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Diffuse Reflectance Spectroscopy of
Hidden Objects, Part I: Interpretation
of the Reflection–Absorption-Scattering
Fractions in Near-Infrared (NIR) Spectra
of Polyethylene Films
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and Alexej N. Skvortsov3

Abstract

Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical

analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse

reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering

layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate

curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of

analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral

properties. To separate information originating from PE layers and the target, we modify the system versus both the

number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering

spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption,

and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects

from the spectra, but study them in detail aiming to use this information to recover the target spectrum.
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Introduction

Investigation of properties of samples through layers of

materials of various thickness is increasingly in demand

for process control in pharmaceutical and chemical indus-

tries,1,2 for confirmation of quality of the end products,3 for

non-invasive biochemical analysis4, for the development of

new methods of investigation of biological objects5,6 and for

many other applications. Near-infrared (NIR) spectroscopy

is well suited for these purposes as a beam of light pene-

trates the sample material several millimeters, scatters

inside, and reflects back, carrying information regarding

chemical and physical properties of the material.

Moreover, NIR measurements are rapid and need no spe-

cial sampling preparation. The collected spectra carry

mixed information about the layers of the covering material

and the target sample; hence, the challenge of separating

information originating from the cover and from the target

is of great importance.

When routine measurements are conducted using

rather thin polymeric bags or films with more or less con-

stant thickness, i.e., for investigation of small quantities of

powders specially packed in polyethylene (PE) bags, spectral

analysis does not encounter any problems caused by the

packaging.7–9 It is a different story when one needs to
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analyze samples through several layers of PE, i.e., conduct

input control of packed raw materials in a warehouse.10

In general terms, the problem is very complex. To solve

it, we start with the particular problem of analyzing the

system, which consists of several layers of PE film and an

underlayer sample with known spectral properties.

Polyethylene films are widely used for packaging and pro-

tection of different objects, and the solution of this particu-

lar problem has a significant practical meaning. To separate

the information originated from the PE layers of an

unknown thickness and the determined target, it is neces-

sary to understand how a spectrum of the sample varies by

the number of PE layers/thickness, and the reflectance

properties of the target sample covered by the PE layers.

The penetration of NIR light through PE layers,1,11 or, in

general, into a turbid medium has already been studied by

various authors.12,13 For the interpretation of the acquired

spectra, it is necessary to understand the phenomena that

take place in the sample during irradiation such as trans-

mission, absorbance, and scattering/remission. There is a

large body of literature devoted to this issue. In various

studies, different theories and levels of abstraction are

applied. For example, Mie scattering14 relates primarily to

the scattering of radiation by isolated spherical particles.

Classical radiative transfer equation (RTE)15,16 describes

absorbance and scattering in terms of particles and ensem-

bles of particles. Many other approaches, e.g., the Kubelka–

Munk approach,17,18 are approximations of RTE. The rep-

resentative layer theory11 shows that a sample composed

of a series of distinct layers can be modeled straightfor-

wardly and accurately using a discontinuous theory.

Detailed descriptions of various theories are discussed in

special papers and handbooks and may be found else-

where.19–23 In almost all studies, the authors tried to

separate scattering and absorption effects mathematically,

or through a combination of theoretical approaches with

various experimental set-ups.23–25 The information depth

approach26 is a more formal one. It was shown that the

information curve clearly describes properties of the PE

spectrum. However, these information curves were

constructed mainly for several specific wavelengths.

The goal of this paper is to describe the dependence of

PE spectra variations on the number of layers and on the

reflectance factor of an underlayer covered by the PE films.

The second part of the study is devoted to applications of

the proposed approach to reconstruction of the target

sample spectrum measured through the PE films. The dis-

tinguishing features of our research are: (1) the empirical

approach; (2) the analysis of the whole spectrum behavior

rather than changes at specific wavelengths; and (3) the

variation of the number of PE layers and the underlayer

reflectance factor for data collection.

Constrained multivariate curve resolution–alternative

least squares (MCR-ALS) is used as a mathematical tool

for the sequential spectra deconvolution.

Methods

General Considerations

In spectroscopic measurements, a detector collects only a

fraction of incident photons. Some of them are lost due to

absorption and scattering in the medium, or leave the

medium in unfavorable directions. The collected fraction

can be determined if either the exact or an approximate

RTE is solved. However, in order to predict experimental

results, we still need to account for the device-specific

coefficients like source and detector apertures, stray scat-

tering etc., which are hard to obtain. These data also con-

tain uncertainties, so the total analytical problem can easily

become excessively complex. Thus, in our approach, we

completely abandon any attempts to solve the equations.

Instead, we are going to approximate the measurable spec-

tral properties directly, while considering the physics of

light propagation in medium.

If we consider a stationary non-radiating medium, the

corresponding RTE is an integral-differential equation, the

solution of which depends on two sets of medium proper-

ties: microscopic properties and macroscopic properties.

The former characteristics comprise specific probabilities

k(l) and s(l) of absorption and scattering, per unit

volume, or per unit length. They enter into the RTE as

coefficients, which depend on the wavelength l (photon

energy). In terms of RTE, the medium can be characterized

by two terms. The negative extinction term, –(k(l)þs(l)),

determines the overall loss of intensity of any photon flux.

