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variate curve resolution applied to
the spectrophotometric determination of cerium(III)
in aqueous nitric acid solutions for process control†

Oxana Ye. Rodionova and Alexey L. Pomerantsev*

It is shown that the recently proposed Non-Linear Multivariate Curve Resolution (NL-MCR) method can be

effectively employed to develop an accurate calibration of cerium(III) using spectrophotometry

measurements of mixtures of rare earth elements in nitric acid. Spectroscopic techniques provide

a unique opportunity for the in-line determination of critical concentrations rapidly and without serious

risks to operating personnel and the environment. Cerium has no absorbance bands in the visual and

near-infrared range. In the ultraviolet range cerium(III) has a unique large peak which overlaps with even

larger peaks of nitric acid. In the case of in-line control, where conventional analytical means are limited,

we encounter a peak flattening and, consequently, a Lambert–Beer law violation. Therefore, the

conventional calibration methods, such as Partial Least Squares (PLS) and Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS), yield useless results. Our previous attempt to overcome Beer's law

violation by introducing a non-linear constraint in the MCR-ALS procedure failed. Application of the NL-

MCR method with specially selected transition function not only yields accurate cerium determination

but also provides an opportunity to assess the unknown nitric acid concentration in new samples. It is

shown that the established calibration models are stable to some extent for out-of-control cases.
1. Introduction

Molecular spectroscopy in the 200–2500 nm range is the main
tool in the frame of Process Analytical Technology (PAT).1 This
approach is of special interest in the nuclear industry, particu-
larly in the eld of spent nuclear fuel reprocessing.2 A non-
invasive on-line control provides a unique opportunity to
determine the desired concentrations rapidly and without
serious risk of radiation pollution.3 Rare earth elements (REEs),
and, in particular, cerium are in the focus of technologists'
attention.4

It should be emphasized, that the spectrophotometric
determination of cerium‡ is a hard job. Furthermore, if Ce is
dissolved in nitric acid, it is a very hard job. Moreover, in case
the determination is performed in-line, where the conventional
analytical facilities are limited, this problem becomes a partic-
ularly arduous one.5 It is known that cerium has no absorbance
bands in the visual and near-infrared range, but has a large
peak6–8 near 250 nm. In the UV range, an aqueous solution
of HNO3 has two partly overlapping peaks around 247 nm and
295 nm.9
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Example spectra are shown in Fig. 1a: the spectrum of 0.4 M
nitric acid (blue curve 1), and the spectrum of 0.6 g L�1 cerium
(green curve 2). The spectrum of their mixture is presented by
the black curve 3. All spectra shown in Fig. 1a are the ‘ideal’
ones because there exists no spectrometer that can measure
them properly. All spectrometers have limited sensitivity of the
detector, which cannot measure the low transmittance signal in
highly absorptive media. The level of 3 AU (red dashed line 4) is
a typical limit of a spectrophotometer's sensitivity and all
absorbance peaks above this level are attened.

Curves shown in Fig. 1b are the ‘real’ spectra that could be
acquired by using a spectrometer with a saturation level of 3 AU.
The black curve (3s) represents the distorted spectrum of
a mixture of HNO3 and Ce. The blue curve (1s) demonstrates the
attened spectrum of nitric acid. Finally, the green curve (2s)
stands for the reconstructed spectrum of cerium that is ob-
tained when the distorted spectrum of nitric acid (1s) is sub-
tracted as a background from the distorted spectrum of the
mixture (3s). Comparing the outcome (2s) with the ‘ideal’
spectrum of cerium (green dashed curve 2), we see that the peak
height of (2s) is 1.2 AU instead of 2 AU, and the peak position
shied from 253 nm to 263 nm.

This reasoning clearly explains that the HNO3 + Ce mixture
does not comply with the Lambert–Beer law, which is a basic
spectrophotometric principle. There are many ways to avoid
such situations in a laboratory, e.g. by means of sample dilu-
tion, shortening of the optical path length, or, where possible,
Anal. Methods, 2016, 8, 435–444 | 435
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Fig. 1 (a) ‘Ideal’ absorption spectra: (1) 0.4 M HNO3, (2) 0.6 g L�1 Ce, and (3) mixture HNO3 + Ce; (b) acquired saturated spectra: (1s) 0.4 M HNO3,
(3s) mixture HNO3 + Ce; (2) ideal spectrum of 0.6 g L�1 Ce, and (2s) the reconstructed spectrum of Ce. In both plots, the dashed line (4)
represents the saturation level.
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changing the spectral region. However, if the purpose of
modeling is a PAT solution, the instruments and experimental
set-up should be similar to those in the real process facilities.
Practically this means that the spectral resolution and wave-
length accuracy are subpar, the optical path length is xed, no
dilution is used, and no extra reagents are employed.

