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THE METHOD OF LOCAL LINEARIZATION IN THE NUMERICAL SOLUTION OF STIFF SYSTEMS 
OF ORDINARY DIFFERENTIAL EQUATIONS* 

B.V. PAVLOV and O.E. RODIONOVA 

The method of local linearization in its simplestformhas first order 
of accuracy and requires a considerable amount of computer time. A 
scheme of second order of accuracy is constructed which leads to a much 
higher algorithm efficiency. 

Difference methods of numerical integration are not very suitable for solving stiff 
local-unstable systems of ordinary differential equations and sometimes lead to qualitatively 
incorrect results. The method of local linearization is free from this drawback. 

When solving the Cauchy problem for the autonomous system 

i=!(x), r(to)=&, r=(r,, . ...5"), f=(fl,...,f.)T (1) 

or its equivalent system in increments 

~(t)=f(lo+tU)=f(lo)+~U+t(P(U),U(0)=O, (2) 

7=&-t@, u(t)=x(t-to), 
* _ Dfb) -- 

Dx z-a’ 

cP(u)=f(x,+u)-f(lo)--Au, 

the method of local linearization reduces essentially to solving the following integral 

equation: 

1 

s(r)=C(r)f(rJ+ 1 expIA(7-s)l~(u(s))ds, 
” 

(3) 

C(2)=[exp(Az)-1]A-', 

in the interval r=[O, hl, where u(z) differs only slightly from C(t)f(.%), i.e. from the 
solution of the linearized system 

sl (z)=f(dfAq, u~(o)=o. 

The right-hand side of (3) contains no linear element Au, and hence the schemes obtained 
using (3) are only slightly sensitive to the stiffness of the initial system (1) or (21, 
connected with the ill-posed nature of the variational matrix A=Df/Dx. The main difficulties 
in realizing this approach are in evaluating the matrix C(z) and the integral of the non- 
linear part m(u) in (3). 

1. Evaluation of the matrix C(r) and the implicit scheme. 
The general method of calculating C(T) is based on the use of the recurrence relation 

C(Sz)=C(r)+[E+C(r)A]C(z), 

which follows from the functinal equation for C(t) 

C(t,+t,)=C(t,)+[E+C(t,)A]C(t,). 

The initial value C(G) when taljA/l<e can be calculated using an expansion in series 

C(ra)=r.[E++Aro+...+;(Aro)“-I+... . 1 

The formula has asymptotic stability, and experience has shown that this method of evaluating 
C(t) has high accuracy and reliability (see /l/j. 

Henceforth, we will consider the case when the eigenvalues hr of the matrix A have small 
imaginary parts. Then, we can use for the inegral in (3) the quadrature formula 

i i exp[A(r-s)lcp(z(s))ds~. exp[A(r--s)lm(z(r))da=C(r)m(z(T)). 
0 0 

Hence, we arrive at the implicit scheme of the method of local linearization /2/ 

*Zh.vychisl.Mat.mat.Fiz.,27,5,688-699,1987 3. 
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E(r)=C(T) rf(.G)+cp(a(t)) I. (1.i) 

We note an important asymptotic property of the implicit scheme. For the slightly non- 

linear system (2) with a stable matrix A a stable stationary point u,=u (r+m) exists which 

is given by the equation f(so)+Au,+cp(u.)=O. Then, if the solution of the implicit scheme 
8(r) is bounded in r=[O, m), then H(i~m)=z&, since it(m)--A-‘[f(so)+cp(~(-))] as T-too, 
and, consequently, Z(m) satisfies the equation 

f(5o)+Au'(m)+~(n(m))=o. 

The solution E(T) as a function of T, satisfies the differential equation 

h=rFS-C(r)D~(a)/D~]-‘f(x+u’), a (0) =o, 
which, when 

l~c(t)~~(~)lDal]~l, NO, hl, 
differs only slightly from the initial Eq.(2); condition (1.2) thereby limits 
the interval [O,h] in which z=u . A practical check of (1.2) can easily be 

solving (1.1) by direct iterations 

rz"+~(r)=c(t)[f(s)+cp(~"(r))l. 