Some of the photons may scatter again and return back to

the flux, yielding the positive scattering term, which is pro-

portional to s(l). Macroscopic properties are physical

dimensions of the medium layer, the light source/detector

apertures, and the relative position of the source and the

detector. In terms of RTE, they determine the boundary

conditions and integration limits. In this study, it is of pri-

mary importance that: (1) microscopic properties depend

on the wavelength, while macroscopic do not; (2) two

microscopic properties k(l) and s(l) have different

dependence on wavelength and produce different effects

on the solution; and (3) macroscopic properties do not

depend on microscopic properties; in case of a homoge-

neous medium, the reverse is also true.

Regarding the light source, the detector can be located

on the opposite side of the sample (transmittance mode,

TM), or it can be located on the same side (diffuse reflect-

ance mode, DR). In the first case, the captured signal com-

prises the transmitted fraction (truly transmitted or ballistic

photons, and forward-scattered photons), while the

reflected fraction (back-scattered photons) is lost. In the

second case, conversely, the transmitted photons are lost

and only the reflected fraction is registered. The absorbed

and side-scattered photons are not captured by the

detector, thus these effects can be modeled only theoret-

ically or empirically.
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In this paper, we focus on the DR mode. Here, the signal

captured by the detector is called reflectance, R. It varies

from 0, which means ‘‘no reflection,’’ until 1 (or 100%),

which means ‘‘full reflection.’’ We refer to spectral readings

presented in these units as R-domain. These values are very

often converted using logarithmic transformation,

X¼�ln(R)a), into ‘‘absorbance units,’’ or optical density,

which are referred to as A-domain. In the A-domain,

signal X varies from 0, which corresponds to full reflect-

ance, R¼ 1, to infinity, when R¼ 0. In this paper, we model

measurements in the A-domain, for a number of reasons

which will be explained later. Since the microscopic and

macroscopic properties of the layer are independent, it is

convenient to approximate the acquired DR spectra by a

generalized limited series expansion:

Xðr, h; lÞ ¼
XK

k¼1

ckðr, hÞ � skðlÞ þ . . . ð1Þ

In Eq. 1, r is the reflectance factor of the surface of a

substance, which lies under the medium (underlayer). This

coefficient varies from r¼ 0 (no reflection, e.g., black body

or void space) to r¼ 1 (full reflection, e.g., mirror). The

thickness of the layer is h; ck are coefficients that depend

only on macroscopic properties; sk are coefficients that

depend only on l via probabilities k(l) and s(l); and K is

the number of terms.

By increasing K, we can bring Eq. 1 very close to the

exact solution of RTE. However, in practice, the number of

terms is dictated by uncertainties of the measurement. The

expansion given by Eq. 1 is abstract and highly ambiguous.

We are going to make it more specific by pursuing two

goals: finding the approximation with the least number of

terms, and selecting c and s which have physical meaning in

the limiting cases.

Let us consider a situation, when both k(l) and s(l) are

small, and develop the first approximations in Eq. 1. In the

zero-order approximation of the RTE solution, when

k(l)¼s(l)¼ 0, and the layer is completely transparent,

the measured DR spectra comprise:

Xð0Þðr, h;lÞ ¼ c0ðr, hÞ þ . . . ð2Þ

This measure is typically set to c0 (r¼ 1, h¼ 0)¼ 0

through calibrating the measurements of an ideal diffuse

reflector. In general, this term depends on h, because the

source/detector apertures change with h; however,

in well-designed instrumentation this dependence is

weak.28 The zero-order term does not depend on the

wavelength l.

At the next step of the approximation, we account for

the extinction in the layer, but ignore the positive scattering

input. In this case, all the fluxes in the medium decay expo-

nentially. In the A-domain, the exponentials of h are close

to linear functions. Just that very fact explains the conveni-

ence of the A-domain:

Xð1Þðr, h; lÞ ¼ c0ðr, hÞ þ c1ðr, hÞ kðlÞ þ sðlÞð Þ þ . . .

ð3Þ

For a homogeneous non-scattering layer, c1(h) is propor-

tional to h; for collimated light and mirror reflectance it

further reduces to the Bouguer–Lambert law, so that

c1(h)¼ 2h.

