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SUMMARY

Non-linear regression (NLR) analysis in chemometric applications is the main subject of the paper. The
following novel items of NLR procedure are reported. The modification of gradient method is considered. For
inversion of the Fisher matrix the recurrence algorithm based on the matrix exponential is used. A new method of
sequential Bayesian estimation allows processing of the data successively for every response. Each data set is
fitted individually, but taking into account the information about common parameters estimated on previous data
sets. A posterior Bayesian distribution is built after every set processing. A new method of confidence estimation
is suggested. Unlike bootstrap, not initial data but parameter estimates are simulated. This method has the same
accuracy as bootstrap but is about 1000 times faster. A new coefficient of non-linearity is introduced. It is
calculated by the Monte Carlo procedure and accounts for the model structure as well as the experimental design
features. All new ideas were implemented in the software FITTER, a new Excel Add-In. Its main capabilities are
reported. The paper is illustrated with a number of practical examples in DSC, TMA and TGA data analysis.
Copyright  2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Every chemometrician knows what non-linear regression (NLR) analysis is, but few apply it in
practice. Just compare the numerous papers about linear regression analysis and all its variations
(PCA, PLS) with the few papers about NLR in chemometrics journals [1]. NLR provides a real
chance to predict the behaviour of a complex chemical system in a region of setting that is far from
the observed one. In fact, it enables us to use sophisticated ‘hard’ models for extrapolation. What are
the circumstances that hinder the practical use of NLR? Let us consider the differences between
linear and non-linear regression in order to understand the problem.

A linear model is an equation

f � a1x1 � a2x2� . . .� apxp
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where ai are unknown parameters andxi are known predictors or functions of predictors. It is
essential that we have linearity in the parameters but not necessarily in the predictors. Thus the
model f = aexp(720x) is linear because it is linear in the parametera, despite the predictorx.
Formally speaking, a linear model is a point in the space of available functions ofp arguments. The
rest of the space is occupied by non-linear models. Therefore the problem of fitting model choice
appears.

Sometimes physicochemical reasons help us to understand which form of model should be used.
A linear model helps us to solve a system which is too complicated for substantive analysis alone.
However, the easiness of this trivial choice is an illusion, since the multicollinearity problem is
waiting for us at the next step. Multicollinearity [2] means the singularity of the regression
information matrix. Such a problem occurs in non-linear regression too, but its interpretation is
different. It can be compared to a pessimist/optimist wrangle— is this bottle half empty or half full?
Linear analysis introduces an optimistic point of view. It is supposed that the model is too full, so it
is necessary to restrict the number of parameters by all means (PLS, PCA). On the other hand, there
are no extra parameters in a non-linear model, since the parameters are dictated by the nature of the
investigated process. That is why using NLR analysis we represent the pessimistic point of view and
presume insufficiency of the experimental data set. Such a view leads to specific methods of struggle
against the multicollinearity in non-linear models (Bayesian for example), though nothing hinders
our use of traditional ones.

The search for parameter estimates of a non-linear model is a little more complicated than for a
linear one. It is not an obstacle, because the procedure of objective function optimization has been
developed in detail; a number of reliable algorithms are known. Marquardt’s method [3] is the most
popular, but there are some more suitable methods. The two main problems we face in NLR analysis
are the following: to guess the initial parameter values and to calculate the derivatives of a model.
The problem of the initial guess has no simple solution (and does not seem likely to be ever solved).
Here we have to place our trust in a successful choice of an experienced investigator who
understands the nature of the problem. We also rely on the stability of the minimization algorithm
that is able to get off from the far points. The problem of computing derivatives is easier. We will
explain it in Section 4.

To find the estimates of unknown parameters of a model is only half the job. It is also necessary to
interpret the obtained results, i.e. to calculate the accuracy of these estimates (standard deviations,
variance–covariance matrix), to verify the lack of fit (Fisher’s test, Student’s test) and to build
confidence intervals. The classical theory of ordinary linear regression gives simple solutions [4] for
all these tasks (see Section 7). In the case of NLR we face a dilemma: whether to use a linear
approximation or to apply statistical simulation methods [5,6]. The first variant is simple in
calculations but does not guarantee correct results. As practice shows, the second variant gives very
exact results, though it takes a long time to execute it. We have developed a new method [7] of
confidence estimation for NLR. Unlike bootstrap, we simulate parameter estimates, not initial data.
In order to distribute them correctly, we apply a trick using the chi-squared distribution of an
objective function. It was shown that this method is as accurate as bootstrap but about 1000 times
faster. It will be explained in Section 7.

However, a typical chemometrics user does not bother about the problems we are discussing here.
First of all, she/he is interested in the true final result. ‘Solve all your technical problems as you like,
just give me a simple tool to fit my data. And for God’s sake no programming, please! I don’t know
MATLAB! I need something easy-to-use, like Word or Excel’. That is a common position.
Researchers have perfectly satisfied this demand by providing the user with a large choice of
programs for linear regression analysis [1], but not for NLR. Of course, there are many soft tools for
NLR, but all the programs we know do not meet the general needs.
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We have developed a new tool for NLR analysis [8] that utilizes all the ideas presented in this
paper. It is named FITTER. In designing it, we followed the rule ‘the easier is the better’. That is
why we did not create our own interface, but instead externalized all the methods as an Add-In for
the popular Microsoft Excel program. FITTER is similar to the well-known Solver Add-In. As with
Solver, all data necessary for solution of an NLR task are placed on a sheet of a standard workbook
and then registered by dialogues. Visual Basic is a very slow language; therefore all complicated
calculating procedures were written in C�� and assembled in the separate DLL, thus acquiring a
speed that satisfies users. We used FITTER to process all data sets described in this paper. Therefore
all experimental data and models are presented in the form they are used by FITTER, i.e. on Excel
worksheets.