Another aspect is the variability of process parameters,
which are oen out of control in comparison with laboratory
scale models. For these reasons, many appropriate laboratory
scale PAT solutions have not been implemented in practice. To
avoid such problems, the PAT aimedmodels should be, to some
extent, insensitive to distorted data and to predictions out of the
explored concentration range.

This paper is closely connected with our earlier publication.5

Moreover, it can be considered as its natural continuation. In
the former paper, we discussed the feasibility of simultaneous
spectrophotometric determination of cerium, praseodymium,
and neodymium using the UV-vis range. The predictability of
two chemometric techniques, Partial Least Squares (PLS)
regression and correlation constrained Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) were
compared in order to evaluate the models' performance. It has
been shown that both models are fairly similar; they are stable
to some extent for out-of-control cases, and thus can be reliably
used for in-line control of neodymium and praseodymium in
nitric acid. In the case of cerium, we obtained a disappointing
result. All models of Ce calibration demonstrated low quality
and obvious non-linearity. It was also shown that the presence
of Nd and Pr in the solutions does not inuence the spectra in
the UV range and, thus, does not hinder the quantication of
Ce. The only restriction is a common experimental set-up that
enables simultaneous quantication of REEs.

The aim of the current study is the development of a cali-
bration model for the quantication of cerium in nitric acid
solutions using UV-spectrophotometry and the recently
proposed9 Non-Linear Multivariate Curve Resolution (NL-MCR)
method. For comparison, we employ the correlation con-
strained MCR-ALS method,10,11 which is a standard calibration
436 | Anal. Methods, 2016, 8, 435–444
technique. The most popular PLS regression technique has
been investigated in full in our previous publication,5 therefore
it is not considered here. In contrast to the former paper, the
spectral data are considered in two different ways. In the rst
case, nitric acid is subtracted from the spectra as a background.
In the second case, the background is preserved and treated as
an additional component.
2. Theory

A calibration model relates two parts of data, namely, the (I � J)
matrix X that contains spectra of I samples recorded for J
wavelengths, and the (I � N) matrix C of concentrations. N
stands for the number of components. Direct calibration is
based on the principle of linearity, aka the Lambert–Beer law,

X ¼ CSt. (1)

In this equation, S is the (J � N) matrix of pure spectra, also
called the sensitivity matrix. If matrix S is known, the concen-
trations are calculated by an equation

C ¼ XB, (2)

where B ¼ S(StS)�1 is the (J � N) matrix. However, in practice,
matrix S is usually unknown and should be reconstructed from
a training subset of data.

The obtained model (i.e.matrix B) is then applied to another
subset Xnew that can be a validation, or test, or new data set. The
predicted concentrations

Cnew ¼ XnewB (3)

can be compared with the known reference values, or directly
used to monitor the process.

Two methods employed in this paper are the correlation
constrained MCR-ALS method, and the recently proposed NL-
MCR.
This journal is © The Royal Society of Chemistry 2016
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2.1. Correlation constrained MCR-ALS

MCR-ALS is a well-establishedmethod.12 This approach resolves
spectroscopic data, and, then, it uses the obtained spectro-
scopic proles for the quantitative calibration. MCR-ALS is
based on the equation

X ¼ CSt + E. (4)

Here S is the (J � N) matrix of pure spectra, N is the number of
components in the system, and E is the (I � J) matrix, which
contains variations not explained by the model.

The procedure starts with evaluation of the initial estimate of
matrix S, or matrix C.13 In calibration, it is customary to use the
knownmatrix Cref for the initial step. Then, matrices C and S are
found by the ALS method that iteratively minimizes the sum of
the squared residuals

kX � CStk2. (5)

The algorithm consists of two steps, the C-type step, and the
S-type step, which are repeated until convergence. In the C-type
step, matrix ShShat is xed, and the Cmatrix is calculated using
the unconstrained least squares (LS) estimator

Cin ¼ XShat(S
t
hatShat)

�1. (6)

Then, matrix Cin is transformed into matrix Chat to incor-
porate the constraints for the concentration prole.

For the S-type step, matrix ChChat is xed and matrix S is
found using a similar formula

Sin ¼ XtChat(C
t
hatChat)

�1. (7)

Subsequently, matrix Sin is transformed into matrix Shat to
incorporate the constraints for the spectral prole. The calcu-
lations, given in eqn (7) and eqn (8), and transformations
subject to corresponding constraints are repeated till
convergence.

Constraints are applied to give a physicochemical meaning
to the LS estimates Cin and Sin. For example, there are natural
non-negativity restrictions that force the concentrations and
spectra to be equal or greater than zero. In calibration prob-
lems, additional correlation constraints10,11 are applied. They
are based on regressions that relate the known reference
concentration matrix, Cref, to matrix Cin obtained in the ALS
procedure by eqn (6).

