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Abstract: In the last decade, the use of multivariate statistical techniques developed for analytical chemistry has been
adopted widely in food science and technology. Usually, chemometrics is applied when there is a large and complex
dataset, in terms of sample numbers, types, and responses. The results are used for authentication of geographical origin,
farming systems, or even to trace adulteration of high value-added commodities. In this article, we provide an extensive
practical and pragmatic overview on the use of the main chemometrics tools in food science studies, focusing on the
effects of process variables on chemical composition and on the authentication of foods based on chemical markers.
Pattern recognition methods, such as principal component analysis and cluster analysis, have been used to associate the
level of bioactive components with in vitro functional properties, although supervised multivariate statistical methods have
been used for authentication purposes. Overall, chemometrics is a useful aid when extensive, multiple, and complex
real-life problems need to be addressed in a multifactorial and holistic context. Undoubtedly, chemometrics should be
used by governmental bodies and industries that need to monitor the quality of foods, raw materials, and processes when
high-dimensional data are available. We have focused on practical examples and listed the pros and cons of the most
used chemometric tools to help the user choose the most appropriate statistical approach for analysis of complex and
multivariate data.
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Introduction
The term “chemometrics” describes the statistical and math-

ematical approaches used to optimize the design of experiments
and extract useful information from large and complex datasets
(Varmuza & Filzmoser, 2009). Chemical data commonly include
values and properties of various compounds determined by lab-
oratory experiments and having numerous sources of variance.
Accordingly, statistical analysis of such data should employ one
or more multivariate statistical tools (Varmuza & Filzmoser, 2009).
Multivariate statistics encompasses the simultaneous analysis of one
or more dependent (outcome) variables against two or more inde-
pendent (input) variables (Hidalgo & Goodman, 2013); in many

CRF3-2017-0235 Submitted 11/29/2017, Accepted 1/26/2018. Authors
Granato and Santos are with Dept. of Food Engineering, State Univ. of Ponta Grossa,
Av. Carlos Cavalcanti, 4748, 84030–900, Ponta Grossa, Brazil. Authors Putnik
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circumstances, the procedures can compare a large number of re-
sponses (dependent variables) against a plethora of independent
variables (predictors). The most common types of multivariate
tests include multivariate analysis of variance (MANOVA), vari-
ous forms of factor analysis (such as principal components anal-
ysis, PCA), mathematical modeling approaches, artificial neural
networks (ANN), discriminant analysis, and many others (Dzi-
urkowska & Wesolowski, 2015). Simultaneous comparison of all
independent variables in a single test requires multiple analyses
of each independent variable against outcome measures that in-
flate type I errors (Dumancas, Ramasahayam, Bello, Hughes, &
Kramer, 2015). Consequently, P-value estimates are affected by
compound relationships, where probability is dependent on [1 –
(0.95)n] where “n” is the number of single comparisons (Ruther-
ford, 2011).

Experimental data in food science and other areas can be either
qualitative or quantitative (Szymańska et al., 2015). Qualitative
data are of three types: nominal (such as three types of foods, five
types of process, and so on); dichotomous (such as male/female,
authentic/adulterated); and ordinal (data ordered by criteria, for
example, three levels of sensory evaluation, such as 1 = unacceptable,
2 = marginally acceptable, or 3 = acceptable). However, quantitative
variables include continuous scales (temperature, pressure, time,
concentration, mass, and so on), intervals, and ratios (Larson-
Hall, 2010). Regardless of the type, all variables can be analyzed
by chemometric approaches (Szymańska et al., 2015). The most
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important statistical techniques for chemometrics are PCA and
partial least squares (PLS) analysis (Varmuza & Filzmoser, 2009).
These methods commonly require pretreatment of the data (pre-
processing; Skov, Honoré, Jensen, Næs, & Engelsen, 2014), such
as “normalization” and scaling, to remove systematic bias from the
datasets, but with minimal influence on the quality of information
(Nunes, Alvarenga, de Souza Sant’Ana, Santos, & Granato, 2015).

Foods are complex materials (Lucci, Saurina, & Núñez, 2017)
that are commonly studied by engineers, technologists, chemists,
physicists, microbiologists, and many other professionals (Munck,
Nørgaard, Engelsen, Bro, & Andersson, 1998). Practical appli-
cations of chemometrics in food science include, but not lim-
ited to the authenticity, functionality, bioactivity, and food safety
(Granato, Santos, Escher, Ferreira, & Maggio, 2018; Nascimento
et al., 2018; Skov et al., 2014).

Many major problems currently faced by governmental agencies
and industries are related to adulteration and food frauds. Con-
cern is driven by public interest in food quality and safety (Danezis,
Tsagkaris, Camin, Brusic, & Georgiou, 2016). The use of chemo-
metrics with appropriate analytical techniques can identify adul-
teration of wines (Alañón, Pérez-Coello, & Marina, 2015), honey
(Wu et al., 2017), essential oils (Do, Hadji-Minaglou, Antoniotti,
& Fernandez, 2015), and many other high-value products. Aside
from food adulterations, chemometrics can be used to analyze data
on soil toxicity (Peng et al., 2016), influences of climate on the
nutritional value of foods (Obranović et al., 2015), and changes
in functional properties as a consequence of processing (Bursać
Kovačević et al., 2016; Herceg et al., 2016), just to mention few
practical examples that will be discussed later.

The objective of this updated review is to give a holistic insight
of the advantages and disadvantages of multivariate statistical meth-
ods intended for analyzing complex datasets. There are numerous
research studies and critical reviews covering various aspects of
the application of chemometric tools to food chemistry problems
(Danezis et al., 2016; Munck et al., 1998; Nunes et al., 2015;
Skov et al., 2014). Due to the extent and multidisciplinary nature
of available data, all aspects of chemometrics cannot be covered
in a single paper. Therefore, the focus of this paper is the use of
chemometric techniques for resolving issues of food authentica-
tion and food microbiology, and assessment of the effects of food
processing. Moreover, the focus is on pattern recognition methods,
providing exploratory, and classification procedures. Examples of
practical applications have been selected to illustrate the benefits
and shortcomings of these methods.

Chemometrics in Food-Related Disciplines
The concepts of chemometrics can be applied to data from

chemical analyses that are used widely in the fundamental study
of foods (Varmuza & Filzmoser, 2009). Chemometrics is useful
also to bridge the gaps in multidisciplinary data needed for solid
scientific conclusions, and to produce and add knowledge in food
science (Munck et al., 1998). Many applications of chemometrics,
coupled with both conventional and innovative analytical mea-
surements, have been proposed and applied in the last decade to
solve technological and legislative food control problems.

Main chemometric tools in food disciplines
Chemometric methods are used to separate useful informa-

tion from noise, uncover hidden correlations, and provide a visual
approach for multivariate data analysis. Overall, there are three
general chemometric approaches: explorative analysis, classifica-
tion, and calibration. These approaches are used for data analysis

in food chemistry and other disciplines within food science and
technology. The choice of the approach depends on the problem
and on the type of experimental data.

Exploratory analysis. Principal component analysis helps to re-
veal the hidden structure of and to compress multivariate datasets
(Wold, Esbensen, & Geladi, 1987). The Kaiser–Meyer–Olkin
(KMO) and Bartlett’s test of sphericity are used to test whether
data are suited for PCA or other types of factor analysis (Tabach-
nick & Fidell, 2007). The KMO measure of sampling adequacy is
a statistic that indicates the proportion of variance in your variables
that might be caused by underlying factors. High values (close to
1.0) generally indicate that a factor analysis may be useful with your
data. If the value is less than 0.50, the results of the factor analysis
probably will not be very useful (Granato et al., 2018). Bartlett’s
test of sphericity tests the hypothesis that your correlation matrix
is an identity matrix, which would indicate that your variables are
unrelated and, therefore, unsuitable for structure detection. Small
values of the significance level (less than 0.05) indicate that a factor
analysis may be useful with your data.