For the next approximation, we should account for the

light, which is scattered towards the detector. Here we

ignore the secondary scattering and absorption of the scat-

tered radiation; therefore, the new term depends on s(l)

only. This term is negative in the A-domain, as it corres-

ponds to the increase in the reflected light:

Xð2Þðr, h;lÞ ¼ c0ðr, hÞ þ c1ðr, hÞ kðlÞ þ sðlÞð Þ

� c2ðr, hÞ f ðsðlÞÞ þ . . . ð4Þ

After regrouping the absorption and scattering terms in

Eq. 4, we obtain a bi-linear three-component model:

Xðr, h;lÞ ¼ ctðr, hÞst þ caðr, hÞsa kðlÞð Þ

þ csðr, hÞssðsðlÞÞ þ . . . ð5Þ

In Eq. 5, ct¼ c0, st � 1. Spectra sa and ss represent con-

tributions from absorption and scattering. Coefficients ca

and cs can be viewed as virtual optical depths for these two

phenomena. It should be noted that in the presented def-

inition, ca,s and sa,s are non-negative. For very small values of

k(l) and s(l), Eq. 5 should be close to the Taylor series

expansion of the true solution. For an optically thin layer

(small h, or small k(l) and s(l), or both), only the first

order terms survive. Therefore, we obtain the following

limiting relation:

X r, h; lð Þ � �ln rð Þ þD1k lð ÞhþD2s lð Þh ð6Þ

where D1 and D2 are constants. Eq. 6 means that sa&k, and

ss&s, and ca& cs& h. Additionally, we ignore the depend-

ence of ct on h, because we assume that the source and

detector apertures are well matched. In conventional trans-

mittance spectroscopy, the weighting factors c are linear

functions of the concentrations and the optical depth is

proportional to physical thickness (Beer’s law). However,

as soon as we agreed to drop the idea to calculate c and

s in Eq. 1, we have to abandon the linearity between the

optical depth and thickness of the layer, and treat ck(h, r)

and sk(l) as empirical functions, which have the limits given

by Eq. 6. We consider that flexibility of ck(h, r) and sk(l) can

potentially account for a very broad range of effects.

Moreover, we can add more terms to Eq. 5 to increase

the accuracy of the model. However, as demonstrated
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below, three components are sufficient to model the

DR spectra.

The significance of the three-component model can be

explained in relation to the three elementary processes of

photon transport at microscopic level—propagation (trans-

mission, ballistic transport), absorption, and scattering.

Each of these processes depends on l differently, therefore

at least three terms in Eq. 1 should be kept to describe

these spectral effects. We denote the components in Eq. 5

as transmission (t), absorption (a), and scattering (s) terms,

correspondingly. Using the terminology of the conventional

MCR approach, we can view a DR spectrum of scattering

layer as a mixture of three spectrally different components,

which independently transmit, absorb, and scatter the inci-

dent light, while their ‘‘concentrations’’ depend nonlinearly

on h and r to compensate for the actual dependences of

these three processes. More components in Eq. 5 may be

required when approximate factorization of scattering and

absorption is not possible. The prerequisites for such cases

will be addressed in the future work.

It is very unusual to keep the transmission component

X(0)
¼ ctst in Eq. 5 in multivariate spectral analysis, so we

discuss this in more detail. It is worth mentioning that con-

ventional transmittance is understood as intensity of the

incident light captured by the detector in the transmittance

mode. Here, transmittance depends on scattering and

absorption, and thus it depends on wavelength. In our

study, the transmission component corresponds to the bal-

listic photons that did not undergo interactions inside the

layer, so the respective term does not depend on wave-

length. However, because of the empirical extension of Eq.

5 to optically thick multilayer samples, X(0) will also account

for the constant parts of the processes that do not depend

on l in the selected wavelength region (e.g., wavelength-

independent part of reflectance at the air–polymer inter-

faces). In practice, X(0) manifests itself as a baseline shift that

is routinely removed by a well-known19 pre-processing

operation:

~xðl, hÞ ¼ xðl, hÞ �minxðl, hÞ: ð7Þ

The benefits of keeping this component in Eq. 5 are

clarified in the following sections. Here we can only claim

that X(0) has the most profound relation to the sample

reflectance factor, which is very important for the inter-

pretation of the PE layer spectra. We have already

explained that the reflectance factor, r, belongs to the R-

domain and it varies from r¼ 0 (no reflection) to r¼ 1 (full

reflection). Therefore, X(0) varies from zero (no transmis-

sion, complete reflection) to infinity (full transmission,

no reflection). At the end of this paper, we demonstrate

that

r ¼ exp �Xð0Þ
� �

ð8Þ

Equation 5 can be readily recognized as a multivariate

curve resolution problem.27 It should be emphasized that

this approach can be effectively applied only when a

number of the diffuse reflectance spectra of samples with

variable thickness h is available. In this case, we can use the

first order advantage29 and decompose the acquired spectra

into different components using MCR-ALS as a tool for

deconvolution.

Multivariate Curve Resolution–Alternative
Least Squares

Multivariate curve resolution–alternate least squares is an

iterative method of data processing27,30 that is based on

model bi-linearity

X ¼ CSt
þ E ð9Þ

Here, X is the (I� J) matrix that contains spectra of I

samples recorded for J wavelengths. C is the (I�N) matrix

of the component concentrations and S is the (J�N)

matrix of ‘‘pure’’ spectra. N is the number of pure compo-

nents in the system. E is the (I� J) matrix, which contains

variations not explained by the model.

The ALS procedure consists of two types of steps, the

C-type step and the S-type step, which are repeated until

convergence. At the C-type step, the value of S�Shat is

fixed, and the C matrix is calculated using the uncon-

strained least squares (LS) estimator

Cin ¼ XðShatÞ
þ

ð10Þ

Here þ means that the matrix is pseudo-inverse, i.e.,

Aþ¼A(AtA)–1. Afterwards, matrix Cin is transformed

into matrix Chat to incorporate the constraints for the

concentration profile.