Cref ¼ CinA + G. (8)

Here A is the (N � N) matrix of slopes, and G is the (I � N)
matrix of intercepts.10 In a simple case, a univariate regression
cn,ref ¼ ancn,in + gn is developed for each component concen-
tration vector cn.11 Then, A ¼ diag(a1,., an), and G ¼ (g11,.,
gn1), where 1 is the (N � 1) vector of units.

The estimated regression matrices A and G are used to nd
the adjusted concentration matrix, Chat, applying the following
formula
This journal is © The Royal Society of Chemistry 2016
Chat ¼ CinA + G. (9)

In MCR-ALS, the prediction is performed by means of the
following formula

Cnew ¼ XnewShat(S
t
hatShat)

�1A + G (10)

where Xnew is a matrix of new (spectral) data, and matrices A, G,
and Shat have been obtained at the calibration stage.

Before starting the MCR-ALS procedure, it is necessary to
determine the number of chemical components, i.e. the N
value.
2.2. Non-linear MCR

The majority of chemometric method utilizes eqn (1) in the
optimization problem given in eqn (5). In practice, due to the
numerous unavoidable problems (detectors, noise, baseline,
etc), matrix X is always distorted. Consequently, X is improved
using preprocessing methods, such as smoothing, baseline
corrections, etc., which are aiming to make data closer to the
model. As a result, we come to the following optimization task

minimize
C;S

kGðXÞ � CStk2 (11)

where G is an improving lter.
Instead of improving X, we propose to impair matrix CSt by

applying lter F with a similar goal – to draw the model nearer
to the data. Such a perverse view of linearity turns out to be
useful in the analysis of complex data. The rst example
belongs to Richard Harshman et al.14 who employed the shi
operator as an F lter in factor analysis.

As discussed above, bands with high absorbance produce
saturated spectra. This causes a loss of linearity between the
peak height and concentration, and, thus, leads to a violation of
the Lambert–Beer law. In general, we can suppose that acquired
spectral matrix X relates to product CSt through an equation

X ¼ F(CSt) + E, (12)

where lter F is a row-wise non-linear function that converts
each ‘ideal’ spectrum ciS

t into ‘real’ spectrum xi. In a previous
paper9 we introduced an empirical transition function that
accounts for variations in the shape of saturated peaks. It is
given by the following formula

FðxÞ ¼ fxgs;p ¼ s

�
tanh

�
xp

sp

��1=p
: (13)

Here x is the ideal spectrum and {x}s,p is its saturated modi-
cation. Function tanh($) stands for the hyperbolic tangent, p is
the peak shape parameter, and s is the saturation level, i.e. the
upper value above which an instrument cannot measure
absorbance accurately.

The transition function {x}s,p possesses the following evident
properties. At small absorbance values (x � s), it is close to x,
that is {x}s,p ¼ x; and at large absorbance values (x [ s), it
assumes a constant value {x}s,p ¼ s. In the proximity of the
transition area (x z s) the function shape is dened by the
Anal. Methods, 2016, 8, 435–444 | 437
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parameter p: the larger the parameter, the sharper the
transition.

The NL-MCR method is based on eqn (12), which contains
the above explained nonlinear lter F. Clearly, the linear LS
method cannot be used to solve eqn (12), and we arrive at a non-
linear optimization problem

minimize
C;S

kX� FðCStÞk2 (14)

the solution of which can be obtained using the following
modied ALS algorithm.

The C-step (compared with Eq. (6)) is now presented by
a problem

minimize
C

kX� FðCStÞk2 subject to ShShat: (15)

The S-step (see Eq.(7)) is performed via optimization

minimize
S

kX� FðCStÞk2 subject to ChChat: (16)

The correlation constraint presented by eqn (8), where Cin is
now a solution of the problem given by eqn (15), is also used for
calibration problems. Other restrictions (non-negativity, unim-
odality, etc.) for concentrations and spectra are also very
important in the non-linear case. These constraints either may
be applied in the same manner as in the classical procedure, or
they can be included in a nonlinear optimization procedure.

In NL-MCR, the prediction is performed via a one-step
optimization

minimize
C

kXnew � FðCStÞk2 subject to ShShat (17)

where Xnew is a matrix of new (spectral) data. Matrix Cin that
provides the minimum of eqn (17) is then converted into matrix
Cnew with the aim to incorporate the constraints, e.g. Cnew ¼
max(0, ACin + G). It is important that for prediction, all matrices
Shat, A and G are set equal to the values, which have been ob-
tained at the calibration stage.