Using PCA, a set of correlated variables is transformed into a
set of uncorrelated principal components (PCs). The (I × J) data
matrix X is decomposed by Equation (1):

X = TPt + E (1)

where T = [tia] is the (I × A) scores matrix; P = [pja] is the (J ×
A) loadings matrix; E = [eij] is the (I × J) matrix of residuals; and
A is the number of PCs.

The new coordinates are based on 18 analysis of the covari-
ance matrix, XTX, which produces A pairs of eigenvalues and
eigenvectors. PCs are extracted in such a way that the maximum
amount of the data variance is associated with the 1st PC, and then
progressively lesser variance are associated with each subsequent
component. The important parameter A is the number of PCs.
For meaningful results of PCA, it is crucial to report factor load-
ings, factor 18 values, and the amount of explained variance. The
more components extracted, the better is the approximation of
data matrix X. For further analysis, T matrix represents objects in
a new reduced space and the P-matrix shows how well a variable
is taken into account by model components.

The dominant patterns present within samples and variables are
illustrated by plotting the columns of the score matrix and loading
matrix, respectively. PCA is used in numerous applications as a 1st
step, which helps to describe the data patterns. For instance PCA
has been used to highlight differences between technological pro-
cesses in production of olive oils (De Luca, Restuccia, Clodoveo,
Puoci, & Ragno, 2016), to assess within-sample variation; and to
compare processes with the variation observed among samples in
the analysis of distillers’ dried grains (Tena, Boix, & von Holst,
2015), and in many other studies.

Another chemometric tool that is used for explorative analysis
is cluster analysis. Among the multiple clustering methods, the
nonhierarchical methods, such as k-means and k-medians, and
hierarchical cluster analysis (HCA) are the most frequently used
methods. For instance, the HCA method was used for analysis
of the ATR–FTIR spectra of gelatins of different origins (Cebi,
Durak, Toker, Sagdic, & Arici, 2016), and for revealing clusters
of the FTIR spectra of refrigerated and frozen/thawed chicken
meat samples (Grunert, Stephan, Ehling-Schulz, & Johler, 2016).
Use of clustering methods together with PCA have been widely
described (Nunes et al., 2015; Zielinski et al., 2014). All these
methods are often called the unsupervised multivariate methods
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Table 1–Example of a confusion matrix that may be built using a supervised
statistical technique.

Classified as
→ Class ↓ Brazil China Poland USA Mexico

Correct
classification (%)

Brazil 9 2 0 1 1 69
China 0 10 0 0 4 71
Poland 0 0 9 0 0 100
USA 4 4 4 10 0 45
Mexico 0 0 0 2 12 86

(Pomerantsev, 2014) and are used in all fields of food science
and technology. Other examples of these chemometrics tools are
explained in the following sections.

Classification methods. Two types of classification techniques
are distinguished regardless of the statistical background of a spe-
cific method. The first type of technique is used to assess to which
of various predefined classes the object belongs. Such methods are
referred to as discriminant analyses (DA) and are similar to logistic
regression. The second type of method is referred to as “one class
classifiers” - OCC (Tax & Duin, 1998), or class modeling methods
(Derde & Massart, 1988). They confirm whether, or not, an ob-
ject can be associated with a targeted class of interest. For example,
using this method one can answer the questions: “does this olive
oil come from Italy or Spain?” or “is this milk from organic or
conventional sources?.”

In these methods, a confusion matrix is generated from the clas-
sification model that allows the visualization of actual and predicted
classification. In summary, confusion matrices are built when clas-
sification models are proposed in order to predict the number of
correctly classified samples. For instance, if one aims to differ-
entiate organic from conventional milk based on some analytical
measurements, the confusion matrix will tell how many organic
milks were correctly recognized as being from this class (Gondim,
Junqueira, Souza, Ruisánchez, & Callao, 2017). A typical confu-
sion matrix is shown in Table 1. Using the data shown in this table,
one can easily see that all Polish samples were correctly identified,
whereas only 45% of the USA samples were correctly classified.

Traditional statistical terms used for presenting the results of
classification are the type I error (α), which is the rate of incorrect
rejections of class membership; and the type II error (β), which
is the rate of wrong acceptance of alien objects as members of a
predefined class. The terms “sensitivity” and “specificity” are also
used for presenting the results of classification. Class sensitivity is
defined for each class as the percentage of samples of this class that
are correctly recognized as the members of the class. It can also
be defined as the rate of true positives, so it is complementary to
the type I error (α). Class specificity is defined for each target class
k as the percentage of samples from other classes (not k), which
are correctly attributed as not belonging to the target class. This
percentage value is complementary to the rate of false positives,
and is given by 100 (1 – β). It is important to note that any effort
to reduce one type of error results in an increase in the other type
of error. In order to reduce both simultaneously, a large number
of samples must be used (Berrueta, Alonso-Salces, & Héberger,
2007).

When DA methods are applied, we must initially have a defini-
tive list of classes; for example, discrimination between dry and
wet processing methods for postharvest coffee (Hamdouche et al.,
2016), discrimination of extra virgin olive oils from whole and
stoned olive pastes (De Luca et al., 2016), discrimination between
bovine, porcine, and fish gelatins (Cebi et al., 2016), rapid differen-

tiation of fresh and frozen/thawed chicken (Grunert et al., 2016),
evaluation of the provenance of honeys (Nascimento et al., 2018),
among others. For discrimination purposes, linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) are usu-
ally employed because they are reliable, simple to understand, and
the graphical outputs are appealing (Pomerantsev, 2014). Their
main disadvantages are that (1) they do not work when the co-
variance matrix is singular; (2) they assume that data are normally
distributed; and (3) they do not allow interchange of α and β

errors.
LDA. In LDA, separations between classes are hyperplanes and

the allocation of a given sample within one of the classes (that
is, geographical origin, type of product, and cultivation system)
is based on a maximum likelihood discriminant rule. Overall, the
results of LDA classification can be graphically visualized by pro-
jecting the classes (preferably three or more) into the space of
canonical variates, or discriminant functions (D’Archivio, Gian-
nitto, Maggi, & Ruggieri, 2016). The discrimination model is cal-
culated using all samples, which implies the model cannot be eas-
ily validated using external samples. However, some commercial
packages (that is, MatLab) have the option to perform the model
validation by using the leave-more-out cross-validation approach.
When an LDA model is built and validated, the predictive capa-
bility of LDA discrimination data may be assessed. The method
provides outputs that are easy to understand (confusion matrix and
graphical representations) but it has the tendency to be over fitted
if the number of samples in each class is restricted. Overfitting is
characterized by high accuracy for a classifier when evaluated on
a training set but low accuracy when evaluated on a separate test
set in high-dimensional and low sample size settings (Subrama-
nian & Simon, 2013). LDA should not be used if the design is
not balanced (that is, if the number of samples in various classes is
very different). In addition, the validation of the LDA classification
output is not straightforward in many statistical packages, which
causes the user not to undertake the validation procedure. The use
of LDA, or other classification methods, requires that sample size
within classes must be high enough to enable proper classification
of samples. For classification purposes, if there is a limited number
of samples available, multiple comparisons between groups using
inferential analysis would be of interest.