For the S-type step, the value of C�Chat is fixed and

matrix S is found applying a similar LS estimator

Sin ¼ XtðChatÞ
þ

ð11Þ

Subsequently, matrix Sin is transformed into matrix Shat

to account for the spectral profile constraints.

All constraints are applied to give a physicochemical

meaning to the LS estimates Cin and Sin and, where it is

possible, to resolve rotation and/or scaling ambiguity. For

example, there are natural non-negativity restrictions that

force the concentrations and spectra to be equal to or

greater than zero. Prior knowledge regarding some spectral

components is a special type of constraint. Consider the

case when matrix S consists of two parts: the known spec-

tra S1 and the unknown part S2, i.e., S¼ {S1, S2}. In this

case, Eq. 11 is replaced with the following equation:

Sin ¼ S1, ðX� C1S
t
1Þ

t
ðC2Þ

þ
� �

ð12Þ
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where C1 and C2 are the corresponding parts of the con-

centration matrix, i.e., C¼ {C1, C2}. A very special case is

the one where all spectra are known. Then the MCR prob-

lem is solved in one C-step given by Eq. 10.

The application of MCR-ALS in the current study has

several specific features. Usually, in order to start the iter-

ation procedure, we have to know the number of compo-

nents N and an initial approximation of matrix S. In our

case, S comprises three ‘‘pure components,’’ which are

effective transmission, absorbance, and scattering coeffi-

cients, introduced earlier as spectra s(l) in Eq. 5. The

NIR spectrum of PE has been reported in many

papers,11,26 so the initial approximation is known from lit-

erature. Moreover, it is evident that matrix C is not really a

concentration matrix, because we analyze samples made of

the same material. The elements of C depend on the

number of layers (thickness) of the PE sample. Therefore,

we will refer to C as a weighting matrix.

To assess the quality of the MCR modeling of the spec-

tral matrix X, we calculate the relative lack of fit (LoF%) as

follows:

LoF ¼ X� ChatS
t
hat

�� ��= Xk k ð13Þ

Experimental

Material

The material is a large sheet of low-density polyethylene of

87� 4 mm thickness of household appliances grade. Small

pieces of 5� 5 cm are cut off from the entire sheet and

piled together to obtain samples with different number of

PE layers. The number of layers is in the range of 1–48 and

the overall corresponding thickness is in the range of

0.087–4.18 mm.

PE is a well-studied material with the main absorption

bands around 8237 cm–1 (C–H, second overtone),

7184 cm–1, 7062 cm–1 (first overtone of C–H combin-

ations), 5785 cm–1, 5668 cm–1 (C–H, first overtone), and

very intensive peaks around 4350 cm–1, 4000 cm–1 (combin-

ations of C–H stretch and bend modes found in CH or CH2

groups). Even though our main goal is to analyze the entire

spectrum, we also consider the behavior of specific peaks

as well.

Measurements

The PE sheets are measured with a micrometer. A Fourier

transform near-infrared (FT-NIR) spectrometer Nicolet

6700 (Thermo Fisher) with InGaAs detector was used for

spectra acquisition in the range of 4000–12 400 cm–1, with

resolution 8 cm–1, and the number of scans is equal to 64.

The region in the range of 12 400–9000 cm–1 is excluded as

a low informative one. The region in the range of

4450–4000 cm–1 is excluded due to early peak saturation.

As a result, the working range of 9000–4450 cm–1 is used

for the analysis of all spectral data.

The DR spectra were collected with the help of Thermo

Scientific’s SabIR reflectance probe. The probe is of a multi-

fiber type with so-called salt and pepper configuration and

the length of 1.5 m. The probe connected to the spectrom-

eter using a Smart Near-IR FiberPort accessory. The

powerful multi-lens optics of this accessory send a NIR

beam into the optical fibers and efficiently focus

the returned light onto the spectrometer detector. The

probe tip geometry is of 45� normal to the sample, thus

the majority of the specular light is not collected by

the probe. The probe is fixed in the mounting. The PE

samples are positioned on the mounting table pressed by

a special heavy frame, which does not overlap with the

probe bundle. The light source within the fiber probe

accessory illuminates the samples from below (Figure S1,

Supplemental Material). One set, called B_0.0, is collected

with nothing on top of the PE layers. This collection cor-

responds to the zero reflection underlayer (black body).

Four sets are acquired with various reference disks on

the top. These disks represent a selection of diffuse gray

standards, which are spectrally flat over a wide wavelength

range (Labsphere, Inc.).31 Disk SRS-99, with a 0.99 reflect-

ance factor, is used to collect data set B_1.0. Spectralon

gray materials, SRS-80, SRS-40, and SRS-10 with reflectance

factors of 0.80, 0.40, and 0.10, respectively, are used to

acquire the spectra for data sets B_0.8, B_0.4, and B_0.1.