Generally the most important issue is the statement of the relevant NLR objective. This
determines the choice of the appropriate tool for investigation. The first goal is to predict (strictly
speaking, to interpolate) the response values within the area of settings. The second goal is to
forecast (to extrapolate) the model values at settings that are far from the observed area. We would
like to emphasize that this is another problem. It is well known that prediction error does not depend
on the form of the model; it is mostly determined by measurement error. In contrast, forecast error
depends firstly on the model and secondly on measurement error. Therefore ‘soft’ models (mainly
linear) are suitable for prediction and only ‘hard’ (mainly non-linear) ones are applicable for
forecasting [9].

In this paper we try to demonstrate the possibilities to overcome all these obstacles and to apply
NLR to practical task solution. Let us start with a simple example that shows the essence of the
problem.

2. TGA example

Figure 1 shows experimental data obtained by the method of thermogravimetric analysis (TGA) for a
sample of polymer material. The main idea of TGA is the following. A sample is heated at a constant
heating rate and its mass is measured in the course of heating. Figure 1 presents plots of the relative
change in mass,y = m/m0 (curve 1), and of the increase in temperatureT from T0 = 373 K at a rate of
3 °C min71 (curve 2). In this case the decrease in sample mass is connected with the loss of
plasticizer.

Usually, when describing the kinetics of evaporation of non-polymer components from polymers,
it is supposed [10] that the rate of evaporation is proportional to the component concentration:

Figure 1. TGA data (*), fitting curve (1) and growth of temperature (2).
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Ws � kC �1�

wherek is the evaporation rate constant andC is the plasticizer concentration. According to (1), the
equation for the TGA response,y = m/m0, has the form

dy
dt
� ÿkC; y�0� � y0 �2�

With regard to shrinkage of the sample in the course of evaporation, this may be written as

C � 1ÿ 1ÿ C0

y
�3�

whereC0 is the initial concentration of plasticizer. The evaporation rate constantk is proportional to
the specific surfaceF of the sample and depends on the temperatureT according to the Arrhenius
law:

k � k0 F eÿE=RT �4�

whereR is the universal gas constant. Finally, the temperatureT in the TGA experiment increases
with time according to the linear equation

T � T0� vt �5�

wherev is the heating rate.
The system of Equations (2)–(5) represents the mathematical model that describes the TGA

curves for the desorption of plasticizer. From the regression point of view the valuey is a response,
valuest, C0, F, v andT0 are predictors and valuesy0, k0 andE are unknown parameters. This model
has no analytical solution; it is typical for all dynamic methods with variable temperature. (As a rule,
the solution may be expressed with the help of the function

En�z� �
Z1
z

tÿneÿztdt �n� 0; 1; 2; . . . ; z> 0�

This is an exponential integral [11].) However, it is easy to perform a regression analysis of the
model given as a differential equation with the help of the software FITTER. In Figure 2 the model
(2)–(5) and parameter estimates are shown.

This solution may be used to forecast the service life of products made of the polymer. It is known
[12] that failure is connected with a loss of plasticizer. The loss causes bursting. The experiments
show that the plasticizer concentrationCc = 0⋅12 is critical, so the service life may be defined as the
moment when the concentration falls to this value. The extrapolation is made to the following values
of predictors: the timet is within the interval 0–25 years; the initial concentration of plasticizer,C0,
is equal to 0⋅35; the form factor F is defined by the article size (1⋅5 or 2⋅0); the heating rate isv = 0;
and the temperatureT0 is equal to the service temperature (293 or 303 K). It is necessary to take into
account the uncertainties in parameter estimates during forecasting. FITTER does this by building
confidence intervals of forecast values.

The forecast is shown in Figure 3, where two curves of plasticizer concentrations and their 0⋅95
low confidence intervals are presented. Clearly, the first sample will serve about 20 years and the
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second one about 10 years. These results agree perfectly with known facts about the service life of
similar products. Both methods of linearization and statistical simulation were used for confidence
interval construction. The results were so close to each other that we cannot show them in the plot.
This evidences that this model may be treated as a linear one when forecasting it to the above-
mentioned conditions.

With the help of this example we come to the following obvious conclusion. Except for ‘the
terrible appearance’, this model is no more complicated than a linear one. Moreover, it is even
easier. To be convinced of this we will retrace the way of analysis again. The choice of model is
simple and evident. Equations (1)–(5) are absolutely clear to any student chemists. Certainly, it was
necessary to realize that the diffusion stage is not important. In fact, every polymer chemist shares
this opinion. The process of estimation starts at the standard initial pointy0 = 1,k0 = 1 andE = 10000

Figure 2. TGA model and parameters as presented on worksheet.