A typical graphical output from LDA is shown in Figure 1.
Imagine that the discrimination between GC-MS data of the lipids
in various commercial milk samples produced in different locations
is sought. From the projection of samples displayed in Figure 1,
it is possible to observe a clear separation between samples from
distinct origins and possible overlaps in a sample that was labeled as
“from China” (included in the Brazilian cluster) and one sample
labeled as “from Germany” (included in the Brazilian cluster).
This bi-plot reflects the reciprocal location of milk samples in
the canonical space such that possible adulterations (that is, food
frauds) based on complex and large datasets can be easily assessed.
Therefore, it is no wonder that LDA is the most widely used
method of discrimination in food chemistry problems.

However, the main disadvantages of LDA are: it does not work
when the covariance matrix is singular, for example, for large
numbers of variables; it requires standardization, for example, by
PCA; it is not suitable if the covariance matrices of the classes are
different; it implicitly assumes normality of data; and it does not
allow interchange of α and β errors.

A real example of the application of LDA in food chemistry is
the geographical classification of 144 saffron (Crocus sativus) sam-
ples produced in some Italian regions (D’Archivio et al., 2016).
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Figure 1–Linear discriminant analysis of commercial milk samples
produced in different countries based on GC-MS data.

Authors used LDA to classify the levels of crocin, safranal, picro-
crocin, and their derivatives and flavonoids determined by HPLC.
Use of the confusion matrix enabled correct classification of 88%
of unknown saffron samples. The crocins trans-crocetin bis(b-d-
glucosyl) ester, and cis-crocetin bis(b-d-glucosyl) ester, were the
key elements that determine the geographical classification of Ital-
ian saffron. This work shows the benefit of LDA in identifying
unique markers of high-value added herbs produced in different
locations.

K-nearest neighbors. A simple method that does not use any type
of distribution assumption and may be used for a small number
of samples is the k-NN or k-nearest neighbor algorithm (Beebe,
Pell, & Seasholtz, 1998). k-NN can be used for classification of
categorical data variables and regression for continuous variables.
Let X be a training set divided into class subsets, and let X be
a new unknown object, which should be classified. First, calcu-
late the distances (usually Euclidean) from x to all samples of the
training set. Then select k nearest neighbors, which are located
at minimal distances. The new object x belongs to a class which
encompasses most of the k empirically chosen neighbors. An in-
crease in the value of k reduces the impact of errors, whereas its
decrease worsens classification (Pérez-Caballero et al., 2017; Rein-
holds, Bartkevics, Silvis, van Ruth, & Esslinger, 2015). This value
is related to the number of neighbors (“votes”) to poll for future
classifications, such that k = 1 provides a good classification rule.
The more samples that agree within a particular classification, the
more confidence can be placed in the classification data (Beebe
et al., 1998). For example, k-NN has been applied for examin-
ing the trace and rare earth elemental fingerprint variations of
‘‘Fava Santorinis” over several harvesting years (Drivelos, Danezis,
Haroutounian, & Georgiou, 2016).

An example of classification using the k-NN algorithm is shown
in Figure 2 (example modified from Beebe et al., 1998), where
two responses (moisture content and hydroxymethylfurfural level)
were used to distinguish honey samples produced in different geo-
graphical origins. Several training samples are shown for each class
and four unknown honey samples (x, #, ∗∗, and δ). Classification
of the unknown samples using the one-nearest neighbors’ rule,
shows that sample “∗∗” would be from China, sample “δ” would
be from Poland, and sample “x” would be from Brazil. However,

Figure 2–Classification of honey samples from different geographical
origins using k-nearest neighbors (k-NN). Unknown honey samples are
labeled as x, #, ∗∗, and. δ

the classification of sample “#” is less obvious as it is overlapped
with honeys from the USA and Mexico. In this specific case, the
nearest neighbor is from the USA, whereas the second nearest
one is from Mexico. The analyst may use a different statistical
method to try to differentiate honeys from these two countries
or may use different analytical measurements to obtain a clearer
differentiation. As k-NN is not a “soft” classification technique,
that is, an object is always classified in one of the classes studied,
most statistical software packages classify an unknown sample (for
example, sample #) into the class containing most of the nearest
neighbors (that is, USA with n = 12 objects). k-NN is not ac-
curate when there are many features, as dimensionality eliminates
the differences between samples; and results depend on the choice
of metric and the number of neighbors.

k-NN was used to classify results of a study on sugar-based adul-
teration of honey (Soares, Amaral, Oliveira, & Mafra, 2017). They
used a range of analytical techniques (TLC, C-isotope, HPAEC,
GC, HPLC, IR, NMR, Raman spectroscopy, and Q-TOF-MS)
to evaluate honey adulterants. A recent study used k-NN to in-
vestigate the influence of pesticides on the genome of honeybees,
solitary bees, and bumblebees (Como et al., 2017). The authors
developed their own software using two data sets to train and val-
idate the analysis. They concluded that k-NN methodology en-
abled prediction of the toxicity of many different pesticides, which
enabled their algorithm to be used to predict relevant patterns for
other pesticides.

Partial least squares—discriminant analysis. Partial least squares—
discriminant analysis (PLS-DA) is the most popular and efficient
among the methods that can deal with a singular covariance ma-
trix (Ståhle & Wold, 1987). It is a conventional PLS regression
method where the fingerprints (I × J) matrix X is considered as
a predictor matrix, and a specially constructed (I × K) response
matrix Y comprises categorical (“dummy”) variables that describe
class memberships for K classes (Ståhle & Wold, 1987). When
PLS regression is used, the response value Ŷ is predicted for a new
sample. The decision is based on the comparison of Ŷ with the
given categorical variables in Y. The sample is attributed to the
class for which the “dummy” variable Y is closest to Ŷ. In many of
the reported applications (Cebi et al., 2016; De Luca et al., 2016;
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Grunert et al., 2016; Hamdouche et al., 2016; Tena et al., 2015)
PLS-DA was employed for making a final decision. One advan-
tage of using PLS-DA is that one can understand which variables
carry the class separating information, but a clear disadvantage of
PLS-DA is that it is highly influenced by the number of classes
and sample size distribution per class. This fact makes the use of
PLS-DA appropriate only when there are few classes each with
many samples to be differentiated. Other disadvantages of PLS-DA
are: it requires preliminary regression analysis, which is sensitive
to outliers. The result depends on the number of principal com-
ponents in the PLS2 regression and PLS-DA does not work for
small number training sample sets.

Soft independent modeling of class analogies. The procedure for
OCC specifies the target class according to the properties of its
representative members. These properties, “fingerprints,” are mul-
tivariate analytical signals acquired by analysis using, for example,
spectroscopic, chromatographic, electro-analytical, or other ana-
lytical techniques. The results of the “fingerprints” collection are
presented in data matrices. The main matrix X is a set of data
obtained using samples of the target class. The target class is al-
ways unique for a given OCC problem. Any other objects, or
classes of objects, which are not the members of the target class,
are considered as aliens.

Soft independent modeling of class analogies (SIMCA; Wold,
1977) is probably the best-known approach among different OCC.
One of the main advantages of SIMCA relies on the fact that, as it
is a “soft” classification technique, one object may be classified into
one, several, or no classes (Gurbanov, Gozen, & Severcan, 2018). If
an unknown object belongs to more than one class, this result may
indicate that either the responses used to build the classification
model lack sufficient power to discriminate between the classes
or that there might be an error in the measurement. One main
disadvantage of SIMCA is that it requires prior analysis by PCA;
the result depends on the choice of PCs, which is facilitated by the
minimum number for which the training set is correctly classified.
SIMCA is sensitive to outliers, but they can be recognized by the
method.