The quantity 

(1.2) 
the value of 
made when 

estimates /]CD~J(G)/D~]] in the sequence of vectors (8"~-u"'-'). Hence, direct iterations in 

this case are not only a method of solving (1.1) but also a method of choosing the integration 

step h: if h is such that MGs, then I~S(~)-C(~)~(~~)IIC[E/(~-E)]~IC(T)~(~~)~~ and we can take as 
the error of the solution the quantity Ccp(u"). In the initial version of the method /l/, 
after calculating the solution using (1.1) with the necessary step h, linearization is 
carried out and the matrix A is calculated at the new point x-x,. This organization required 

an unjustifiably large number of expensive evaluations of the matrix c(t), which was the 
reason for the low efficiency of the algorithm. A modification of the algorithm, proposed 

in /3/, enabled the calculationof the matrix C(r) to be used many times; the formula for 
the algorithm in this case has the form 

sz=C(hi) [f(xO+Aizz+~(z;i)], (1.3) 

where ZI=X,+~-zi, z,=r(t,), hi=ti+l--t, and (AO=A(x,)-A(zo) is the increment of the variational 
matrix to the i-th integration step. However, scheme (1.3), unlike scheme (l.l), has first 

order of accuracy and hence does not lead to any appreciable increase in the efficiency of 
the algorithm, since in view of the increase in the matrix (Ai), the integration step is 

regularly reduced. To increase the efficiency of the algorithm it is necessary to develop 

a scheme of higher order of accuracy. It is desirable in this case that it should have the 

asymptotic properties of schemes (1.1) and (1.3). 

2. A method of increasing the order of accura 
Consider the system of 

and its equivalent integral 

differential equations 

i(z)=/+Az+b(z), z(O)=0 

equation 

. 

Y* 

(2.1) 

ds, (2.2) 

where z=(z,,... ,~~),f=(ft,.~,,f.) and A=(AJ is an n-th order matrix, whose spectrum lies in 
the region of the real axis, A=(Aih) is a certain n-th order matrix, and ~(:)=Az+(p(z), cp(z) 
is a polynomial function of z which does not contain constant and linear terms. 

Our aim will be to construct a scheme of the second order of accuracy on the basis of 
the implicit scheme. Suppose 

zO(z)=C(T)If+p(ZO)l, r=[0, T]. (2.3) 

Solution (2.2) will be sought on the basis of the iterational process 

The interval z=:[O, T] in which so(r) will be taken as the initial approximation, and we 
will determine the condition 

M  = max 1132” (z) - z,L($ II < o 5 
* II~o*(r)-~o’L-‘(t)II . ’ 

z:+‘=C(r) tf+CL(Zo*)l, 

for which Il~~(~)--C(t)lll~IIC(~)fll. w e will take as the approximate solution of (2.1) the quantity 

z,(t]-Zo(?)+YI(T), (2.4) 
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where 

y,(r)= exp[A(r-s)l~(z,(G))ds-C(T)~(z,(z)). 5 

The error of the approximate solution will be represented by the quantity 

The requirement that I\u~(T)II should be small will also determine the value of the integration 
step h=rmuEIO, T]. 

3. Evaluation of the integrals. 
We will evaluate the integrals using specially chosen approximating functions which can 

be integrated analytically. Consider integrals of the form 

where z(s)=(zI(s), . . . . G(S)). Henceforth, we will approximate C(r--S) and not exp[A(r-s)] and 
hence we will rewrite the integral in the form 

This form of writing the integral also determines the order of the operations after approxi- 

mating the integrand, and it is also necessary to satify the following: if we approximate 
C(r-s) by a certain continuous function Q(z-S), then, according to (3.11, 

@(T)==Q(o)PL(z(T))+ jQII.b-ShLzws, 
0 

which, when QCO)=O, is equivalent to the singular approximation of the series 

exp[A (T-S) I= Q(O)G(r-s)+ Q:-.(z-s). 