Data set B_0.8 is used as a test set and all other data sets

are used for training. The system is calibrated by taking

reference scans. The 0.99 diffuse reflectance disk, SRS-99,

is used as white light reflectance standard.

We also perform an additional experiment in the trans-

mittance mode. The PE samples are placed in the compart-

ment for the transmittance measurements and fixed with

the help of a special holder. For reference spectrum, 64

scans of the empty compartment were used. The acquired

spectra are collected in the Trans data set.

Spectra collected in experiment B_1.0 (see Figure 1a)

show that the measured DR signal decreases along with

the increase of the depth of the PE. The baseline shifts to

a lower intensity as well. The highest spectrum corres-

ponds to a one-layer sample and the lowest one corres-

ponds to the 48-layer sample. The 30-layer sample can be

considered as the first sample with an infinite optical thick-

ness, as the signal does not change any more when the

number of layers increases.

In experiment B_0.0 (see Figure 1b), we observe an

opposite picture. For the one-layer sample, the beam

goes through the sample with practically no absorption

or remission, and, therefore, it is not registered by

the detector. The spectrum of this sample is the lowest

one in Figure 1b. As the PE depth grows, the signal

increases along with it up until the 28-layer sample,

afterwards the intensity does not change. Therefore,

Pomerantsev et al. 5



the samples with more PE layers can be considered as

optically thick.

For further analysis, all spectra are converted to the

A-domain.

Results of the One-Component
Multivariate Curve Resolution

Preprocessing

Let us consider data set B_1.0, obtained with a 100%

reflectance underlayer. For illustrative purposes, four of

such spectra are presented in Figure 2a. It is evident that

we deal with a highly scattering material. Therefore, our

first attempt is to eliminate this effect using conventional

pre-treatment methods, such as multiplicative signal cor-

rection (MSC)32 or the standard normal variate (SNV).32

Multiplicative signal correction performed on the whole

spectral region removes the evident baseline shift and

transforms the spectra in such a way that the spectrum,

which corresponds to a one layer sample, becomes very

similar to the 30-layer one (see Figure 2b).

The SNV preprocessing leads to similar results. We can

conclude that these preprocessing techniques do not match

our goal. This result agrees with the conclusions of other

analysts regarding a potential invalidity of application of

MSC and SNV for scatter correction due to the assumption

of constant scattering across the wavelength axis.21,25

Our second attempt is to eliminate the baseline offset

using the correction presented in Eq. 7. Each spectrum is

individually shifted along the y-axes in such a way that its

minimum becomes equal to zero (Figure 3).

Data Analysis

All data sets B_0.0, B_0.1,. . ., B_1.0 and Trans are prepro-

cessed using the same offset correction as described above.

After that, the MCR-ALS procedure with one component is

applied to the spectra.

The quality of the MCR modeling is presented in Table 1,

in the One-comp column. It can be seen that the approxi-

mation is not satisfactory for the DR data sets. The depend-

ence of c-values on the PE thickness, h, is shown in Figure 4a.

This dependence is clearly linear for Trans data set (line 3) at

all h values. As to the DR measurements (curves 1 and 2),

linearity holds for the small values of h, whereas for large h,

the c-values tend to some limit. This is quite a straightfor-

ward result, as in TM measurements the optical pathway

increases with h, so the losses in photon flux

gradually increase. In DR measurements, the physical dis-

tance between the source and the detector is always the

same, and once the layer becomes so optically thick that

the photons do not effectively interact with its distant

part, the signal does not change further. In particular, the

samples with the PE depth greater than 2.5 mm should

be considered as optically thick. At the same time, even

this simple approach has helped us to presort samples of

the packed pharmaceutical substances regarding to the

number of the PE layers.33,35

The low quality of MCR modeling can be explained by

another essential problem that is observed for the PE spec-

tra acquired in the DR mode. It can be noticed that the

spectra of the various PE thicknesses not only differ in their

intensities, but also change their shape. To present this fact,

we consider the ratio of the heights of two selected
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Figure 1. DR measurements in the R-domain for the underlayers with (a) r¼ 1.0 and with (b) r¼ 0.0 reflectance factors.

Arrows show the increase of the PE depth h.
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spectral peaks. The first peak is observed at 5777.8 cm–1

and its height is labeled as lP. The second peak is near

5669.8 cm–1 and its height is denoted as sP (see Figure 3).

Figure 4b shows that in the DR mode the ratio lP/sP

depends on the PE depth (curves 1 and 2 in Figure 4b).

At the same time, in the transmittance mode (curve 3 in

Figure 4b), we observe a stable ratio of these peaks.

Thus, we can assume that the structure of the acquired

spectra is more complex than that we expected and more

pure components should be used in MCR-ALS for an accur-

ate DR spectra approximation.

Results of the Three Component
Multivariate Curve Resolution

Preprocessing

All DR spectra are transformed to the A-domain. No add-

itional preprocessing is used.

Data Analysis

Each data set obtained in the DR mode (B_0.0, B_0.1, etc.)

is processed separately. Afterwards the corresponding out-

comes are compared. An acquired spectrum is considered

as a linear combination of three pure spectra, s1, s2, and s3,

which compose matrix S. The non-negativity constraints
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Figure 2. Four spectra (1, 10, 20, and 30 layers) in B_1.0 experiment. (a) Raw data and (b) data after the MSC.
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Figure 3. Four spectra (1, 10, 20, and 30 layers) in B_1.0 data

set after baseline correction.