Figure 3. Forecast of service life by TGA method: 1,T = 293,F = 2⋅0; 1a, 0⋅95 low confidence limit; 2,T = 303,
F = 1⋅5; 2a, 0⋅95 low confidence limit; 3, critical level.
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(E is an activation energy so it would be unwise to set it to less then 5000 cal mol71). The
calculations take only 20 s on a Pentium-100. Certainly, these data may be fitted by some linear
model, e.g. ln(y71) = ln(k)� nt, but it is impossible to use this equation for extrapolating to
constant temperature. It is very difficult to create a linear model depending on all these predictors. In
any case we cannot do it even if the true form of the model is known.

3. NLR BASICS

The main purpose of regression analysis is to fit some experimental data with a known curve and to
predict response values. Usually a regression model contains the following components:

* data matrixX = {xij , i = 1,…,m, j = 1,…,N} of predictor variables which are observed atN
points:

x � �x1; . . . ; xm�T �6�
* set of measured response valuesy (observations):

y � �y1; . . . ; yN�T �7�
* set of weightsw known for each observation point:

w � �w1; . . . ;wN�T �8�
* known functionf(x,a) that depends on the vector of unknown parameters:

a� �a1; . . . ; ap�T �9�

Here N is the number of observations (Equation (7)), m is the number of predictorsx (Equation
(6)) and p is the number of parametersa (Equation (9)). The response valuesy (Equation (7)) are
random variables that differ from the ‘true’ function valuesf by measurement errorsee. We consider
two types of measurement errors: absolute error and relative error. Absolute error is added to the
‘true’ values:

yi � fi � "i ; i � 1; . . . ;N �10�

and relative error is multiplied by the ‘true’ values:

yi � fi�1� "i�; i � 1; . . . ;N �11�

Regarding the random error vector

""" � �"1; . . . ; "N�T �12�

the following assumptions are made:

* unbiased—the mean value ofee is equal to zero:

E�"i� � 0; i � 1; . . . ;N �13�
* uncorrelated—the covariance of different errors is equal to zero:
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cov�"i ; "j� � 0; i 6� j �14�
* homoscedastic—the weighted variance of errors is constant:

w2
i cov�"i ; "i� � �2

" � const; i � 1; . . . ;N �15�

The constant�2
" is called the weighted error variance. Usually it is unknown and should be estimated

together with parametersa (Equation (9)). Note that the variable�2
" (Equation (15)) is not a response

variance; the latter may be presented for non-zero weights only, asD�yi� � wÿ2
i �2

". By default, all
weights are equal to one. If data do not agree with the homoscedastic assumption (Equation (15)), it
is possible to set different weight values in order to achieve constant weighted variance at each
observation point.

There may be prior information about unknown parametersa (Equation (9)) and weighted error
variance�2

" (Equation (15)). It is possible to make a fitting with respect to it. Such information
should be presented in Bayesian form including the following components:

* prior parameter (Equation (9)) values:

b � �b1; . . . ; bp�T �16�
* prior Bayesian information matrix:

H � fhij ; i � 1; . . . ; p; j � 1; . . . ; pg �17�
* prior value of weighted error variance (Equation (15)):

s2
0 �18�

* prior number of degrees of freedom:

n0 �19�
Prior information involving all four items may be called Bayesian information of full range.
Sometimes the prior value of weighted error variance (Equation (18)) and its number of degrees of
freedom (Equation (19)) are unknown. In this case we have so-called Bayesian information of short
range. The Bayesian information matrixH (Equation (17)) is the matrix inverse of the covariance
matrix C (Equation (34)) and is similar to theF matrix (Equation (39)). If the prior information
involves more parameters than needed, it should be recalculated. The following algorithm performs
this operation. Suppose one is interested in the firstr elements of prior parameter vectorb (Equation
(16)) (they are used as prior ones) and that the lastp7r elements are not present in the problem and
should be discarded. Then the primary Bayesian information matrixH (Equation (17)) is
transformed to a new one by the equation

~H � X ÿ ZYÿ1ZT 0
0 0

� �
�20�

In this formula,X, Y andZ are the block matrices composing the initial matrixH:

H � X Z
ZT Y

� �
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Here ther � r square matrixX corresponds to the firstr elements of vectorb, the (p7r)� (p7r)
square matrixY corresponds to the lastp7r elements ofb, and Z is a rectangular matrix with
dimension r � (p7r). If the prior information comprises fewer parameters than needed, it is
completed with zero values up to the proper dimension.

The goal of regression analysis is to determine the values of parametersa (Equation (9)) so that a
function f(x,a) fits a set of observed response values ofy in the best way. The maximum likelihood
method (MLM) [13] determines that these values minimize the objective functionQ(a), i.e.