Suppose we are given two matrices @(s, 12) and QZ(s, h) which approximate C(s), and two vectors 

gl(s, h) and ql(s, h) which approximates z(s) in the section LO, hl, and Q2 and q2 approximate 
C and z better than Q1 and q,, i.e. 

llC(~)-Q*(~)ll<i’C(~)-Ql(~)ll, [lz(s)-q?(s)ll<liz(s)-q,(s)[l. 

Then, assuming that GC(t-s)zQ%(t-s)-Q,(t-s), Gz(s)%q,(s)-q,(s) we obtain expressions for the 
approximate quantity O(h) and its error 

Wh)=(; [ jSc(T-s)p(q&))ds t- ~Q,(T-s) p Gz(s)ds I) . 
0 0 1 7-h 

(3.2sb) 

4. Choice of the approximating functions. 
Eq.tZ.3) defines ~(7) as a certain function of the eigenvalues of the matrix C(S), equal 

to s(s)=hi-'[exp(h*s)-I], and hence when choosing the approximating functions we will be 
concerned with the properties of the function c(ls)=l-'[exp(hs)-11. We will consider two types 
of polynomials: with free terms which are equal to and differ from zero. For convenience we 
will denote the matrix polynomials differently 

P’*’ (s) = &sl and P (s) = &psi 
r-0 i-1 

and the corresponding vector polynomials 

I 

p’“‘(s)&:*‘s’ and 
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of the first (P and p) and the second (R and I) types. The choice and verification of the 

suitability of the polynomials was made using the example of the evaluation of the matrix 
integral 

a”(r)= j exP[+a)]AC(s)ds=-&jC(~-s)AC(s)& 
0 0 

which is the first iteration of the matrix integral equation 

1 

B(r)=C(r)+jexp[A(z-s)]AB(s)ds 
0 

and is obtained by substituting into (3.1) the quantities P(z(s))=Az(s),z(s)=C(s), where A is 
an arbitrary matrix. In the natural basis of the matrix A the matrix elements are as follows: 

1 

ii:(~)= ~exp[L(r-s)][exp&s)- l]hk-l~kds, 

where Ae are 
the formula 

which is used for a direct check of the approximate values of Q"(h) obtained. 

The case of a stable spectrum. If h<O, then c(hs) is a monotonic function of s, 
_ __ _. . . 

the elements of the matrix A in the same basis. After integration we obtain 

~iQ(t)=(hr-h*)-'[c,(z)-c,(r)]A.,, (4.1) 

ci(z)=hi-'[exp(h,z)-l], 

bounded in [U, -). Suppose s=[U,h] and Ma-l, then, in almost the whole interval [O,h], 

we have c(hs)--he'. This important asymptotic property can be preserved if we take as the 
approximating function a polynomial of the first type: ~(hs)=p'~'(s). We will confine ourselves 

to considering polynomials of the first and second order. We will determine the coefficients 
of the polynomial p"'(s, h)=p,"'Cp,"'s from the condition that it should be identical with the 
approximated function c(hs) in the middle and at the end of the interval [O, hl 

p”‘(h, hh)=c(kh), p”‘(h/2, hh)=c(hh/2). 

Then 

p,"'=2c @h/2) -c (I/z), hp,l”=2[c(hh)-c(hh/2) 1. (4.2) 
When determining the coefficients of the second-order polynomial p'*'(s, hh)=p,cz1fp,c2)s+p,~2~sZ 
we will add the condition for the derivatives to be equal when s=h 

then 
p'2'(h,hh)=c(hh), P"'(h/2, hh)=c(hh/2), [p’*‘(s,hh) ]L=exp(hh) 

and for the coefficients pO"', p,“‘,pz(” we obtain 

PO c”=p,“‘+‘/,p,“‘h’, hp,‘Z’=hpl’l’_3,,p,‘*‘hZ, 

2p2(*‘hZ=[ exp (hh)-p,(l)] h. 