In food science, we observe many papers that improperly use
SIMCA as a tool for discrimination between several predefined
classes. SIMCA is an OCC that produces a description of a single
target class of objects, and then detects whether, or not, a new
object resembles this class. The rigorous version of SIMCA, as
any other OCC does not utilize any information about nontarget
(extraneous) classes, even when the data regarding such extraneous
classes are available (Rodionova, Oliveri, & Pomerantsev, 2016).

SIMCA consists of two steps: At the first step, PCA (Eq. [(1)]) is
applied to the training data extracted from the target class. At the
second step, the PCA results are used for calculating two relevant
distances for each object i = 1, . . . , I of the training set. As shown
in Eq. (2), these are the score distance, hi, and the orthogonal
distance, vi:

hi = tt
i (T

tT)−1ti , vi =
J∑

j=1

e 2
i j (2)

The score distance represents the position of a sample within
the score space, and the orthogonal distance characterizes a sample
distance to the score space.

A newly enhanced version of SIMCA is able to characterize
classification results in a statistically sound way, that is, to calcu-
late the errors of misclassification based on theoretical principles

0

1

2

3

4

0 1 2 3 4

ln (v/v0)

ln(h/h0)

Acceptance plot

Figure 3–Result of newly enhanced version of soft independent modeling
of class analogy (SIMCA) classification. Classification of olives in brine
(Rodionova et al., 2016). Target class is class T3, PCA model with 6 PCs
Filled green squares are training samples from class T3. Clear green
squares are test objects from class T3. Black dots are the alternative
objects from class T1.

(Pomerantsev & Rodionova, 2014). Both the score distance and
orthogonal distance follow the scaled chi-squared distribution and
thus provides a possibility for developing tolerance areas for a given
type I error. Regardless of the complexity of the initial data, the
result of classification can be visualized in the two-dimensional ac-
ceptance plot (Figure 3). The solid line presents the border of the
acceptance area developed for a predefined α-value. All samples
located in this area are considered as the target class members. In
Figure 4, all but one sample from class T3 are properly classified
and one object is misclassified as alien (the type I error). All sam-
ples from class T1 are properly classified as aliens with respect to
class T3.

The OCC methods are intensively applied in food chemistry for
quality control and authentication of various foods, for example,
for classification of olive oils (Paolo Oliveri et al., 2010), quality
control of peanut oils (Xu, Cai, & Deng, 2011) and fruit juices
(Fidelis et al., 2017), and many other cases. Sometimes, analysts
try to compare the performance of SIMCA with PLS-DA or
other discriminant methods. It is important to underline that these
methods are not comparable, as they are aimed at solving different
problems and, therefore, have different application areas (Paolo
Oliveri & Downey, 2012; Rodionova, Titova, & Pomerantsev,
2016).

For instance, there is a clear advantage of using SIMCA over
k-NN, which uses the closeness of samples in the space for clas-
sification, although SIMCA uses a defined boundary to classify
unknown samples. However, SIMCA also has disadvantages over
other classification methods: SIMCA is unable to produce prob-
abilistic classifications and the number of responses and samples
used in the classification affect the accuracy in a way that if the
number of the independent variable and the sample size are bigger
than 100, the model fails and results in overfitting (Kanik, Orekici
Temel, Erdogan, & Ersoz Kaya, 2013). Another disadvantage of
SIMCA is that no attempt is made to find directions that separate
classes.
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Figure 4–Example of SIMCA application on the classification of different milk types (3 classes). Samples x, #, and δ are unknowns.

Figure 4 illustrates another application of SIMCA to distin-
guish three milk types: sample “X” would be classified as “UHT
milk,” although sample “δ” would be classified as “raw milk.”
However, sample “#” would not be classified into either of these
classes. As mentioned before, SIMCA may recognize one sam-
ple as fitting into one, two, multiple, or none of the classes. In
authentication studies, the method sometimes does not provide
useful information as it fails adequately to classify the samples. It
was explained that an “inconclusive ratio” should also be calcu-
lated when SIMCA is used (Gondim et al., 2017). This parameter
indicates the percentage of samples that were not assigned to any
of the k classes and the samples that are assigned to more than one
class. Authors have reported the use of SIMCA and mid-infrared
spectroscopy to detect several adulterants in milk (for example, bi-
carbonate, NaOH, chloride, hypochlorite, water, sucrose, starch,
H2O2, and carbonate) with over 80% correct classification. How-
ever, classification of a high proportion of samples (17% of samples)
was inconclusive.

ANN. ANN is a technique that is used when the relation-
ship between the dependent and the independent variables is not
known a priori, representing complex, and nonlinear processes
(Pacella & Semeraro, 2014). It is based on the structure of neu-
rons (Boareto, De Souza, Valero, & Valdman, 2007) and, among
the ANN types, the most common is the multilayer perceptron—
MLP (Rasouli & Ghavami, 2016), where the neuron layers (input,
hidden, and output) are connected by a feedforward connection
(Figure 5). Some functions, with their parameters, are needed
to train the network; usually, backpropagation (BP) is used as it
is simple and versatile. The input values of these parameters are
found after reaching an intended error level when comparing the
output with the target values imposed. Broadly speaking, the idea
is to have sets of experiment for use in different steps: the first
set is needed to train the ANN; the second one is used to run
a process simulation, and the last set is used to validate the ex-
perimental data. The node number must be adequate to train
the network properly. According to several authors (dos Santos,
Páscoa, & Lopes, 2017; Fan et al., 2013; Funes, Allouche, Beltrán,
& Jiménez, 2015; Rasouli & Ghavami, 2016), one of the major
advantages of ANN is that it may be applied when data are highly
nonlinear correlated and there are uncertainties. It may be used
also for process optimization.

Figure 5–Schematic structure of a neural network with 5 input layers and
one output layer.

It is important to note that when applying ANN, certain key
issues need to be considered. Usually, an ANN has many pa-
rameters to be estimated. For example, for training an ANN,
it is recommended that one uses an experimental data base at
least three to five times greater than the number of parameters
(some authors use 10 times), while paying attention to model
overfitting. Once the parameters are estimated, another data set
should be used to validate the proposed model (Souza Jr. & Trica,
2013). The ANN methodology can be applied in many food-
related fields. Funes et al. (2015) presented well-known neural
networks models, their limitations, listing many publications that
have applied ANN methodology. Fan et al. (2013) used BP-ANN
to obtain a relationship between instrumental color attributes
and texture characteristics and to simulate and predict accurately
the texture characteristics from the color values. Muñiz-Valencia,
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Jurado, Ceballos-Magaña, Alcázar, and Hernández-Dı́az (2014)
also used PCA and ANN to discriminate coffees from different
regions of Mexico, by using estimates of mineral cations. They
concluded that the concentrations of Ca, K, Mn, Mg, Na, and
Zn provided the best descriptors and that differentiation of coffee
sources was possible by using the ANN technique, with 93% of
prediction ability and specificity of 98%.

Lohani and Muthukumarappan (2017) developed an interesting
approach to compare two techniques in a study of the influence of
process variables (fermentation time, flour to water ratio, flow rate,
ultrasonication time, and ultrasonication intensity) on total pheno-
lic content and antioxidant activity in sorghum flour. These tech-
niques were response surface methodology (RSM; Box-Behnken
design) and ANN. The RSM technique proposed a polynomial
model (with quadratic and interaction terms) to describe a re-
lationship involving all five process variables in 46 experiments
that could predict a dependent variable value (Yi). They adopted
an input layer with five neurons (representing the five process
variables) and an output layer with one neuron (for each answer
variable). Both techniques presented models with high coefficients
of determination (R2).