â� arg minQ�a� �21�

The objective function consists of two elements: a sum of squaresS(a) and a Bayesian termB(a).
The sum of squaresS(a) is calculated as

S�a� �
XN
i�1

w2
i �yi ÿ fi�2g2

i �22�

wherefi = f(xi,a). For absolute measurement error (Equation (10)),gi = 1. For relative measurement
error (Equation (11)),gi = 1/yi. The Bayesian termB(a) is calculated depending on the type of
Bayesian information (Equations (16)–(19)). For Bayesian information of full range,

B�a� � s2
0�n0� R�a�� �23�

For Bayesian information of short range,

B�a� � exp
R�a�
Nw

� �
�24�

HereR(a) is the quadratic form

R�a� � �aÿ b�TH�aÿ b� �25�

The vectorb (Equation (16)), the matrixH (Equation (17)) and the valuess2
0 (Equation (18)) andn0

(Equation (19)) are the elements of prior information in Bayesian form, whileNw is the number of
observations (Equation (7)) with non-zero weights (Equation (8)). The objective functionQ(a) is
comprised ofS(a) andB(a) as follows. If Bayesian information is absent,

Q�a� � S�a� �26�

For Bayesian information of full range,

Q�a� � S�a� � B�a� �27�

For Bayesian information of short range,

Q�a� � S�a�B�a� �28�

The number of degrees of freedom by fit,Nf, is the important value used in NLR analysis. If
Bayesian information is absent or of short range,Nf is calculated as
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Nf � Nw ÿ p �29�

For Bayesian information of full range it is calculated as

Nf � Nw ÿ n0 �30�

Here p is the number of unknown parameters (Equation (9)) andNw is the number of responses
(Equation (7)) with non-zero weights. The estimate of weighted error variance (Equation (15)) may
be found by the fitting curve. It is calculated as

s2 � SS=Nf �31�

whereNf is the number of degrees of freedom by fit (Equations (29) and (30)) and SS is calculated as
follows. If Bayesian information is absent or of short range, then

SS� minS�a� � S�â� �32�

For Bayesian information of full range,

SS� minQ�a� � S�â� � s2
0�R�â� � n0� �33�

HereS(a) is the sum of squares (Equation (21)) and the valuess2
0 (Equation (18)) andn0 (Equation

(19)) are the elements of prior information in Bayesian form.
Parameter estimates calculated by MLM are random variables which vary with the experimental

data. Their covariance matrixC = cov(â,â) is calculated by the formula

C � s2Aÿ1 �34�

where A is the Hessian matrix (Equations (35)–(37)) ands2 is the weighted variance estimated
(Equation (31)) by the fitting curve. The Hessian matrix is used in the search procedure and in
calculation of the covariance matrixC. This matrix is calculated depending on the type of Bayesian
information. If Bayesian information is absent,

A � VTV �35�

For Bayesian information of full range,

A � VTV � s2
0H �36�

For Bayesian information of short range,

A � exp
R�â�
Nw

� �
VTV � S�â�

Nw
H

� �
�37�

HereV is p� N matrix whose elements are weighted derivatives of the fitting function,

Vij � wj
@f �xj ; â�
@ai

; i � 1; . . . ; p; j � 1; . . . ;N �38�
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the valuesR(a) (Equation (25)) andS(a) (Equation (22)) are components of the objective function,
the values2

0 (Equation (18)) and the matrixH (Equation (17)) are the elements of prior information
in Bayesian form, the valueN is the number of observations (Equation (7)) and the vectorâ
(Equation (21)) is the MLM estimator of unknown parametersa (Equation (9)). TheF matrix is the
matrix inverse of the covariance matrixC (Equation (34)), i.e.

F � sÿ2A �39�

and is similar to the Bayesian information matrixH (Equation (17)).

4. CALCULATION OF DERIVATIVES AND PRECISION

As we have already mentioned, the analysis of non-linear models requires high accuracy of
calculations. The accuracy in itself is not important (practical computations do not require more than
four or five significant digits), but it is essential as a weapon in the struggle against multicollinearity.
For example, for a matrix inversion (a routine operation in regression analysis) with a spread in
eigenvalues (or conditional number) equal to eight decimal orders (from 1074 to 104), it is necessary
to carry out intermediate calculations with a precision of about 10710. When it is necessary to solve
an implicit or differential equation for a model evaluation, intermediate computations have to be
done even more precisely to reduce error accumulation.

First of all, accuracy of estimation depends on the method applied for calculation of derivatives
(Equation (38)) of a model with respect to unknown parameters. There are three practical solutions.
Powell and Fletcher [14] methods do not require calculation of derivatives at all. Another possibility
is to use numerical calculation of derivatives, applying difference formulae such as

@f
@a
� f �a� h� ÿ f �a�

h

The last solution is to apply direct analytical calculations. The first solution is rather weak and
unreliable [13] and so cannot be applied to complicated models. The second one is the most popular.
This approach reduces the accuracy of computations greatly but, as a rule, does not give more than
six or seven true digits in the result. Thus it becomes impossible to use differential equations or

Figure 4. MGH10 data (&) and fitting curve.
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implicit functions in NLR analysis owing to the total loss of precision. Several tools advise users to
find derivatives themselves and input the analytical formulae into the program. Oh no, thank you!
Here is a computer and that is its drudgery. That is why we have instructed the computer to find
analytical derivatives of any equation. A special algorithm is applied to do this. Thus, when a user
inputs a formula, e.g.y = exp(-at), the program detects its derivatives, e.g. finds dy/da = -texp(-at). In
combination with the compiler that creates objective code for computation of model values by its
analytical formula, it allows us to carry out calculations with high accuracy even for systems of
differential equations.