When hh<-1 we have ~(hh)--h-~, and then p,(‘l, pl(*), pz(‘)-O, while pO”’ and p,"' approach 
--h-l. Hence, the approximating polynomials of the first type preserve the asymptotic 

properties of the function c(hs). Using the approximation considered and employing formulas 

(3.1) and (3.21, we can calculate the approximate values. Assuming c(z-s)=&(r-s), P(z)=A,&~(S) 

in (3.1) and Q,(T-s)=p(“(~-s, hih), q,(s)=p”‘(s, I&) in (3.2) and using condition (4.2) to 
determine the coefficients, after appropriate calculations we obtain 

(4.3) 

We now can make a direct comparison between the accurate value (4.1) and the approximate 

value (4.3) for mLro(h). A numerical check showed thatinthe quadrant Lh. Lh<0.3 expression 

(4.3) has an error in the second place. In the initial basis the formula for @O(h) has the 

form 

The case of an unstable spectrum. When D-0 the approximating function of the first 

type P(S, h) satisfactorily approximates the function h-'[esp(As)-I] only in a small interval 

h : khtO.3 which makes it extremely difficult to monitor that this condition is satisfied. 

USSR 27:3-C 
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Polynomials of the second type would be considerably better but they are not quite suitable 
for approximating c(s).) when Ah<-1. The complexity of the problem of approximating C(As) 
for a stiff instability of the matrix A is exactly connected with the fact that the negative 
and positive eigenvalues require their own type of approximation. This can easily be done 
in the case of a diagonal (or triangular) form of the matrix A, but in general, we must use 
special methods. Experience has shown that quite satisfactory results can be obtained by 
using the combination of approximations of the first and second type given below. 

We will divide the interval [O,h] into two equal parts. Then, for m"(h) we obtain 

1 

This formula is constructed in such a way that c,(s) occurs with a factor exp(Lh/Z) in the 
first interval, and occurs in the same way in the second interval for G(S) so that when 
hih, h&<-l these integrals are exponentially small irrespective of the type of .approximation 

chosen for c<(s). G(S). This fact enables us to approximate them by polynomials of the second 

type (without a free term), which 

Hence, as before by approximating 

by polynomials of the first type, 

can be easily done when O<?,h<i 

ci (s) = (*’ r, (s) ==E r::’ s”. 

c*(s) in the first integral and CC(S) in the second integral 

we can calculate Q,"(h), confining ourselves to polynomials 
of the first order (k=l). Then, in the first integral ci(P-s)=r*(')(P-s), C*(S)=pO"'+p,"'s, 

and the coefficients rI(‘), pO”‘, p,“’ can be found from the equations 

(0 h h 
rl - = c, - 

2 ( ) 
h 

2 
, p:” + p(‘) 2 

h 
1 -=c* - ( ) 2 ’ 

pi’)+ p:” f=cb(;). 
We have for the second integral C,(S)=po”‘+p~(‘)S, ck(z--s)=r,(‘)(v-s), where the coefficients can 

be found from the conditions 

h 
p:“+p:“d=c’ 

h 
( ) x , 

h h 
ri’)_ = ci - 

( ) 
. 

2 2 

Carrying out the necessary calculations we obtain 

g,,“(h)={ [c,@b-Ca(;)]c~(;)+ci(&($)+ 

h 
c, - ( )[ 4 

c,(h)- CA + ( )I1 ;ii,. 

(4.4) 

A check showed that this "piecewise" method of approximation can be regardedascompletely 
satisfactory: the approximate values for (D,,,‘(h) calculated from (4.4) with an error of less 
than 3%, are identical with the accurate values calculated from (4.1) for hih,h,hGl, and it 
is quite easy to monitor that this condition is satisfied (see Sect.5). In the initial basis 

the formula for W(h) will obviously have the form 

U),“(h)-eesp ( “) (“) (“) (“) (“) AT C - AC z fC T AC T -I- 

C( +\AC(+-)exp(A+)-[ C(h)-C(+)]AC(;)+ 

C($)AC($)+C(;)A[C(h,-C(G)]. 

By approximating C(s) by second-order polynomials we can also evaluate b@,,*'(h), but 
the formulas obtained are extremely complex. Without deriving them, we will merely note that 
they give the correct order of the error. 

