the

kinetic model (eqn (4)) tend to ‘‘fix’’ the noticeable outliers in the

experimental data, manifested in the seeming concentration

decrease or not reaching the 100%-level after the dissolution

completeness (Fig. 7 and Fig. 8).
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Fig. 9 Modeling and prediction flowchart.
Conclusions

Summarizing both the theoretical outcomes and practical

outputs of the research, the following points should be

highlighted.

A valuable theoretical result is the solution of the ‘‘curve-to-

curve’’ calibration problem and in the particular case considered

here, the prediction of the drug release profiles fromNIR spectra.

This method differs from the conventional approach, where

a curve is restored from the individually calibrated and predicted

points. The advocated approach extracts new features as the

parameters of a function approximating the drug release profile.

Such a function can be selected on a purely empirical basis, or

derived from the fundamental process knowledge. Additionally,

successful approximation results in a considerable data reduc-

tion. The main merit however is the ability to predict the whole

curve smoothly.

It has been found that the autocatalytic model perfectly fits the

drug release kinetics of the pellets coated by a pH-sensitive

polymer. Moreover, two underlying kinetic constants have

a reasonable physical interpretation. The first parameter, m, is

responsible for the coating material grade and this parameter

varies neither within a batch nor between the similar batches. The

second parameter, k, is closely related to the coating thickness

and this dependence is individual for every batch. Subsequently,

the autocatalysis is a mechanical rather than a purely empirical

model. A preliminary explanation of the mechanism’s nature has

been suggested.

Application of the kinetic model in combination with the PLS

regression results in a practical PATmethod for prediction of the

drug release profiles from the in-line NIR spectra. In this

procedure the parameter m is estimated in advance from the

relevant dissolution tests. The value ofm does not vary as long as

the coating material is the same. The parameter k is predicted

from the NIR spectra using PLS calibration. With each new

spectrum obtained during the coating, the value of k changes.

The main advantage of the method is that the procedure

continuously accounts for the individual peculiarities of a current

batch at any process time point. Thus, the combination41 of the

hard (autocatalytic model) and the soft (multivariate regression)

methods serves as a very efficient technique for real-time drug

release analysis.
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