In some aspects, NL-MCR is very similar to the conventional
MCR-ALS. The latter approach estimates matrices C and S
whose product CSt ts matrix X better. The non-linear MCR also
seeks for matrices C and S, but the aim is to t in the distorted
product F(CSt) with matrix X. From a computational point of
view, NL-MCR is more complex than MCR-ALS, because in each
C- or S-step we have to solve a non-linear optimization problem,
instead of direct matrix calculations. Previously, NL-MCR was
used for spectrophotometric determination of aqueous nitric
acid solutions.9

2.3. Figures of merit

We use the root mean square errors (RMSEs) of calibration,
RMSEC, validation, RMSEV, and prediction, RMSEP, which are
calculated by the formula

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

ðci � ĉiÞ2
.
I

vuut (18)
438 | Anal. Methods, 2016, 8, 435–444
where ci are the reference concentration values, ĉi are the esti-
mated values, and I is the number of samples in the calibration,
or validation, or prediction set. RMSEC characterizes the quality
of calibration. RMSEV is used for validation, namely it helps to
select the optimal complexity of the model. RMSEP is utilized to
assess the model stability with respect to the anticipated
irregularities.

The RMSE is not an appropriate measure for a mixture
calibration, because the component concentrations can be
presented in very different scales. For example, the cerium
concentration is given in g L�1, while the traditional unit for the
acid concentration is M ¼ mol L�1. For this reason the relative
error, RE, is applied. Presented in percents (RE%), it is calcu-
lated as follows

RE% ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

ðci � ĉiÞ2
,XI

i¼1

ci2

vuut (19)

where ci are the reference concentration values, ĉi are the esti-
mated values, and I is the number of samples in the calibration,
validation, or test sets.

The ‘predicted (ĉ) vs. reference (c)’ plot is constructed for
model performance evaluation. The additional measures of
modeling quality that arise from this plot are slope, offset, and
squared correlation coefficient R2. They characterize the cali-
bration performance and thus help to compare variousmethods.

In the MCR method, we are also interested in the quality of
modeling of the spectral matrix X. For this purpose we use the
residual sum of squares (RSS) at calibration (RSSC), at valida-
tion (RSSV), and at prediction (RSSP), calculated by a formula

RSS ¼
XI

i¼1

XJ
j¼1

�
xij � x̂ij

�2	
I
	
J (20)

where xij are the elements of the spectral matrix X̂, x̂ij are the
elements of matrix X̂ ¼ F(CSt) that approximates X, J is the
number of wavelengths, and I is the number of samples in the
calibration, validation, or prediction.

Figures of merit are calculated separately for each method
and each data set.
2.4. Computing

Non-linear optimization in eqn (14) can be a complex task, as
the larger the number of parameters to be tted the more
difficult the task. Especially it concerns the S-step, where the
size of sought spectra (J) can be very large. Therefore, it may be
advantageous to parameterize vector S. We use a linear combi-
nation of Gaussian peaks, so the dimension of the search space
is equal to M$G, where M is the number of peaks, and G is the
number of peak parameters. The similar techniques were used
in ref. 15–17.

All calculations are made using Microso Excel soware. For
optimization in the NL-MCR method, the standard Solver Add-
in is used. Chemometric algorithms (e.g. PCA) are performed
using Chemometrics Add-in. The details are explained in ref.
20. The typical time of calculations is about 30 s with 3.40 GHz
CPU.
This journal is © The Royal Society of Chemistry 2016
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3. Experimental
3.1. Sample preparation

Stock solutions of 50.00 g L�1 of cerium(III), neodymium(III), and
praseodymium(III) are prepared using nitrate hexahydrate
oxides Nd(NO3)3$6H2O, Pr(NO3)3$6H2O, and Ce(NO3)3$6H2O
provided by Merck (extra pure), and 0.7 M HNO3 provided by
Merck (MSD, Moscow, Russia). Working solutions for the cali-
bration and validation data sets are prepared by aliquot dilution
and mixing of these stock solutions. Samples for the test set
have the same concentration of the REEs dissolved in nitric acid
of various concentrations. The 4.0 M HNO3 is made by diluting
33 ml of HNO3 in 100 ml of water using a volumetric ask; other
nitric acid solutions are prepared diluting this solution further.
Double-distilled water is used. The test set samples are prepared
using accurate weighing of each REE, which are then dissolved
in the appropriate HNO3 solution.
3.2. Instrumentation and experimental measurements

The samples are subjected to UV-vis spectroscopy in the trans-
mittance mode, and then converted to the absorbance units.
Spectra are collected with a wavelength increment of 1 nm
among consecutive measurements over the range of 200–1000
nm using spectrophotometer UNICO SQ-2800 (Unico, Dayton,
NJ) with the photometric range of 0.01–3 AU. The acquisition
time is eight minutes. A 10 mm path length quartz cuvette is
used.
3.3. Data subsets

Concentrations of cerium between 0 and 5 g L�1 and nitric acid,
0.7 M, were dened by the customer. The goal of the study is to
investigate feasibility to develop a calibration model within this
range and to verify the model stability with respect to variation
in concentrations. The design of experiments and detailed
description of the data are presented in ref. 5. The whole
concentration ranges vary for cerium from 0 to 5 g L�1, for
neodymium from 0 to 30 g L�1 and for praseodymium from 0 to
15 g L�1. Concentrations of Ne and Pr are not indicated in Table
1 because, as shown in ref. 5, the latter REEs have no peaks in
the UV range and do not affect the quantitative determination
of Ce and HNO3. The whole dataset is shown in Table 4. It can
be seen (Table 1) that both the calibration, 12 samples,
Table 1 Samples used for analysis

No.