5. Solution of the integral equation. 
Using the results obtained we will consider a procedure for solving an integral equation 

by the method of local linearization. According to Sect.2, we take as the solution of Eq. 
(2.2) the sum of the first two terms of the series, which is obtained as a result of the 
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iteration (2.2) 

The procedure consists of the following stages: 
1) calculation of the initial approximation zo(z) by solving the equation 

Z~(T)==C(T)rf+P(Z~(7))1 (5.1) 

by the method of direct iteration; fairly rapid convergence is required which limits the 
value of the interval h in which the initial approximation zo(t) is acceptable; 

2) calculation of the following term of the series: 

L 

y,(h)=j exp[A(h-s)l~L(so(s))ds-C(h)~(s,(h)), 
0 

(5.2) 

which reduces to evaluating the integral using some method of approximating zO(s) in sE[O, h]; 
3) calculation, using Eqs.(3.1), of the error 8zap connected with the approximation; 
4) evaluation of the integral 

L 

y,(h)= ~e~p~~~~-s~l~~~z~~s~+~,(s))-~(z,(s))lds, 
0 

which characterizes the value of the error connected with the "termination" of the iterational 
process of solving (2.2). 

Note that calculation of the error 6zap is only necessary when there are eigenvalues 
with large imaginary part in the spectrum of A. The approximations considered in Sect.4, in 
the case of a real spectrum, were checked directly and gave quite satisfactory results (for 
practical purposes). As regards y?(h) its role reduces to "refining" the value of the 
integration interval h from the smallness condition I\yZ(h)(l, which can be replaced with the 
same success by l/Y,(h)[i. 

hence, in the case of a real spectrum A the procedure for solving (2.2) essentially 
reduces to paragraphs 1) and 2) above. This fact simplifies the algorithm and increases its 
efficiency, since although the calculation of 62, and y*(h) does not present any difficulties 
in principle, it involves certain computer costs in view oftheextremely complicated formulas. 

we will now consider in more detail the calculation of Y,(h) using the piecewise method 
of approximation, calculated assuming that positive eigenvalues are present in the spectrum 
A. According to (2.4) 

Y,(h)_~(h)_C(h)~!Z,(h)), 
where 

0(hi=[~7jC(r--s)p(z,(s))ds]~_~ = 
0 

{&h[ p(zo( +))-p(zo(+))] ds) . 
0 I-h/Z 

Following the method of piecewise approximation , in the first integral we assume that 
C(Z-s)=R,("(Z-s), where the coefficient R,(” is found from the condition C(h/Z)=R,“‘hl2 and 
ZO(S)%l ,I,+ (‘Is PI , where the coefficients po”’ and p,“’ are found from the conditions z,(h/Z)= 

po”‘+p,“‘h/2, z,(h/4) =p,“‘+p,“‘hl4, whence 

In the second integral C(s)=PO"'+Pj")s, and the coefficients PO’“, PI”’ are found from the 
conditions C(h/Z) =P,“‘+P,“‘h/2, C( h/4) =Po”‘+P,“‘h/4, whence 

P,“‘=Pc($)-c(+), P:q;)-‘[ c(G)-c(%)]; 

z,(h/2+r-s)-z,(hD)=r,“‘(t-s) and the coefficient r,") is found from the condition za(h)- 
z,(h/2) =r,“‘hll. 

Specific calculations can only be carried out when the structure of the function I*(z) 
is given. Suppose 

~(z)=[A+K(z)lz, 
where A is a matrix with constant coefficients, and K(z)is a matrix whose coefficients are 
linear uniform functions of z 

Ke=El,h’z,. 
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Then, after the necessary calculations we obtain 

e(u=exp(A%)C(~)p(z,($))+C(~)p( zo( %))+ 

c( -y[ PLZo(h))- P( zo( $))] + 

~h’[exp(A$)R:l’p(p:“)-2P:‘)~(rl”)], 

where q(z)-K(z)z. 
III this formula we can drop the term with the coefficient P/96, since the same term 

with a coefficient -hJ/3 occurs in the first part of the formula. As a result, we obtain 
for Q(h) a convenient quadrature formula of the second order of accuracy in h, which holds 
for any structure of p(z) 

then, for y,(h) after identical transformations, we obtain 

Ydh)=-([w--C(%)][ &(~))-P(z0(~))] + 
[CWC(+)][ pMW&(~))]). 