Table 1. Quality of data description. The LoF values obtained

using various MCR procedures for different data sets. The last

row B_0.8 is a test set

Data set One-comp MCR-3 MCR-2 MCR-1 MCR-0

Trans 2.5%

B_0.0 5.2% 0.1% 0.2% 0.2% 0.4%

B_0.1 9.4% 0.1% 0.1% 0.2% 0.2%

B_0.4 9.7% 0.2% 0.2% 0.3% 0.3%

B_1.0 6.8% 0.3% 0.4% 0.4% 0.5%

B_0.8 8.5% 0.4%
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are applied both to S and C matrices. To resolve the scaling

ambiguity, the first component spectrum, s1, is weighted to

be close to 1. From Figure 4a, we see that the weighting

factors c2 and c3 tend towards a constant level as the

thickness of the PE sample h increases. Therefore, these

vectors are scaled in such a way that they are equal to 1 for

the last samples, where h 	1. In order to describe and

separate the absorbance and scattering effects, each train-

ing data set, B_0.0,. . ., B_1.0, is modeled according to a

multi-stage procedure, given in Figure 5.

At the first stage, which is denoted as MCR-3, we con-

sider that all three pure components are unknown. As a

result, we achieve an essential improvement in the quality

of the modeling (Table 1, MCR-3) in comparison with a

one-component MCR applied to the preprocessed data

(Table 1, One-comp). We also find out that spectrum s1

is very close to constant in each data set. Therefore, at the

second stage we fix vector s1� 1, and apply the MCR-ALS

procedure again as it is given in Eq. 12. This step is called

MCR-2 because only two components are unknown. The

accuracy of data description is shown in Table 1, column

MCR-2.

The result of this stage is a set of vectors s2. The most

important finding is that all these spectra are very similar

for all training data sets. Thus, independently of both the

underlayer reflectance factor, and the PE thickness, we suc-

ceed in selecting two common pure spectra s1¼1 and

s2¼ sa(l). The latter is the mean spectrum calculated

over all training data sets. Therefore, at the next stage

(MCR-1, Figure 5) these components are considered to

be known.

Now, our goal is the assessment of the last component

s3. For this purpose, we keep constant two known spectra

1
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PE depth, h
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Figure 4. Comparison of data sets: (1) B_0.0, (2) B_1.0, (3) and Trans. (a) The c-profile versus the PE sample depth. (b) The ratio of the

selected peak heights lP/sP versus PE depth.

Figure 5. Flow-chart of the multi-stage MCR-ALS procedure as

applied to each data set.
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in the S matrix, so that only one unknown component is

sought. The scaling ambiguity is resolved in the same way as

at the previous stage. The quality of modeling is presented

in Table 1, column MCR-1. All spectra s3 obtained from the

training data sets are very similar, regardless of the reflect-

ance factor of the underlayer as well as the thickness of PE.

The averaged spectrum is denoted as ss(l).

At the final stage, we apply MCR keeping all three spec-

tra in the S-matrix fixed: s1¼ 1, s2¼ sa(l), and s3¼ ss(l). At

this step, only c-profiles are determined. The quality of the

obtained modeling is presented in Table 1, column MCR-0.

The concluding step in our modeling is validation. For

this purpose, we use data set B_0.8 that does not partici-

pate in the multi-stage procedure. These spectra are ana-

lyzed using the MCR-0 method in which all spectral

components S are fixed and only C components are esti-

mated. The last row in Table 1, column MCR-0, shows that

LoF¼ 0.4%. It confirms that the test data set B_0.8 per-

fectly fits the developed three-component model.

Certainly, this check cannot be considered as a full valid-

ation of the proposed approach. Proper testing involves

spectra obtained with various real underlayers, which

essentially differ from the standard disks employed in the

model development. These investigations will be presented

in the second part of this research.

In the multi-stage procedure shown in Figure 5, we suc-

cessively fixed spectral components in the MCR calcula-

tions. These restrictions should impair the optimization

results. Analyzing the outcome in Table 1 row by row, we

conclude that the applied restrictions have, in fact, a rather

small influence on the quality of the modeling. Therefore,

we consider the obtained three spectra, s1, s2, and s3, to be

natural pure components, which are not burdened with

artificial elements forcing them to fit the data.

Discussion

Pure Spectra

Analyzing the nature of the three pure spectra found in the

multi-stage procedure (Figure 6), we can conclude that

spectrum s1�1, which does not depend on wavelength,

stands for the direct transmission through PE. It represents

the ‘‘transmission’’ component introduced in Eq. 5.