Other studies have applied ANN and k-NN to classify food
quality as a function of cooked food color (raw, light, optimal,
dark, and burnt (O’Farrell, Lewis, Flanagan, Lyons, & Jackman,
2005a; O’Farrell, Lewis, Flanagan, Lyons, & Jackman, 2005b).
They present a very good comparison of both methods using
fresh minced beef burgers and chicken en croute for which the
different color parameters were measured spectrometrically. They
concluded that the ANN technique was better than k-NN, al-
though the latter was satisfactory and needed simpler calculation.

Pérez-Caballero et al. (2017) applied other techniques to classify
different types of tequilas (white, rested, aged, and extra-aged), us-
ing data from UV-Vis and CG-MS. They concluded that nonlin-
ear models were best able to classify the tequilas samples. Among
the techniques used, classification and regression trees (CART),
random forest (RF), and support vectors machines (SVM) were
the best, although k-NN, which is a simple method, also presented
reliable results.

Effects of processing on food components
In food science, effects of processing on food components is

most commonly discussed in a context of negative influences of
thermal processing on food chemistry. Many reports show that
thermal processing of foods adversely affects the nutritional con-
tent and sensory properties of foods, but thermal treatment is still
necessary for inactivating microbial pathogens and enzymes, in
order to prolong shelf-life (van Boekel et al., 2010). Raw fruits
and vegetables (Poojary et al., 2017; Putnik et al., 2017; Putnik
et al., 2017), their products (Bursać Kovačević et al., 2015), and
byproducts (Putnik et al., 2017) are among the most sensitive
materials for (thermal) processing, yet innovative applications of
(nonthermal) technology can decrease or alleviate deterioration
of important biologically active compounds. In these examples,
use of multivariate statistics, especially multivariate regression, has
enabled optimization of parameters.

Several examples of the use of PCA have reported on the fur-
ther use of multivariate statistics for identifying changes in food
chemistry during processing. One example focused on various
polyphenolic compounds in chokeberry (Aronia spp.) juice, which
was given by Bursać Kovačević et al. (2016) who studied the effects
of cold atmospheric gas phase plasma on the levels of hydroxycin-
namic acids, flavonols, and anthocyanins. For this purpose, authors

used PCA, MANOVA, and multivariate regression. Results were
evaluated using two types of controls (untreated and samples pas-
teurized for 2 min at 80 °C). PCA data showed that the pasteur-
ization process strongly decreased the concentrations of hydrox-
ycinnamic acids, although flavonols and anthocyanins increased
slightly. In contrast, plasma-treated samples had increased levels
of hydroxycinnamic acids and reduced anthocyanins compared to
the untreated samples. The procedure was used to optimize the
conditions for pasteurization of the juice.

For the purpose of meat processing, Shikha Ojha et al. (2018)
used PCA to evaluate the multivariate effects of ultrasound fre-
quency (25, 33, and 45 kHz), drying time, and addition of Lacto-
bacillus sakei on proteolysis rate and levels of total protein, amino
acids, organic acids, texture, and color of beef jerky. PCA was able
to differentiate the control samples (without L. sakei) from the
test samples using the responses (other than acidity and color) in a
2D projection. Although a high amount of the data variance was
explained by two principal components (roughly 70%), no clear
differences were observed between ultrasound frequencies. Over-
all, in technological applications, PCA enables clear differentiation
process variables on selected responses.

The influence of harvesting, genotype, climate, and process-
ing on levels of tocochromanols, carotenoids, and chlorophyll in
flaxseed oils was evaluated using MANOVA (3-way ANOVA) and
PCA (Obranović et al., 2015). MANOVA was used for the simul-
taneous comparison of three independent variables for each of the
eight dependent variables, although PCA was used to construct
a climate index, consisting of temperature (°C), sunshine hours,
and levels of recorded rainfall. The oil from Genotype Biltstar had
highest antioxidant activity, while that of Altess had the highest
pigment contents. The fifth week after flowering was identified
as the optimal maturation period to obtain the highest tocochro-
manol content. It was shown statistically that the content of γ -
tocopherol and plastochromanol-8 increased with temperature and
sunshine, and reduced with higher rainfall during the maturation
period. In general, oils obtained by cold pressing yielded higher
contents of tocochromanols and with less pigmentation. The study
identified the most suitable flaxseed genotype for oil processing
and shed some light on the ecological impact on biosynthesis of
important food constituents.

Seafood, commonly packaged in a modified atmosphere to
prolong the shelf-life, can be monitored instrumentally to de-
tect spoilage odors composed of numerous volatile organic com-
pounds. It is essential to be able to differentiate between the pres-
ence of large numbers of both odoriferous spoilage compounds
and volatile compounds normally associated with the food. Mul-
tivariate tools can be used to analyze the large data sets in order
to sort “the wheat from the chaff.” Multivariate statistics, HCA,
PCA, and PLS regression were used to identify relevant spoilage
volatiles (Kuuliala et al., 2018). Amongst others, it was found
that certain compounds (such as acetic acid, isobutyl alcohol,
dimethyl sulfide, and trimethylamine) were associated with mi-
crobial growth and unacceptable sensory evaluation and identified
a potential for development of smart packaging.

Food authentication based on chemical markers
In some countries, scandals involving adulteration of foods have

become more frequent and most are economically-based (Hong
et al., 2017; van Ruth, Huisman, & Luning, 2017). For instance,
Brazil witnessed an extensive investigation into the largest food
companies (especially meat-based ones) for bribing inspectors who
allowed corruption in food production. This fraud enabled spoiled
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meals to be served in public schools and Salmonella-contaminated
meats to be exported to Europe. The total nitrogen content of
raw milk, powdered infant formula, and cereal-based formula-
tions have been increased by addition of melamine (C3H6N6) in
many countries (Zhang & Xue, 2016). Addition of sucrose and
water into honey, a high-value added food, also occurs worldwide
(Soares et al., 2017; Spink, Ortega, Chen, & Wu, 2017). These are
typical examples of economically motivated frauds of high-value
added foods that lead consumers to have concerns about the au-
thenticity of their foods. Such worldwide adulteration of food is
illegal, and commercial products need to be monitored constantly
by government agencies to detect and prevent adulteration (Spink
et al., 2017).

Typical examples of questions that arise in food authenticity
include: is the olive oil really from the Tuscany region? Are the
meatballs from Wagyu beef (a Japanese cattle breed) really made
from this breed? Is the Pinot Noir wine really made of this grape
variety? Such questions are very hard to answer without the use of
analytical fingerprints and authentic samples as references. Oliveri
and Simonetti (2016) stated that to assess whether a food product
is authentic is a complex task that involves assessment of multi-
ple characteristics, including physical, chemical, microbiological,
and biochemical properties. Hong et al. (2017) provided inter-
esting and current information on the multiplicity of analytical
methods that can be used to identify adulteration in foods. Such
methods include vibrational spectroscopy (dos Santos et al., 2017),
including near-infrared, NIRS (Chiesa et al., 2016), mid-infrared
spectroscopy (Karoui, Downey, & Blecker, 2010), and Fourier-
transform infrared (FTIR; Gao, Zhou, Han, Yang, & Liu, 2017),
nuclear magnetic resonance, NMR (Gad & Bouzabata, 2017; Lon-
gobardi et al., 2017; Spiteri et al., 2017), mass spectrometry (Wu
et al., 2017), proton transfer reaction mass spectrometry (Granato,
Koot, & van Ruth, 2015), spectrophotometric, potentiometric,
and chromatographic methods (Alonso-Salces, Serra, Reniero, &
Heberger, 2009; Granato, Margraf, Brotzakis, Capuano, & van
Ruth, 2015; Wu et al., 2017), and other methods (Azcarate, Gil,
Smichowski, Savio, & Camiña, 2017; Bevilacqua et al., 2017;
Dong, Zhao, Hu, Dong, & Tan, 2017). Such methods provide a
robust fingerprint of the test samples and usually generate a large
and complex data matrix that, if properly analyzed, can show even
slight differences between factors (such as lots, manufacturers, ge-
ographical origin, and so on; Peng et al., 2016).