(5.3) 

It follows from (5.3) that if zo(h) is bounded in [0, -) and the matrix A is stable, 
then y,(h-m)-tO since C(h+m)+-A-'. Hence, the function zl(h)=zo(h)+yL(h) hastheasymptotic 
property of z,(h). 

Estimate of the right limit of the spectrum. Eqs.(5.2) and (5.3) give good results 
provided IhGl, and hence it is necessary to monitor that this is satisfied. When evaluating 
(D(h), h=2”h,, when there is a set of matrices exp(Ah,), h,=2*h,, and, consequently, the values 
of the trace 

n 

Trexp(A h,)=z exp(M,) 

for all k<m; using the latter we can estimate extremely accurately the right limit of the 
spectrum of the matrix exp(Ah). However, for practical purposes when solving differential 

equations of "medium" dimensions of not more than 50, an estimate based on the use of a 
trinomial of the fourth order p(X)=X'-2X2+X, which is fairly small when r=[O, I], is quite 
satisfactory: 

sup lp(x)l=‘l,. (5.4) 
r=lo,r, 

We will put 

si=exp(h,h), M.==Trexp(.4h)=izi, 
‘-I 

M,=Trexp (2Ah)= M,=Trexp(tih)= tt‘, z 
(-1 i-1 

It is obvious that for any x1, the following holds: 

n 

p(x,)=M*-2M,fM,- r, P (4 7 

P(2*)~M2-2MI+Mo-inE[~p(3-,)], infp(X)=O.O75. 
1-1 

Hence it follows that p(x,..) ~1W2-2~f,fMu+0.0ij(II-1), sC,,,,=exp(h,..h). 
If 

~,-2~,+~ll,+0.075(n-1)~~~~esp(l))~~O, (5.5) 
then L,,..h<l, so that (5.5) is the practical criterion for estimating &h. According to 
(5.4), for a stable matrix A we have 
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sup(M,-ZM,+IM,) =O.l25n, 

so that (5.5) is satisfied for all nt200, and, consequently, (5.5) does not limit the step 
if A is stable. 

6. Integration of the system of ordinary differential equations. 
Assuming that 

z=zn+l=.xn+l_r" , x”=x(t,), f=f (r”) 1 

* = W(z) 
--I , 

DS ’ x-.xX 

cp(z)=cp(z”)=f(s”+z”)-1(~“)-AZ”, p(z)=Az+g(z) 

and using formula (5.1) for z,(h) and formula (5.2) for y,(h), we obtain the scheme of the 
n-th step of the integration with fixed matrix A=Dj(x’)lDx for the system 

2=f(r), 5 (to) =zo, Z”+‘=l”+Z, n+’ (h) +yy+‘, (FL), 

where s"=s(t,). 
In this scheme the step is monitored using two criteria: 
1) by the limitation of the rate of convergence of the iterations of Eq.(5.1), i.e., by 

the condition MG0.5 (this criterion determines the interval of integration h in which the 
initial approximation z&(h)) is acceptable); 

2) by the relative error s=lly,(h)il/il2""-.z~il<&. 
Condition 2) traces the local accuracy of the integration. In the limits defined by the 

criterion M, the step is chosen to correspond to the criterion K. If h is larger with respect 
to K than with respect to M , then at the point x~=x~+' a new linearization is carried out and 
the process is repeated. This organization of the algorithm enables one to reduce the number 
of calculations of the matrix C(h) considerably, and this is also related to its efficiency. 

On the basis of the approach considered we developed an algorithm and compiled an ex- 
perimental program for integrating a systemof differential equations. Experiments on the 
integration of specific systems showed that there is a considerable gain in the speed of the 
calculation (by 1-2 orders of magnitude) compared with the method of local linearization of 
thefirstorder (see /3/) for stiff systems with pronounced local instability /4/, when the 
trajectory of the solution passes through a region where A=Df(r)/D(s) has large positive 
eigenvalues. Difference algorithms in this case may give qualitatively incorrect solutions 
if an insufficiently high local integration accuracy is specified. Tests were made on a 
specially constructed example of a locally unstable 16-dimensional system of differential 
equations of isothermal chemical kinetics , which models an explosive-type process with 
pronounced induction period. Characteristic graphs of the solutions for the initial and one 
of the intermediate materials are shown in Figs.1 and 2 respectively. 