Calibration set Validation set

HNO3 (M) Ce (g L�1)
Number of
samples HNO3 (M) Ce (g L

1 0.7 1 � 10�4 1 0.7 0
2 0.7 0.03 3 0.7 0.03
3 0.7 0.3 2 0.7 0.3
4 0.7 0.6 3 0.7 0.5
5 0.7 2 1 0.7 0.6
6 0.7 5 2 0.7 2
7 0.7 5

This journal is © The Royal Society of Chemistry 2016
and validation, 14 samples, subsets contain samples with
different cerium concentrations dissolved in the same HNO3

solvent, 0.7 M. On the contrary, the test subset includes samples
that have the same cerium concentration, but the acid
concentration varies. This helps us to evaluate the stability
against alternating nitric acid concentration.

For quantication of Ce and HNO3 only the range of 220–350
nm is used. The range of 200–210 nm is very noisy and, there-
fore, not used in calibration. Ce and HNO3 have no peaks in the
range of 360–1000 nm, so the latter range is also excluded from
consideration. The acquired UV spectra are preprocessed using
the baseline offset method (adjusting the data to the minimum
point in the data) and the Savitzky–Golay smoothing with seven
points and a polynomial order of two. The results are collected
in the rst dataset labeled in what follows as B+. It contains the
spectra of mixtures of Ce and HNO3. To develop the second
dataset, the background spectra of HNO3 at concentrations of
0.1 M, 0.4 M, 0.7 M, 1.8 M, 3.0 M, and 4.0 M are acquired,
preprocessed as explained above, and then subtracted from the
sample spectra with corresponding nitric acid concentration.
The resulting dataset is further designated as B�. For illustra-
tion purposes, the validation set spectra for datasets B+ and B�

are shown in Fig. 2. The non-linear effects in spectra are
emphasized by the dashed lines. They demonstrate the evolu-
tion of the peak's position, which shis for the reasons
explained in the Introduction.

It should be noted that the removal or retention of the nitric
acid background has a special meaning for the interpretation of
the test subset prediction. Subtracting the background (data
B�), we assume that the HNO3 concentration in a new sample is
known by some other means. In the opposite case (data B+), we
are free from this impractical proposition. At the same time,
when working with the designed training and validation
subsets, we have full knowledge about the nitric acid concen-
tration that always equals 0.7 M.

It is evident that the obtained spectra have attened (satu-
rated) peaks both in the mixtures and in the nitric acid back-
ground spectrum. The saturation level is about 3 AU. Using
designation {$} introduced in eqn (13), the obtained datasets
can be presented using the followingmnemonic notations: B+¼
{Ce + HNO3}, and B� ¼ {Ce + HNO3} � {HNO3}.
Test set

�1)
Number of
samples HNO3 (M) Ce (g L�1) Number of samples

5 0.1 0.3 1
1 0.4 0.3 1
1 1.8 0.3 1
2 3 0.3 1
1 4 0.3 1
3
1

Anal. Methods, 2016, 8, 435–444 | 439



Fig. 2 Validation spectra: (a) data set B+ with the HNO3 background; (b) data set B� without the HNO3 background. The dashed lines show the
peak shifting due to non-linear effects.
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4. Results and discussion

In this section, we demonstrate how to develop calibration
models by means of the methods described above. Two data
sets: B+, where nitric acid background spectra are preserved,
and B�, which contains spectra without nitric acid background
are considered in parallel.