Because consumers do not have access to these sophisticated
and highly sensitive analytical methods that are necessary to detect
food fraud, they require assurance that purchased food is authentic,
and/or compliant with legislation and with the statements on the
food labels (Charlebois, Schwab, Henn, & Huck, 2016; Lucci
et al., 2017; Walker, 2017). Therefore, strategies to increase and
improve the monitoring of food authenticity are of major concern
worldwide for entire food supply chains (Camin et al., 2017;
Danezis et al., 2016; Manning, 2016; Sabir, Rafi, & Darusman,
2017).

In the period from 2000 to December 2017, more than 8,100
papers dealing with food authenticity have been recorded in
the Science Direct database, and a crescent investigation and
publication of articles is observed (total number of articles =
49.238 × Year – 98440, R2 = 0.9399). Studies conducted for
government agencies show that the generation of large data sets
is required to attest the authenticity of origin (that is, protected
designation of origin or protected geographical indication), farm-
ing systems (that is, organic and biodynamic), safety, and overall
expected quality of foods (Bajoub et al., 2017; Yang et al., 2016).

Therefore, the use of multivariate statistical methods, for both
exploratory and classification purposes provides an appropriate
strategy for governmental, academic, and industrial stakeholders
(Borràs et al., 2015; Pardo-Mates et al., 2017). The use of an-
alytical methods with proper data analysis may support proper
monitoring of food safety management systems in food and feed
chains (Pustjens, Weesepoel, & van Ruth, 2016).

According to one study, authentication of a food requires pro-
cedures to determine whether a specific food conforms with its
description (that is, organic, biodynamic, from a certain loca-
tion, and so on; Rodionova et al., 2016). Authentication requires
comparison with definitive reference materials (that is, authen-
tic samples with known and stable physicochemical properties);
this enables a fingerprint of such foods to be traced using OCC
methods.

Here review some selected examples regarding the application
of chemometrics for the assessment of food authentication and
for the accurate spatiotemporal identification of food geographi-
cal origin. The origin of cocoa impacts the final product quality
of chocolate. Traceability is a difficult task that requires refined
analytical approaches to obtain accurate results. Marseglia et al.
(2016) used a sophisticated high-resolution magic angle spinning
1H nuclear magnetic resonance (HR-MAS 1H NMR) method to
authenticate the geographical origin of 60 fermented and dried
Forasteiro cocoa beans from 23 different locations. Spectroscopic
data were obtained, preprocessed (Fourier transform) and analyzed
with the aid of PCA and OPLS-DA. Almost 65% of data variabil-
ity was explained using 2D projection, and samples from Africa,
America, and Asia/Oceania were well separated. PLS-DA results
showed that American and African cocoa beans were efficiently
classified using the analytical data. This example clearly shows that
if a food company wishes to monitor the origin of food products
with intrinsic characteristics (that is, foods or ingredients labeled
as, for example, “protected geographical indication”), HR-MAS
1H NMR coupled with chemometrics may provide a suitable
analytical strategy for quality control purposes.

A group of authors studied the fatty acid profiles of 50 or-
ganic and 72 conventional chicken feed samples in the Nether-
lands (2009 to 2010) and used a classification method based on
PLS-DA to authenticate the farming system (Alewijn, van der
Voet, & van Ruth, 2016). More than 92% of samples were cor-
rectly differentiated in the validation (100% sensitivity and 95%
specificity in the training set) and the measurement of fatty acids
coupled with PLS-DA may represent a fast screening test to assess
if organic laying-hen feed is produced according to the organic
protocol. This study shows the importance of chemometrics for
authentication purposes of organic feeds as such materials can be
easily faked.

Salmon and herring from the Baltic Sea are constantly moni-
tored because of contamination with polychlorinated biphenyls
(PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans
(PCDD/Fs). In this scenario, Sørensen, Lund, Cederberg, and
Ballin (2016) quantified PCBs and PCDD/Fs in 79 salmon sam-
ples from Canada, Chile, China, Norway, USA, Vietnam, and
the Baltic Sea near Denmark. PCA analysis of the PCB profiles
showed substantial differences between salmon samples from dif-
ferent locations. The result was supported by the 2D projection of
total variance. The compounds mainly responsible for the associ-
ation with the geographical origins were identified by the factor
loadings. The authors concluded that contamination of the Baltic
Sea salmon is mostly influenced by the low-chlorinated congeners
that are typical for industrial processes carried out in earlier times
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around the Baltic Sea. Hence, analysis of PCBs and PCDD/Fs
compounds coupled with a simple PCA was an effective approach
for monitoring both the quality and authentication of the origin
of salmon samples. This paper provides a good example of the
importance of PCA in data analysis.

Chiesa et al. (2016) authenticated 30 samples of a unique Ital-
ian “Valle d’Aosta Arnad” PDO lard using near-infrared spec-
troscopy (NIRS). For comparative purposes, 30 non-PDO lard
samples were analyzed. Volatile organic compounds and fatty acid
composition were used to characterize the lard samples and de-
velop calibration models using PLS regression. PLS-DA of fatty
acids and VOCs (100% sensitivity and 100% specificity) provided
100% correct differentiation of PDO and non-PDO lard samples.
NIRS data also showed promising results with 100% sensitivity
and 96.4% specificity. Because the Italian POD lard is a high-
value meat product, the use of a nondestructive, solvent-free, and
rapid technique (NIRS) coupled with chemometrics provides an
ideal way to check for fraudulent products.

Bajoub et al. (2017) assessed the liquid chromatographic fin-
gerprints of phenolic compounds from seven mono varieties of
140 extra-virgin olive oil samples processed during 2011 to 2014
in Morocco, and they used exploratory and classification meth-
ods to analyze the data. Three principal components explained
about 80% of data variability and showed the clustering of Corni-
cabra and Frantoio varietals, whilst data for Picholine, Picual, and
Languedoc were highly dissimilar. PLS-DA and SIMCA were used
to classify the oils according to the varietals, and PLS-DA showed
a high percentage of correct classification (that is, sensitivity and
specificity) between varietals with external validation (between
90% and 100%). SIMCA data also showed correct classification
rates (between 94% and 97%), and 100% correct classification in
recognition and external validation was obtained for Arbequina
and Cornicabra varietals.

Dong et al. (2017) sought to differentiate seven Robusta cof-
fee cultivars (126 samples) using electronic nose and tongue by
titratable acidity, pH, and soluble solids. For this purpose, k-NN
and PLS-DA were the supervised chemometric tools used. 91.7%
of the samples were differentiated by PLS-DA, although k-NN
had an accuracy of 92.8% using only the e-nose results. Only
two samples were misclassified by PLS-DA for the e-tongue data.
These results showed that chemometrics coupled with the selected
analytical methods is useful to authenticate coffees from different
cultivars.