Spectrum s2¼ sa(l) can be interpreted as the PE absorb-

ance term in Eq. 5. It is similar to the spectra presented in

literature.11,26 Spectrum s3¼ ss(l) reflects the PE scattering

term in Eq. 5. In many spectral ranges, it is very similar to

the absorbance spectrum. In particular, we see that most of

the scattering effects take place near the bands where PE

absorbs. This fact is in line with the increase in scattering

and reflectance near the absorption bands in the elemen-

tary theory of dispersion (Lorenz model of matter).34

There is also an overall increase of scattering at smaller

wavenumbers. The most peculiar is the band round

5778 cm–1 of the highest PE absorption. In the scattering

spectrum, this area manifests a sharp decrease of intensity.

Similar effects have already been reported.11 From theor-

etical point of view this may be explained by the fact that

the probabilities of photon absorption, scattering, and

transmission per physically small unit of volume sum up

to one, so that an increase in absorption would at some

point result in a decrease of scattering. There are also

empirical considerations. The MCR model based on Eq. 5

assumes that the absorbance and scattering terms can be

determined independently. This is not true for strong

absorption bands, where most of photons are absorbed.

In this case, X(h) saturates at a very low h, and this effect

is modeled by ca(h) only (local rank deficiency). Apparently

it looks like the absence of scattering and the model assigns

smaller values of ss(l) to damp the contribution of the

profile cs(h), which cannot be detected at this point.

C-Profiles

Values presented in the c-profiles reflect the input of each

type of s-spectrum into the entire spectrum collected by

the detector. We begin discussing these results with the

c-profiles obtained for the first component, which is con-

nected to transmission/reflection effects.

The plot in Figure 7a demonstrates values c1 calculated

at the last stage (MCR-0) for all datasets. These values

belong to the A-domain. Figure 7b represents the corres-

ponding reflectance factors r recalculated in the R-domain.

The latter values are easier to interpret, so we consider

them in what follows. First, we see that the initial value

of each profile naturally equals to the reflectance factor,
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Figure 6. Pure component spectra found during the multistage

MCR procedure. (1) Transmittance, (2) absorbance, and (3)

scattering coefficients.
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rUL, of the underlayer used in the corresponding data set,

i.e., r(0)¼ rUL The second finding is that all profiles merge at

large PE depth h, i.e., r(h> 3) &const. We observe that

profiles related to the data sets with weakly reflective

underlayers (B_0.0, B_0.1) grow with the PE depth,

whereas profiles that correspond to highly reflective under-

layers (B_0.4, B_0.8, and B_1.0) drop with the PE thickness.

This means that if we could change the reflectance factor

continuously, we would get a straight line for the under-

layer, which has the same reflectance factor as PE. In view of

the fact that at greater PE depths the underlayer effect can

be neglected, this common level is attributed to the PE

reflectance factor, which is rPE¼ 0.27. All reflection profiles

can be perfectly fit to a simple relaxation model

rðh, rULÞ ¼ rPE þ ðrUL � rPEÞe
�kh ð14Þ

where k is an empirical decay constant, h is the PE thick-

ness, and rUL is the underlayer reflectance factor. According

to Eq. 14, the contribution of the underlayer spectrum to

the observed spectrum decays exponentially with the PE

thickness. This masking effect is described by constant k,

which is about 1 mm–1. This model is illustrated in Figure 7

by curves that are very close to the corresponding data

marks. Another interesting result is that the c1-values

(Figure 7a) for all data sets agree well with the spectral

baseline shifts, i.e.,

c1f gi� min xið Þ ð15Þ

where i¼ 1,.., I is the sample number. These last two facts

will be extensively used in practical applications presented

in the second part of this research.

Profiles related to the absorption (c2) and scattering (c3)

phenomena are shown in Figure 8. These plots demon-

strate that both profiles have a similar shape. In particular,

it can be seen that they start at zero, and at a large PE depth

all profiles converge to a common level. Such a behavior can

also be explained by the fact that at greater PE depths a

sample becomes optically thick and the underlayer ceases

to influence the signal registered by the detector. The limit

value of 1, both for c2 and c3, was selected arbitrarily in the

procedure presented in Figure 5. This value can be inter-

preted as the absorbance and scattering weighting factors

(ca and cs) for an optically thick PE layer.

It is interesting that some profiles pass through a max-

imum. In particular, we observe this behavior when the

underlayer reflectance factor is greater than the PE reflect-

ance factor. The absorbance profiles have a maximum at PE

thickness h¼ 0.87 mm (ten PE layers) and the scattering

profiles maximum happens at h¼ 1.740 mm (20 PE

layers). It can be seen that the maximal absorbance is 1.4

times greater than the ultimate absorbance achieved for an

optically infinite PE layer. The scattering maximum is 1.25

times of the corresponding limit. At present, we are unable

to give a sound theoretical interpretation of these phenom-

ena, but can only exclude several factors that have no influ-

ence on it. In particular, our experiments show that a

maximum is not connected to the fiber probe application,

because spectra obtained using the integrating sphere dem-

onstrate the same phenomenon. Another experiment

proves that the growing gap between the probe tip and

the sample28 is also beyond suspicion.

Nevertheless, the models that describe the absorption

(c2) and scattering (c3) profiles as computable functions of

the PE thickness, h, and the underlayer reflectance factor,
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Figure 7. The c-profiles of the first component. Data (marks) and models (curves): (1) B_0.0, (2) B_0.1, (3) B_0.4, (4) B_0.8, (5) B_1.0.