The following methodological principles are applied in model
development using each of themethods. The calibration (training)
subset is used to estimate the model's parameters B that are given
in eqn (2). The validation subset is employed for the assessment of
model complexity that is the number of components. Then, the
nal models are applied to the test set data allowing us to make
conclusions about the stability of each method.
Fig. 3 Validation of cerium. Squares (1, -) stand for MCR-ALS,
triangles (2, :) represent NL-MCR-ALS, the dashed curve (3, arbitrary
units) demonstrates the peak height evolution, and the line (4) is the
target.
4.1. MCR-ALS

In the calibration/validation subsets, the B+ data differ from B�

data by the background 0.7 M HNO3 spectrum, which is
common for all samples, i.e. B+¼ B� + {0.7 MHNO3}. Therefore,
it is apparent that mean-centered PCA applied to the calibration
subsets B+ and B� yields identical results. The rst PC explains
97.4% of the total variance; the next two PCs add 2.3% and
0.3%, respectively. Therefore, it is reasonable to utilize the MCR
procedure with one or two components. The results of the one-
component case, presented in ref. 5, were worse. To resolve the
non-linearity we introduce virtual components in the MCR
model. In some cases such a technique helps to improve the
calibration result.18,19

Now we consider two virtual components of cerium, i.e. Ce1
and Ce2. Since these components are not actual chemical
constituents, the non-negativity constraint is applied to the sum
cCe1 + cCe2 only, but not to the virtual spectra and concentra-
tions. The correlation constraint is presented by a regression
a1cCe1 + a2cCe2 + g ¼ cref.

In the case of B+ data, we should account for one more
component that is nitric acid. This can be accomplished in two
ways. First, we can include nitric acid in matrices C and S (see
eqn (4)) as the third component. However, it is subject to a strict
440 | Anal. Methods, 2016, 8, 435–444
limitation: its spectrum is equal to the known HNO3 back-
ground spectrum, and its concentration always equals 0.7 M.
The second option is to perform the two-component MCR
procedure, adding the HNO3 background spectrum at the end
of each S-step. Computations show that the rst way of the MCR
calculation is very similar to the second one. Namely, the ob-
tained results differ in the third digit only. The latter method is
eventually equivalent to the MCR modeling of the B� data set.
Thus, we can conclude that in all possible methods of the MCR-
ALS modeling, the B+ and B� datasets provide the same results.
The MCR-ALS results for the validation subset are shown in
Fig. 3 by the red square marks.

4.2. NL-MCR

Before applying the NL-MCR method, we should select a non-
linear lter F, introduced in eqn (12). In our case, the choice is
evident. For the B+ dataset it is

F ¼
n
cCes

t
Ce þ cHNO3

stHNO3

o
s;p
; (21)
This journal is © The Royal Society of Chemistry 2016



Table 2 Results of calibration and validation of Ce by MCR-ALS (2
Comp.) and NL-MCR (1 Comp.)

MCR-ALS NL-MCR

Calibration
RMSEC 0.36 0.25
Slope 0.95 0.98
Offset 0.06 0.02
R2 0.96 0.98
RE 17% 12%
RSSC 2.2 � 10�4 5.3 � 10�4

Validation
RMSEV 0.78 0.32
Slope 1.09 1.14
Offset 0.32 0.03
R2 0.84 0.98
RE 47% 19%
RSSV 1.7 � 10�4 5.7 � 10�4

Paper Analytical Methods
and for the B� dataset it is

F ¼
n
cCes

t
Ce þ cHNO3

stHNO3

o
s;p

�
n
cHNO3

stHNO3

o
s;p
: (22)

In these equations, the operation {$}s,p is dened by eqn (13).
The saturation level s ¼ 3 is evident from the data (see Fig. 2a)
and is determined by the instrument employed. The shape
parameter p is also determined by the instrument in use.
Therefore, based on the results obtained in ref. 9, the parameter
p is set to 1. In general, parameters s and p can be optimized for
the minimum of RMSEV at the validation stage. However, since
the optimized parameters, s¼ 2.98 and p¼ 1.02, are close to the
above-mentioned values, in further calculations we use s ¼ 3
and p ¼ 1.

The nitric acid component is known in advance. The
concentration vector cHNO3

is given by the design of the cali-
bration subset (see Table 1), and the spectral vector sHNO3

was
Fig. 4 Fitting of validation sample #6 (2 g L�1 Ce) in datasets B+ (a), and B
the red line (2) stands for the conventional MCR solution, the green lin
represent virtual cerium components. In plot (a) the dashed curve (6) re
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determined earlier in ref. 9. It is important to note that in the
NL-MCR method we use the ideal spectrum of nitric acid,9

whereas in the MCR-ALS method (described in the previous
section) we utilize the saturated spectrum of nitric acid {HNO3}.

Technically, concentrations of cerium and nitric acid can be
determined simultaneously in one experiment. For this
purpose, a calibration subset should be designed with different
HNO3 concentrations. In our case, the constant concentration
of HNO3 in the training set did not allow us to do so.

The cerium concentrations and spectra in eqn (21) and (22)
are unknown, so vectors cCe and sCe can be found by solving the
problem given in eqn (14). The dimensionality of vector cCe is
12, which corresponds to the number of samples in the cali-
bration subset. Concentrations are computed at the C-step in
order to nd a minimum in eqn (15). Subsequently they are
corrected to follow the correlation constraint given by regres-
sion acCe + g ¼ cref, and the non-negativity restriction.