We have used Statistical Reference Datasets [15] developed by the National Institute of Standards
and Technology (USA) to demonstrate the robustness and reliability of FITTER. This is a collection
of data sets with associated certified values of model-dependent parameters. The collection includes
both generated and ‘real-world’ non-linear least squares problems of varying levels of difficulty.
There are 27 problems. The values certified by NIST are the ‘best available’ solutions, obtained
using 128 bit precision and confirmed by at least two different algorithms and software packages
using analytical derivatives. The certified results (parameters, parameter standard deviations,
residual sum of squares, residual standard deviation) are reported to 11 decimal places for each data

Figure 5. MGH10 data and model as presented on worksheet.
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set. FITTER gives 10 or 11 correct decimal places for most of the examples. We consider these
results extremely good, as calculations were done in double precision on a 32 bit machine.

One of the NIST examples is presented in Figure 4. These data were simulated and are described
in detail in Reference [16]. The response variable isy and the predictor variable ist. The numerical
values of data and the model are shown in Figure 5. In Table I the results of fitting are presented.
One can see that they are every close to the NIST-certified values.

5. PARAMETER ESTIMATION

In accordance with the maximum likelihood method, the estimation of regression parameters is
made by minimization of the objective function (Equations (26)–(28)). In gradient search methods
the kernel of the minimization algorithm is the inversion of the Hessian matrixA (Equation (35)–
(37)). This procedure is repeated at every iteration step [13]. As a rule, the search starts at a point
where this matrix does not have full rank. That is why it cannot be fully inverted and some special
regularizing tricks are applied. The Marquardt method [3] is the most popular. The matrixA is
replaced with the matrixA* = A � �I , where� is a small number andI is a unit matrix. MatrixA*

always has full rank and may be inverted. By the way, our experience shows that even ifA is a full
rank matrix, the pseudoinversion method should be used for quick and reliable convergence of the
search.

For the same purposes we use the recurrence algorithm [17] based on the exponential matrix. It
provides high stability; besides, it allows calculations of the spread in eigenvalues and completeness
of search at every iteration. The main idea of this approach is the following. For inversion of the
Hessian matrixA at every step of minimization, the recurrence algorithm is used:

B�2t� � B�t��2I ÿ AB�t�� �40�

It is easy to see that matrixB(t) satisfies the matrix differential equation

dB�t�
dt
� I ÿ AB�t�; B�0� � 0

with solution

B�t� �
Z t

0

exp�ÿAs�ds �41�

Table I. NIST and FITTER values for MGH10 model

NIST-certified values FITTER-estimated values

Parameter Standard deviation Parameter Standard deviation

b1 5⋅6096364710� 1073 1⋅5687892471� 1074 5⋅6096364711� 1073 1⋅5687892471� 1074

b2 6⋅1813463463� 103 2⋅3309021107� 101 6⋅1813463463� 103 2⋅3309021107� 101

b3 3⋅4522363462� 102 7⋅8486103508� 101 3⋅4522363462� 102 7⋅8486103507� 1071

s2 8⋅7945855171� 101 8⋅7945855171� 101
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According to (41), matrixB(t) → A71 ast → ?. If A is a singular matrix, then matrixB(t) does not
lose sense and gives the pseudoinverse matrixA�. In fact, usage of this algorithm means that one has
to set the number of ‘doublings’,L, in Equation (40) and the small initial value� for the initial
matrix B1 = �I , which is connected with the precision of calculation. Then, each next matrixBn � 1

is calculated asBn � 1 = Bn(2I7ABn). The numberL is similar to the regularator� in the Marquardt
method. The higherL, the closerBL is to the inverse matrixA71. In the course of this recurrent
procedure it is easy to monitor the trace of matrixI 7ABn:

sp� trace�I ÿ ABn�

This value changes fromp at the beginning of recurrence to zero at the end (p is the number of
parameters, i.e. the dimension of the matrices). Such behaviour ofsp is connected with the nature of
the eigenvalues of matrixA. The smart algorithm acts like a PCA method when it inverts the matrix.
It begins with the largest eigenvalue, then takes into account the next largest, then the next one, and
thus it proceeds until all eigenvalues are considered or the procedure is cancelled. When the search is
far from the optimum, it is better to restrict the number of eigenvalues to be accounted for in the
inversion procedure. Limiting the number of ‘doublings’ does this. If tracesp is stable duringn
‘doublings’, it means that the ratio of two neighbouring eigenvalues is more the 2n, so it is
reasonable to limitn by some value, e.g. 20. By applying such a method, we essentially accelerate
the search procedure. Besides, the stability of the recurrent procedure allows us to invert matrices
with a large spread in eigenvalues.

Figure 6 shows experimental data obtained by differential scanning calorimetry (DSC) on
polypropylene samples. The DSC responsey is the heat flow in a sample as a function of timet or
temperatureT that increases at a constant heating rateV, i.e. T = T0� Vt. If there is a chemical
reaction with non-zero thermal effect, then the DSC signal is proportional to the rate of the reaction.
The main problem of DSC is a quantitative interpretation of the data. Non-linear regression helps to
solve this problem. Polymer thermo-oxidation is a free radical chain reaction. According to this
theory [18], the data were fitted by a complex model including three predictors, i.e.V (heating rate),
m (sample mass) andt (time), and 12 parameters, i.e.k (pre-exponential factor),E (activation
energy), five values of initial oxidation time,t20, t15,…,t2, and five background parameters,f20,

Figure 6. DSC data and fitting curves for various heating ratesV ( °C min71): 1, 20; 2, 15; 3, 10; 4, 5, 2.
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f15,…,f2, for every heating rateV:

y� fv �
0;

mCeÿE=RT;

t < tv
t > tv

�
dC
dt
� keÿE=RT; C�tv� � 0 �42�

T � T0 � Vt

This example shows that even extremely complex models can be processed with the help of this
special optimization algorithm.