Fig.1 Fig.2 

Hence, we can state that the method of integrating ordinary differential equations 
considered above is preferable to the widely used difference methods. The main interest is 
the polynomial approximation for C(s) which preserves the asymptotic properties of this 
function as h+m. When obtaining specific schemes, an analogous approximation was also used 
forthesolution itself, but in other cases different methods of approximating the solution 
z(s) may be preferable. 

The authors thank K.I. Babenko and R.P. Fedorenko for discussing this paper. 
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A COMPOSITE METHOD OF SOLVING TWO-DIMENSIONAL STATIONARY 
SELFCONSISTENT PROBLEMS* 

G.T. GOLOVIN 

A new iterative method is described for solving two-dimensionalstationary 

selfconsistent problems. The method is compared with well-known methods. 

Introduction. 
The main advantages and disadvantages of the two well-known iterative methods of solving 

stationary selfconsistent problems were analysed in detail in /l/; in these methods, the 
emission current density J on the cathode has to be found from the condition for the normal 
component of electric field-strength to vanish, namely, 

Enls=O, (1) 
where S is a given part (called the emission zone) of the cathode surface. In one method 
(call it method 1) the density J on S is found at each iteration from the (( '/z power law", 
and in the other (call it method II, it is found from the integral equation of the 1st kind 

obtained in /2/, equivalent to condition (1). Approximation of this integral equation by 
means of quadrature formulae gives the algebraic equation 

AJ+E"0=0, (2) 

where E,o is the normal component of the electrostatic fieldstrength on the cathode, i.e., the 

field produced by the applied potential difference when there is no space charge, A is an 

NXN matrix, and N is the number of points in the emission zone S at which condition (1) has 
to besatisfied when it is discretized.The meaning of (2) is that the electric field induced 

by the space charge (the term AJ) must balance the electrostatic field &, with the 

opposite sign, which leads to satisfaction of condition (1) on the cathode. 
Recall that the main merit of method I is the small volume of computations at each 

iteration, while the main drawback is the slow convergence of the iterations and the low 
accuracy of the numerical solution when the cathode surface has large curvature or the charged 
particle trajectory bends strongly close to the cathode surface, i.e., in other words, in 
cases when the "a/2 power law" used to find J ceases to hold close to the cathode. 

The main merit of method II is the high accuracy of the numerical results for any types 

of cathode surface and trajectories, and also its rapid convergence /3/. The main drawback 
of the method is the need to solve at each iteration Eq.(2) to find J, which leads to a large 
volume of computationsperiteration, since 80% of the time per iteration is spent on evaluating 

the elements of the matrix A. Note for comparison that, in method I not more than 10 
arithmetic operations are needed to compute the function J at any point of the cathode. The 

volume of the other computationsperiteration is virtually the same in both methods. 
There may be a time difference due to the sequence of performing certain computations or 

due to the different methods used to compute certain functions. For instance, the electro- 
magnetic fields may be found either by difference or by integral methods. There are many 
familiar methods suitable for numerical integration of the ordinary differential equations 
from which the charged particle trajectories are found. Thus there can be a great difference 
between the volumes of computations per iteration and hence a great difference in the times 
spent in methods 1 and I!, due solely to the method of finding the function J. 

1. Algorithm of the composite method. 
A method combining the advantages and avoiding the disadvantages of methods 1 and 11 

must, first, give satisfactory numerical accuracy where method I fails, and second, must have 
fewer computations per iteration than method 11. In this "composite" method the currentdensity 

J must be found on "poor" parts of the cathode surface (where the surface or the trajectories 
have large curvature) in the same way as in method II, and on "good" parts, in the same way 
as method I. In short, if J can be found satisfactorily on a part of the surface by a simple 
method, there is no need to use on this part a stronger method which requires a greater volume 
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