The dimensionality of spectral vector sCe is 151, which equals
the number of wavelengths. This is a rather large number,
hence parameterized optimization seems most appropriate in
this case. We use an asymmetrical Gaussian peak to model the
cerium spectrum sCe, i.e.

sCe ¼ h exp

"
�
�
l�m

s

�2
#
; s ¼



l1; l#m

l2; l.m
: (23)

Here l is the wavelength. The shape parameters h, m, l1 and
l2 are sought in the S-step (see eqn. (16)) of the NL-MCR
procedure. The non-negativity restriction applied earlier to the
spectra is not necessary for the functional form of the cerium
spectrum dened by eqn (23).

The NL-MCR models developed for the B+ and B� datasets
are very similar. For example, for the B+ data: RMSEC ¼ 0.2599
and RMSEV¼ 0.3178, and for the B� data: RMSEC¼ 0.2488 and
RMSEV¼ 0.3181. For this reason, we report the averaged results
of determination that are presented in Fig. 3 by the green
triangles.
� (b). In both plots: the wide grey strip (1) represents the data spectrum,
e (3) demonstrates the NL-MCR result, and dashed curves (4) and (5)
presents the saturated HNO3 spectrum.
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Table 3 Results of the prediction of Ce in the test set by MCR-ALS (2
components) and NL-MCR (1 component)

MCR-ALS NL-MCR

B+

RMSEP 1.99 0.05
RE 660% 16%
RSSP 218155 � 10�4 0.4 � 10�4

B�

RMSEP 0.25 0.05
RE 84% 16%
RSSP 61 � 10�4 0.5 � 10�4
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4.3. Quality of the calibration models

A summary of the cerium quantication is presented in Table 2.
The conventional model constructed with the help of the

MCR-ALS method demonstrates poor quality caused by the
obvious non-linearity. This effect can be seen on the predicted
vs. reference plot (Fig. 3), where the MCR-ALS prediction (red
squares) is similar to the peak height evolution (Fig. 2, dashed
curve 3). Non-linearity also manifests itself via the large offset at
the validation stage and through a large difference between the
RMSEC and RMSEV values. It is interesting that MCR-ALS
demonstrates superiority when modeling spectral data. This
can be noticed from the values in rows titled RSS in Table 2. It is
clear that such quality of spectral modeling is achieved by
increasing the model complexity, i.e. the number of virtual
components in MCR-ALS. The role of virtual components Ce1
and Ce2 is demonstrated by Fig. 4.

On the other hand, the NL-MCRmethod demonstrates a lower
quality in the spectral modeling (by a factor 6), but doubles
cerium calibration and validation accuracy. The NL-MCRmethod
also demonstrates a clear linear trend in Fig. 3 and lower offsets.
4.4. The test set

Stability assessment. In this section, we present and discuss
the outcomes obtained by application of the above calibration
Fig. 5 Prediction of the test set samples. Datasets B+ (a), and B� (b). In b
NL-MCR, and the dashed line (3) demonstrates the reference value of C
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models to the test set data. As discussed earlier, for practical
implementation it is important to assess the performance of the
models in out-of-control cases. For this purpose we use a special
test set, in which the samples have different concentrations of
HNO3 (see the last column of Table 1) but identical concentra-
tions of cerium (0.3 g L�1).

In contrast to the calibration/validation stage of modeling,
the test set prediction drastically depends on the nitric acid
background treatment. The data sets B+ (the background is
preserved) and B� (the background is subtracted) deliver very
different results when using the MCR-ALS models. At the same
time, the NL-MCR model demonstrates comparable outcomes
regardless of the data type used. The overall results of predic-
tion are summarized in Table 3 and Fig. 5. The details for each
model are discussed below.

As shown in Table 3 and by the red squares (1) in Fig. 5, the
MCR-ALS models provide poor results for both test sets B+ and
B�. For example, for the last sample (4 M HNO3) in test set B+,
the MCR-ALS model predicts the cerium concentration to be
3.12 g L�1, instead of 0.3 g L�1. It must be noted that for MCR-
ALS, the B� model is substantially better than the B+ model.
However, an 84% relative error of prediction is not a result that
can be used in practice. Such a poor result can be explained by
the fact that MCR-ALS is designed to work under the condition
of bi-linearity that is severely violated for the test set data. It is
interesting that we observe a negative correlation (R ¼ �0.954)
between B+ and B� prediction outcomes in MCR-ALS.

The NL-MCR results are of another kind – see Table 3 and
Fig. 5, where these outcomes are shown by the green triangles
(3). Both test sets, B+ and B�, are predicted with a similar
accuracy that is also well suited for practical needs.