(a) Term X(0); (b) reflectance factors r¼ exp(–c1).
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rUL, will be very useful in the second part of this research. In

contrast to the first profile, c1 (see Eq. 14), the models for

the c2 and c3 profiles are not so elegant, and therefore they

are not presented here. The reader can find them in the

supplementary materials. In Figure 8, these models are pre-

sented by curves that fit the data (marks) obtained in the

experiments.

Thin Layer Theory

The case of a thin PE cover (less than 0.6 mm) deserves

special attention. In this interval, it can be observed (see

Figure 8) that both the absorbance and scattering profiles

have a linear dependence on h. Moreover, if the cs data are

plotted versus the ca data (see Figure S2, Supplemental

Material), it becomes clear that there is a linear trend,

cs¼ g ca, which is common for different underlayers.

This finding is completely in line with Eq. 6 developed for

a case of a thin PE layer. Consider a DR spectrum, which is

pre-preprocessed using Eq. 7. Then,

~xðl, hÞ ¼ hcuðrÞsuðlÞ þ e ð16Þ

In this equation, spectrum

su lð Þ ¼ sa lð Þ þ gss lð Þ ð17Þ

represents a joint attenuation coefficient that is calculated

for the slope coefficient, g¼ 0.34, found from the trend line

(6) shown in Figure S2. The weighting coefficient cu(r)

depends on the underlayer reflectance factor r, but not

on the PE depth, h. The value of g¼ 0.34 has no special

meaning, as it is a consequence of scaling of the absorbance

and scattering profiles (see Figure 5), which are arbitrarily

set to be equal to 1 at infinite thickness. If we select

another scaling, the value of g will change respectively,

e.g., if ca(1)¼ 1, and cs(1)¼ 1/0.34¼ 2.9, then g will be

equal to 1.

Equation 16 demonstrates that thin-layer DR spectros-

copy is very similar to the conventional TM spectroscopy,

which is based on Beer’s law. To illustrate this similarity, we

have conducted very simple modeling using data set Trans,

obtained in the transmittance mode.

First, we found the c-profiles for the pre-processed Trans

data using a two-component MCR model

~xðl, hÞ ¼ caðhÞsaðlÞ þ csðhÞssðlÞ þ e ð18Þ

where spectra sa(l) and ss(l) are set to be equal to the

pure spectra found at the end of the DR data modeling

(see Figure 6). The estimation of c-profiles can be done in

one C-step presented in Eq. 10. To resolve the scaling ambi-

guity, ca profile is normalized as ca& h. The results shown

in Figure 9a demonstrate that both profiles are clearly

linear

Moreover, it can be observed that the slope of the cs

profile equals to the same value g¼ 0.34 that has been

found from Figure S2 (supplementary material). This

result gives another justification for the proposed attenu-

ation coefficient.

Obviously, Trans profiles are described by a single linear

component, so the two-component model given in Eq. 18 is

inapplicable, as it becomes degenerate in the case that the

spectra are not fixed. Therefore, we return to a one-

component MCR model that has been used as described

in Results of the One-Component Multivariate Curve
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Figure 8. The c2 and c3 profiles. Data (marks) and models (curves): (1) B_0.0, (2) B_0.1, (3) B_0.4, (4) B_0.8, (5) B_1.0. (a) Absorbance
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Resolution above. Figure 9b demonstrates two spectra.

The first one (1) is found when the one component MCR

model is applied to the Trans data. The second spectrum (2)

is the attenuation coefficient su(l) obtained when the

three-component MCR model was applied to the DR

data. It can be seen that the attenuation spectrum coincides

with the transmittance spectrum of PE, which is widely

presented in the literature.26

In our opinion, the thin layer concept is a very important

result that links the proposed three-component theory to

the conventional one-component approach.

Conclusions

We succeeded in the decomposition of the collected spec-

tra of PE layers into three components. The first one does

not depend on wavelength and manifests itself as a vertical

shift in spectral intensity. This component depends on the

reflection properties of both the PE layer surface and the

underlayer. In this particular study, we could simply apply

individual spectra shifts as preprocessing before the whole

procedure. At the same time, the possibility to find this shift

for each specific spectrum numerically makes the whole

procedure more flexible and helps to avoid subjective deci-

sions. We do not try to get rid of it as is routinely done in

most experiments. We consider that this will be especially

important in cases of more complex systems.

The second and the third components characterize the

attenuation of light in the material independent of the

reflectance properties of the underlayer. These compo-

nents characterize the optical properties of a material

and carry chemical information. Having different

dependence on wavelength, they can be nominally viewed

as absorption and scattering contributions.

It was demonstrated that in case of a thin PE layer, the

proposed three-component approach turns into a conven-

tional spectroscopic Eq. 16, which in fact is the Beer–

Lambert–Bouguer law, typically used in transmittance

spectroscopy.

In the second part of this research,35 we apply the devel-

oped theory to reconstruct a spectrum of an unknown

target object covered with a PE layer of an undefined depth.
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