6. BAYESIAN ESTIMATION

Often we have to fit several data sets with individual models. Trouble arises if the models have
common unknown parameters. The classical approach offers to estimate one multiresponse
regression for simultaneous fitting of all data sets. It is difficult to carry out such regression owing to
the large number of estimated parameters and the necessity to invert a large matrix. A new method
allows processing of the data successively for every response. Each data set is fitted individually, but
we take into account the information about common parameters estimated on previous data. A
posterior Bayesian distribution is built after every set processing. This information is then used as
prior information for processing the next data set. It is shown [19] that for linear regression such a
technique gives the same estimates as the traditional multiresponse method.

The following example illustrates this method in application to Bayesian calibration. There are
two data sets: calibration data and kinetic data. Calibration data contain the values of optical density
D (response) measured at different concentrationsC (predictor) of some product (see Figure 7).
These data are used for evaluation of calibration parametersD0 andD1 by a simple linear model

D � D0� D1C �43�

Figure 7. Calibration data and fitting line.
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The second data set (see Figure 8) contains the results of a kinetic experiment where the optical
densityD (response) has been measured in the course of a chemical reaction of thenth order:

D � D2 � D1C

dC
dt
� ÿkCn; C�0� � C0 �44�

The problem is to find the kinetic parametersC0, k andn in the presence of waste parametersD1

(which is the same as in the calibration data) andD2 (a new one). The solution of the problem
consists of three steps: calibration data fitting, Bayesian information building and kinetic data fitting.

At the first step the calibration parameters are estimated by the model (Equation (43)) as

D0 � 0�0882; D1 � 2�24364

and theF matrix (Equation (38)) is obtained as

F � 751�677 375�839

375�839 263�087

" #

The error variance estimate (Equation (31)) iss2 = 0⋅0146 and the number of degrees of freedom by
fit (Equation (29)) isNf = 9. The aim of the next step is to build Bayesian information about the
common parameterD1 that should be transferred to the next kinetic data fitting step. The prior
number of degrees of freedom and the prior variance value should be set equal to those values found
at the first step. Thus we assume that the experiment error in the kinetic data is the same as in the
calibration data and may be used for improving the error variance estimate. SinceD0 is not a
common parameter, we will obtain the following results corresponding to Equations (16)–(19):

* prior parameter values (Equation (16)):D0 = 0, D1 = 2⋅24364;

Figure 8. Kinetic data (&), fitting curve (1) and predicted concentration kinetics (2).

NON-LINEAR REGRESSION ANALYSIS 681

Copyright 2000 John Wiley & Sons, Ltd. J. Chemometrics2000;14: 667–692



* prior Bayesian information matrix (Equation (17)), (recalculated using Equation (20)):

H � 0 0
0 75�1677

� �
* prior value of weighted error variance (Equation (18)):s2

0 � 0�0146;
* prior number of degrees of freedom (Equation (19)):n0 = 9.

At the third step the kinetic data are fitted with the Bayesian information that was built at the second
step. The results of fitting model (44) are presented in Figure 8 and Table II. Certainly, kinetic data
may be fitted without Bayesian information but with fixed parameterD1 = 2⋅24364. The estimates of
parameters are the same, but their standard deviations are different. The last column of the table
contains these deviations. Hence, if one is bothered about the uncertainties in the parameter
estimates, one should use the Bayesian estimation technique.

7. CONFIDENCE INTERVAL

Using estimated parameter valuesâ (Equation (21)), we can predict (forecast) the fitting model value
at any desired predictor pointx:

f̂ �x� � f �x;â� �45�

This is the mean (to be more accurate it is the median) value of the forecast. To present the accuracy
of this prediction, it is necessary to build confidence intervals. The definition of this interval is

Probfl�x;P� < f̂ �x� < r�x;P�g � P �46�

Here the valueP is the confidence probability andl(⋅) and r(⋅) are left and right interval limits.
Applying the traditional linearization method [4], these limits may be calculated as

f �x;â� � g�P�
�����������
vTCv
p

whereC is the covariance matrix (Equation (34)) and

vj � @f �x;â�
@aj

; j � 1; . . . ; p

For a one-sided confidence interval the functiong is g(P) = G71(P) and for a two-sided confidence

Table II. Parameters of model (44)

Parameter Estimate Deviation with Bayes Deviation without Bayes

D2 0⋅17929 0⋅59556 0⋅38660
D1 2⋅24364 0⋅08380 0
C0 0⋅93090 0⋅27718 0⋅17851
k 0⋅45852 0⋅11395 0⋅07353
n 1⋅72259 1⋅24142 0⋅80585
s2 0⋅00773 — —
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interval it is g(P) =�G71(0⋅5� 0⋅5P). Here the functionG71(⋅) is the reciprocal of the normal
distribution value (quantile).