Consumers pay a premium price to acquire organic vegetables
worldwide. Therefore, sound analytical methods are necessary to
distinguish organically and conventionally grown crops and check
for accuracy of the product labeling. Liquid chromatography-mass
spectrometry (LC-MS) was used to characterize some chemical
compounds from 140 carrot samples of Nerac and Namur vari-
eties from Belgium (Cubero-Leon, De Rudder, & Maquet, 2018).
PCA failed to separate organic from conventional carrots; the 2D
projection explained only 22% of data variance. However, PCA
was effective in showing clusters of carrots based on the produc-
tion year. Orthogonal projections to latent structures-discriminant
analysis (OPLS-DA) was used to differentiate the organic from
conventional carrots. Results varied from 77.3% to 83.8%, with
a total of 15 compounds being responsible for the classification.
Nerac was differentiated from Namur variety with 90% accuracy.

One authentication strategy to assess the geographical origin of
foods is to trace and validate specific stable markers. To authen-
ticate the origin of 31 purple grape juices (n = 6 biodynamic,
n = 7 organic, and n = 18 conventional) from different Euro-

pean countries, Granato et al. (2015) used a range of chemical,
physicochemical, antioxidant activity, and instrumental taste pa-
rameters. No statistical differences were observed among farming
systems by ANOVA, but PCA was effective only in showing that
the total phenolic tongue, antioxidant activity, and taste of grape
juices varied according to the production region. HCA showed
no clear separation among farming systems and highlights the fact
that this method is highly arbitrary and should not be used for “au-
thentication” purposes. SIMCA, on the other hand, differentiated
12 of 13 organic/biodynamic juices and 17 of 18 conventional
juices. PLS-DA classified 11 organic/biodynamic juices and all
conventional juices. Instrumental richness, saltiness, and total sol-
uble solids contributed significantly to the classification of grape
juices.

Karabagias et al. (2017) characterized 37 Citrus spp. honeys
from the Mediterranean region (Greece, Egypt, Morocco, and
Spain) collected in 2013/2014 based on color and physicochemi-
cal parameters (moisture content, pH, acidity), individual minerals,
and volatile organic compounds (VOCs). Analysis of variance was
used to assess the effects of origin on the characteristics of the
honeys, and LDA was used to trace the origin of the honeys. Re-
sults showed that Greek and Spanish honeys were very similar and
formed a cluster that was statistically different from the Moroc-
can and Egyptian honeys. The honey samples from each country
could be separated using LDA (100% correct classification) based
on the mineral contents, of which Mo, Si, Se, Li, Ti, Ca, P, Sb,
B, Sn, Sr, Ni, and Cu were the main predictors for portraying the
origin of citrus honeys. LDA of 15 VOCs enabled 97% of cor-
rect differentiation of citrus honeys according to the geographical
origin. LDA of the physicochemical and color parameters clas-
sified 100% of the honeys based on lightness (L∗), greenness (a∗
coordinate), moisture, acidity, and pH as the most discriminatory
variables. This is a good example where chemometrics using data
from simple routine analyses can be used to classify high-value
foods.

Evaluation of the adulteration of 50 samples of Greek
saffron (Crocus sativus L.) with other less-expensive plants
(such as safflower, turmeric, buddleia, calendula, and garde-
nia) using diffuse reflectance infrared spectroscopy (DRIS) in
the range of 4,000 to 600 cm−1 was reported (Petrakis &
Polissiou, 2017). Saffron samples were divided into organic
(n = 28) and conventional (n = 22). PCA was used to assess the
patterns for authentic saffron samples and to compare the purity
of commercial samples, and PLS-DA was used to detect possible
adulterations in the products. PCA accounted for more than 90%
of the variability in the experimental results, but it was unable to
differentiate between samples. PLS-DA analysis of DRIS data gave
95% correct classification of samples. Overall, use of a nondestruc-
tive analytical measurement of saffron samples may be a feasible
tool to assess the authenticity of high-value added herbs and ex-
tracts and to enhance the potential of this approach for on-site
analysis and fraud detection within the food chain.

The variety or cultivar plays an important role in determin-
ing key features of fruit and vegetable products. Margraf, Santos,
de Andrade, van Ruth, and Granato (2016) studied the phenolic
composition, physicochemical properties, and antioxidant activ-
ity of Brazilian grape juices from different geographical origins,
varieties, and farming systems. PCA showed that the inhibition
of lipid peroxidation of juices was highly associated with the to-
tal phenolics content, especially protocatechuic acid, flavonols,
anthocyanins, and total flavonoids. However, when the farming
system was analyzed, PCA could neither differentiate between
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data from organic and conventional juices nor among producing
regions and grape varieties (Cubero-Leon et al., 2018). PLS-DA
classified 80% of grape juices correctly assigned to their class (or-
ganic or conventional), with 72% sensitivity in the calibration step
and 100% specificity in the external validation. Color intensity
measured by a spectrophotometer, total flavonoids, p-coumaric,
and syringic acids were the main discriminatory variables.

Application of chemometrics in microbiology
The definition of chemometrics implies that the technique is

solely concerned with handling and analysis of chemical data, but
increasingly in biological sciences many analyses are now based on
“rapid” or alternative methods that determine chemical or physical
criteria. There are four areas where chemometrics has been used
extensively in microbiological studies:

(1) Taxonomic studies of food-associated organisms, espe-
cially species or strains of food-borne pathogens, such as
Salmonella;

(2) Food spoilage studies, where chemical changes that occur
during storage are evaluated in relation to microbial growth;

(3) Use of bioassays to determine food contaminants, such as
veterinary antibiotic residues; and

(4) A range of other microbiologically related studies.

Microbial taxonomics. In tracing outbreaks of foodborne dis-
ease (or spoilage), detailed knowledge of the specific causative
organism is often essential. Traditional diagnostic methods for the
identification of microorganisms is adequate if you only need to
know the genus, species, and strain of a specific organism in-
volved in a food-borne disease episode (or even in a food spoilage
incident). But there is often an epidemiological need for more
definitive and rapid identification, in order to compare isolates
from patients with isolates from suspect foods or environmental
sources.

For example, the species Salmonella enterica contains many sub-
species that can be identified by immunological and/or DNA typ-
ing, but this is very time-consuming and not always adequate for
the purpose. One group of authors evaluated the use of FTIR spec-
troscopy and chemometrics to differentiate intact cells and crude
lipopolysaccharide extracts from S. enterica serotypes and then ap-
plied canonical variance analysis (CVA) to appropriate regions of
the FTIR spectra (Kim, Reuhs, & Mauer, 2005). Although the re-
sults from intact cells were inadequately differentiated (only 50% to
70% correct identifications), results from crude lipopolysaccharide
extracts permitted 100% correct differentiation.

Kim, Kim, Reuhs, and Mauer (2006) extended this work by
evaluating extracted cell outer membrane proteins (OMP) using
FTIR/CVA and compared the results with SDS-PAGE analyses.
For the serotypes studied, the FTIR/CVA method provided better
differentiation than the electrophoretic analysis of the proteins,
giving 100% correct identification of the serotypes studied (Kim
et al., 2006).

The use of FTIR was evaluated to differentiate between isolates
of Escherichia coli O157:H7 previously typed using multilocus vari-
able number tandem repeat analysis (MLVA) and pulsed field gel
electrophoresis (PFGE; Davis, Paoli, & Mauer, 2012). HCA and
CVA of the FTIR spectra resulted in the clustering of the same
or similar MLVA types and separation of different MLVA types
of E. coli O157:H7. The developed FTIR method showed better
discriminatory power than PFGE in sub-typing E. coli O157:H7,
and it demonstrated that FTIR spectroscopy is suitable for rapid
(�16 hr) and economical subtyping of E. coli with comparable ac-

curacy to MLVA typing. Strains were also classified (97% accuracy)
based on the type of Shiga toxin present using CVA of the spectra.