Moreover, B+ data (the HNO3 background is preserved) offer
an additional opportunity to estimate the nitric acid concen-
tration in each test sample. For this purpose, we extend the C
matrix in eqn (17) by adding a set of 5 nitric acid concentrations,
i.e. Cnew ¼ (CCe, CHNO3

) which are predicted together with
cerium concentrations. The results are very satisfactory, and an
RMSEP¼ 0.08 conrms this. The obtained outcome means that
we can omit the impractical assumption that concentrations of
oth plots: squares (1, -) stand for MCR-ALS, triangles (2, :) represent
e (0.3 g L�1).

This journal is © The Royal Society of Chemistry 2016



Table 4 Complete dataset used for analysis

Calibration set Validation set Test set

HNO3 (M) Ce (g L�1) Nd (g L�1) Pr (g L�1) HNO3 (M) Ce (g L�1) Nd (g L�1) Pr (g L�1) HNO3 (M) Ce (g L�1) Nd (g L�1) Pr (g L�1)

1 0.7 0.60 0.60 10.00 0.7 0.60 12.00 10.00 0.1 0.30 2.00 3.00
2 0.7 0.60 12.00 0.30 0.7 0.03 0.60 0.30 0.4 0.30 2.00 3.00
3 0.7 0.60 0.60 0.30 0.7 0.30 2.00 3.00 1.8 0.30 2.00 3.00
4 0.7 0.03 12.00 10.00 0.7 0.50 10.00 8.00 3.0 0.30 2.00 3.00
5 0.7 0.03 12.00 0.30 0.7 2.00 3.50 1.00 4.0 0.30 2.00 3.00
6 0.7 0.03 0.60 10.00 0.7 0.00 0.04 0.01
7 0.7 0.30 2.00 3.00 0.7 5.00 30.00 1.00
8 0.7 0.30 2.00 3.00 0.7 2.00 30.00 1.00
9 0.7 5.00 5.00 15.00 0.7 2.00 0.00 0.00
10 0.7 2.00 5.00 15.00 0.7 0.50 0.00 0.00
11 0.7 5.00 0.30 5.00 0.7 0.00 0.00 1.00
12 0.7 3 � 10�4 4 � 10�4 1 � 10�4 0.7 0.00 0.00 0.25
13 0.7 0.00 3.50 0.00
14 0.7 0.00 0.875 0.00
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nitric acid in new samples are known, and nd these concen-
trations in-line in the same manner as we quantify cerium
concentrations.

The NL-MCR method provides us with another interesting
result being a pure cerium spectrum. This spectrum is pre-
sented by the asymmetrical Gaussian peak given in eqn (23).
The shape parameters are estimated at the calibration stage of
the NL-MCR procedure. Both calibration sets, B+ and B�, yield
very similar results. Our estimation for the peak height is 453
M�1 cm�1 at l¼ 251 nm. The extinction coefficient of cerium in
sulfuric acid given in ref. 6 is 1.5 times greater. Due to a well-
known scaling ambiguity,13 the pure spectra found by MCR
should be treated with care. However, we were not concerned
with the cerium pure spectra evaluation, but aimed to solve
calibration problems with an appropriate accuracy.
5. Conclusions

We consider that the presented study can be summarized in two
types of conclusions. The practical one conrming that the non-
linear multivariate curve resolution method is an appropriate
tool for the on-line analysis of cerium in aqueous solutions of
nitric acid. Both of the considered NL-MCRmodels, the rst one
where the nitric acid background spectra are preserved, and the
second one, which uses the spectra without the nitric acid
background, are stable to some extent for out-of-control cases.
The accuracy of prediction, which is about 15%, looks suitable
for practical implementation in PAT solutions. An additional
advantage of the rst NL-MCR model is the opportunity to
assess nitric acid concentration in new samples with the accu-
racy of about 1%. This result implies that the developed model
can be employed even for unstable manufacturing technology,
when the concentration of nitric acid varies to a large degree.
The possibility to assess nitric acid concentration in solutions
of REEs has a particular practical importance.

The conventional calibration models, such as MCR-ALS,
provide very bad results. This can be explained by the fact that
This journal is © The Royal Society of Chemistry 2016
these models are designed to work under the condition of bi-
linearity that is severely violated in the case of nitric acid solu-
tion of cerium.

The more general conclusion is that optimization problems
given in eqn (11) and (14) have an essential distinction. The
former is bi-linear, but the latter is nonlinear regarding the
matrices S and C. Here we can mark that the NL-MCR approach
and the hard MCR modeling15 have some similarity because
both methods use the non-linear optimization. However, the
hard MCR resolves non-linearity inside the bi-linear term CSt,
while NL-MCR has non-linearity outside this term. In this sense,
eqn (14) can be considered as a shelled optimization problem,
which is still bi-linear inside the shell F. We suppose that the
impairing modeling of multilinear data may result in a series of
new methods such as 'shelled' PCA, PLS, etc.
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