Sometimes this method gives wrong results for non-linear models (see example below). That is
why we have developed a new method [7] of confidence interval construction (Equation (46)). This
method is a modification of the well-known bootstrap method [5,6]. The basic idea of traditional
bootstrap is to simulate new response data

y� � f �x;â� � """�; """� � N�0;s2I�

with the help of a pseudorandom distribution based on the estimated parameterâ (Equation (21)) and
variances2 (Equation (31)) values. Such responses are used to find new parameter estimatesa* by
MLM (Equation (21)) and to predict the model value

f � � f �x; a�� �47�

By repeating such simulationsM times, one can obtain a population of values (Equation (47)). Then
the confidence limit is calculated as the 100P%-percentile of this population:

r�x;P� � P-percentileff �1 ; . . . ; f �Mg �48�

Experience shows that bootstrap gives very exact values even for non-linear models. The only
drawback is that it requires too much time to perform. It is obvious that most troubles are connected
with minimization of the objective function (Equations (26)–(28)). It takes 10 s to fit a complicated
model with a large number of non-linear parameters. For a reliable forecast it is necessary to execute
not less thanM = 1000 recurrences, leading to more than 3 h of work.

In carrying out our research, we repeatedly observed that, in spite of the non-linearity of the
model, the distribution of random variables

c�a� � sÿ2�Q�a� ÿQ�â�� �49�

is very close to the�2 law with p degrees of freedom. In Equation (49),Q is an objective function
(Equations (26)–(28)) ands2 is a weighted variance estimate (Equation (31)). For a linear normal
regression the statement is exactly true, becausec(a) = (a7â)TF71(a7â), whereF is theF matrix
(Equation (39)). In the non-linear case the validity of it may be proved by the central limit theorem
[20]. Also, Equation (49) determines ‘the area of indifference’c(a)< C of parameter estimates [13]
for the likelihood function

L�y;a� � �ÿn exp�ÿQ�y;a�=2�2�

(see Figure 11). We suppose that forC�P� � s2�2
p�P�, where�2

p�P� is the P-quantile of the chi-
squared distribution withp degrees of freedom, the statement

Probfa :c�a� < C�P�g � P �50�

is fulfilled with sufficient accuracy for non-linear models even for a small number of degrees of
freedom.

Below we would like to explain our algorithm that is based on these considerations and improves
the traditional bootstrap method. It consists of the following steps repeated several times. At the first
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step we generate pseudorandom variablea* distributed in accordance with thep-dimensional normal
law:

a� � N�â;C� �51�

whereâ is the vector of parameter estimates (Equation (21)) obtained from the real data (Equation
(8)) and C is the parameter covariance matrix (Equation (34)). At the next step the valuec(â*)
(Equation (49)) is calculated and checked with the help of the chi-squared distribution. The details of
this test will be introduced in the next section. If such a test is accepted, the predicted model valuef*

(Equation (47)) is calculated, otherwise we return to the first step. The same sequence of steps is
repeated until the number of simulated values is equal to the predefined number of simulations,M.
Thereupon the confidence limits are calculated as theP-percentile of this population by Equation
(48). It was shown [7] that this method (named associated simulation) gives rather satisfactory
intervals and takes 1000 times less to perform than the bootstrap method.

This example shows the difference between prediction methods (see Figures 9 and 10). The data
(Figure 9) are the results of generated accelerated aging tests [9] performed at temperaturesT = 383,
368 and 353 K. The response value (Y) is calculated by the kinetic model

Y � 1ÿ exp�ÿ�kt�n� �52�

where the reaction rate constantk � exp�k0 ÿ E=RT� depends on temperature by the Arrhenius law.
For simulation we use the following values of parameters (‘true’ values):

n� 1�5; k0 � 17; E � 16000; �2 � 0�005 �53�

Their estimates (Equations (21) and (31)) obtained by FITTER are

n̂� 1�3586; k̂0 � 17�2382; Ê � 16019�5; s2 � 0�0053 �54�

The prediction is performed for the valueYextrapolated to the normal temperatureT = 293K (20°C)
and timet< 8640 h (1 year). Both linearization and associated simulation methods of forecasting are

Figure 9. Data and fitting curves: 1 (&), T = 383 K; 2 (*), T = 368 K; 3 (̂ ), T = 353 K.
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tested. The results are presented in Figure 10. This example shows the great difference in forecasted
values depending on the applied method of prediction.

8. COEFFICIENT OF NON-LINEARITY

What is the difference between linear and non-linear regression? Why is the complicated model (2)–
(5) more similar to a linear model than the simple model (52)? How may non-linearity be evaluated?
To answer such questions, we suggest a new coefficient of non-linearity. It is calculated by the
Monte Carlo procedure and accounts for the model structure as well as the experimental design
features.

To explain this coefficient, we have to return to the procedure of associated simulation (AS). At
the first step the pseudorandom variablea* (Equation (51)) was simulated. Its distribution was
selected in order to obtain the right properties of the population for the linear model—mean value
equal toâ (Equation (21)) and covariance matrix equal toC (Equation (34)). In other words, one
may expect to find theP-share of this population in the ellipse

Figure 10. Forecasted values (1) and 0⋅95 upper confidence limits by linearization method (2) and associated
simulation method (3).