Brandily et al. (2011) reported the use of fiber evanescent wave
spectroscopy (FEWS) to classify diverse pathogenic organisms in
samples of minced meat and sausage meat and in cheese. The
technique requires the sample to be brought into contact with a
special optical glass fiber, which is linked to an FTIR spectrometer.
The output data were evaluated using PCA and logistic partial least
squares (LPLS). PCA enabled differentiation of several pathogenic
bacteria and the LPLS enabled further discrimination. However,
the work has yet to be applied to realistic levels of pathogens in
food samples.

Microbiological food spoilage. Although some purely chemi-
cal spoilage of food occurs, most food spoilage is associated with
the growth of microorganisms. Several teams have used chemo-
metric protocols to analyze results from food spoilage studies,
not least because of the plethora of volatile and nonvolatile com-
pounds often produced. Duflos and coworkers studied the spoilage
of fish using headspace/mass spectrometry (HS/MS) and solid-
phase micro-extraction gas chromatography/mass spectroscopy
(SPME/GCMS) followed by PCA to analyze the outputs follow-
ing storage of fish for 10 days at 4 °C (Duflos et al., 2010; Duflos,
Coin, Cornu, Antinelli, & Malle, 2006). Of the 86 compounds
identified, about 20 compounds typically produced by microbial
activity could be used as indicators of spoilage. In a subsequent
study on stored samples of Whiting, they used PCA to compare
the results of subjective sensory assessments with the outputs from
SPME/GCMS analyses to identify volatile compounds that were
associated either with freshness or with spoilage.

Mikš-Krajnik, Yoon, Ukuku, and Yuk (2016) used similar an-
alytical methods to study the spoilage of fresh salmon at various
temperatures. HCA and Pearson’s correlations were used to eval-
uate and to select compounds for use as chemical spoilage in-
dices from the SPME/GCMS outputs. PLS regression was used
to assess possible relationships between specific microorganisms
and the production of volatile compounds in fish. Similar proce-
dures were used also successfully by Vasconcelos, Saraiva, and de
Almeida (2014) to study the relationship between microbial levels
in chicken breast fillets stored at 3, 8, and 30 °C and changes in
FTIR, pH and sensory assessments using PLS regression, discrim-
inant analysis, and PCA procedures.

Bruckner, Albrecht, Petersen, and Kreyenschmidt (2012) stud-
ied the effects of variation in the chill storage conditions for raw
pork chops and chicken breast fillets, packed aerobically in plastic
film. A nondimensional sensory index score (SIS; nondimensional
combination score based, as stated, on color, texture, and odor
of the stored products) was used to provide an overall assessment
of changes in color, texture, and odor of stored products; colony
counts for TVC and pseudomonas were done throughout the
storage period. The microbiological data were fitted to the Gom-
pertz model using nonlinear regression and changes in time to
the SIS were fitted by linear regression. Although the stated aims
of the investigation were achieved, further analysis using PLS or
other technique could have provided additional information from
comparison of SIS results with the microbiological data.

Antimicrobial bioassays. Bioassays using selected strains of mi-
croorganism are used routinely to assess levels of antibiotic or
other antimicrobial agents. Traditionally bioassays are used also to
assess toxicity, levels of vitamins in food, and so on, Nagel et al.
(2009) used a logistic regression model (LRM) and a concor-
dance coefficient to assess the effects of chloramphenicol in the
culture medium used for a “presence or absence” bioassay with
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Geobacillus stearothermophilus subsp. calidolactis to detect and quantify
tetracyclines in milk. Increasing concentrations of chlorampheni-
col significantly reduced the limit of detection for tetracyclines.
In subsequent works, authors used the LRM to optimize bioassay
conditions (Nagel, Molina, & Althaus, 2011, 2012).

In a search for new antimicrobials Suleman, van Vuuren, Sandasi,
and Viljoen (2015) examined extracts from propolis, a sticky resin
found in beehives, by LC-MS, chemical analyses, and bioassays.
The data were evaluated using multivariate data analysis by orthog-
onal projections to latent structures (OPLS) and an S-plot function.
Potential antimicrobials were identified as flavonoid compounds.

Other microbiological applications. Guo et al. (2011) used PLS
followed by Monte Carlo PLS (MC-PLS) modeling to analyze the
data from, and optimize the process for, at-line monitoring of the
fermentation process used for nisin production. The nisin titer,
reducing-sugar concentration, cell concentration, and pH values
were compared with near-IR spectra obtained during fermenta-
tion. The optimal wavelengths for the NIR and the most effica-
cious methods for pre-processing the spectra were determined.

Lei and Jakobsen (2004) evaluated the diversity of lactic acid
bacteria (LAB) in “koko” and “koko sour water,” products of
spontaneous fermentation of millet porridge, a traditional Ghana-
ian foodstuff. PCA and partial LSR analyses of data were used to
link the LAB species to the different production stages and pro-
duction sites. The isolates were found to have a great diversity
at the intra-species level and were investigated for antimicrobial
activity using agar diffusion assays, and acid and bile tolerance.
Most isolates showed low levels of antimicrobial activity towards
the test strain of Listeria innocua, and some were considered to have
probiotic potential.

Boussard et al. (2012) used a battery of chemometric tools to ex-
amine the inter-relationships of yeast, glucose oxidase, horse bean,
and soybean flours on the biochemical characteristics of white
bread dough during the fermentation period. Free and bound
polyunsaturated fatty acids (PUFAs), primary oxidation products
of linoleic acid and other parameters were modeled using PCA,
Pareto charts, and Mahalanobis distances.

Although not strictly a microbiological application, analyses of
changes in the composition of bottled beers over a 12-month
storage period were studied (Rendall et al., 2015) using PCA
and the square prediction error (Q-statistic) to model GC-MS
data. The authors observed a major change in composition after
7 months of storage. Importantly, this paper discusses in great detail
the need to use a systematic approach to the chemometric analysis
of data, especially in cases where many analytical data are to be
assessed.

Trends and Final Comments
Chemometric tools have been studied for problem solving

purposes in many scientific and technological fields. In food
chemistry, multiple problems may be investigated using differ-
ent analytical and statistical methods: adulteration, analysis of
geographical/production origins, effects of processes, and unit
operations on the quality attributes of foods. Although their use
has grown, it is still very challenging to choose the best statistical
method because all of them have both positive and negative
attributes. This paper provides an overview of some of the most
recent applications of k-NN, SIMCA, ANN, PLS-DA, and LDA
in food science. The fundamental benefits and disadvantages
have been illustrated using real world examples. Our main
recommendation is not to apply any chemometric method at
hand but to choose those that answer a specific need.
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Araucária/CAPES for his PhD scholarship. O. Rodionova and
A. Pomerantsev acknowledge a partial support within the Russian
state assignment 0082-2014-0019. P. Putnik and D. B. Kovačević
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Saurina, J., & . . . Puignou, L. (2017). Characterization, classification and
authentication of fruit-based extracts by means of HPLC-UV
chromatographic fingerprints, polyphenolic profiles and chemometric
methods. Food Chemistry, 221, 29–38. https://doi.org/10.1016/
j.foodchem.2016.10.033

Peng, J., Liu, F., Zhou, F., Song, K., Zhang, C., Ye, L., & He, Y. (2016).
Challenging applications for multi-element analysis by laser-induced
breakdown spectroscopy in agriculture: A review. TrAC Trends in Analytical
Chemistry, 85, 260–272. https://doi.org/10.1016/j.trac.2016.08.015
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