Figure 11. Objective function contour (1) and its approximating ellipse (2).
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�aÿ â�TA�aÿ â� < s2�2
p�P�: �55�

where�2
p�P� is theP-quantile of the chi-squared distribution withp degrees of freedom andA is the

Hessian matrix (Equations (35)–(37)); (see curve 2 in Figure 11). This ellipse approximates the
contour of the objective function

Q�a� ÿQ�â� < s2�2
p�P� �56�

(see curve 1 in Figure 11). If the regression model is linear, the curves coincide. In the AS method
we have to obtain the parameter population distributed according to objective function contours.
This means that for all values of probabilityP (0< P< 1) the share of simulated valuesa* that lie in
the area (56) should be equal toP. To acquire it, we choose some values of probabilities
0< P1< P2<…< Pk< 1 which divide the parameter space intok� 1 separate areas and calculate
the expected numbers of area hits,m0�m1�…�mk = M. At each step of the simulation we
determine what area (56) a current realization ofa* is in and check whether the current number of
hits of this area is more than the expected number. In this case the realization is rejected. It is clear
that the more a model differs from the linear one, the more realizations are rejected. Thus we obtain
some criterion that gives a chance to estimate the non-linearity of the model. The criterion can
measure the distance between the approximating ellipse (55) and the contour curve (56). There have
been a lot of studies on the coefficient of non-linearity [21–24], beginning with the famous paper by
Beale [21]. All of them deal with geometric properties of the regression curve and calculate the
coefficient of non-linearity as a curative measure by applying second derivatives of the model. Thus
it is a determined value. We prefer to use a random value. This may be obtained with the standard
chi-squared test.

Let m0�m1�…�mk = M be the expected values andm00�m01�…�m0k = M' be the actual
values of hits of predefined areas in the Monte Carlo procedure (Equation (51)). It is obvious that
mi �m0i . The following value is a standard test value for grouped observations:

�2 �
Xk

i�0

�m0iM ÿmiM 0�2
miMM 0

�57�

If the regression model is linear, the value (57) has a chi-squared distribution withk degrees of
freedom. To make the coefficient of non-linearity more suitable in practice, it may be defined as

ÿ � �2

�2
k�0�95� �58�

In this ratio the numerator is the test value (57) and the denominator is the 0⋅95-quantile of the chi-
squared distribution withk degrees of freedom. For a linear (or closely linear) model the coefficient
(58) may be less than one. The larger it is, the more non-linear is the model. To obtain an accurate
value of coefficient (58), one has to make a lot of simulations (M> 1000). However, there is no
sense in the precise value of the coefficient of non-linearity. It must show only tendencies of the
model, so usually we quantize it in the following way. Ifÿ< 1⋅2, then
 = 1; if 1⋅2� ÿ< 1⋅5, then

 = ÿ; if 1⋅5� ÿ< 2⋅5, then 
 = 2; if 2⋅5� ÿ< 3⋅5, then
 = 3; if 3⋅5� ÿ< 4⋅5, then
 = 4; if
ÿ� 4⋅5, then
 > 5. This rough coefficient
 may be calculated with the help of a rather small
number of simulations (M�1000). The coefficient of non-linearity of model (52) for the data set
presented in Figure 9 is
 = 3.
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Certainly the coefficient of non-linearity depends on the form of the model, but much depends on
the experimental design. The following example illustrates this point. In Figure 12 one can see data
simulated by model (52) with parameters (53). They are similar to the data in Figure 9 but differ in
experimental design. They were fitted, and Figure 13 shows the results of forecasting to the same
conditions as in Figure 10. Comparing curves 3 in Figures 10 and 13, one can see that the non-
linearity drops off. The coefficient of non-linearity calculated for this design is
 = 1. Table III gives
the values of the coefficient
 for all models reported in this paper.

9. TMA EXAMPLE

This example illustrates a practical application of NLR for technological process optimization. The
object under study is polyethylene (PE) fibre applied in shrinkable products. It is known that a
memory effect, caused by the shrinkability of polyethylene, is achieved by cross-linking. This
network is produced by application of small radiation doses. It is necessary to select the optimum
doses of irradiation for different grades of PE. The composition and structure of different PE grades

Figure 12. Data and fitting curves: 1 (&), T = 383 K; 2 (*), T = 368 K; 3 (̂ ), T = 353 K.

Figure 13. Forecasted values (1) and 0⋅95 upper confidence limits by linearization method (2) and associated
simulation method (3).
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may differ greatly. The main difficulty is that ordinary measurement methods are insufficiently
sensitive for the low degree of cross-linking that is used in shrinkable PE. Therefore we use
thermomechanical analysis (TMA) for density control of the network in the course of irradiation.
TMA measurements are carried out on standard equipment. A specimen of fibre is heated at a
constant heating rate (v) to 180°C under constant loading (P). Then we monitor changes in
deformation with time at constant temperature. The deformation grows and tends to some limiting
values. These values depend on the network density. The evaluation of network density requires
extrapolation of experimental data far beyond the observation area. In such a situation the
application of simple ‘soft’ models may cause large errors. Therefore we used a ‘hard’ model based
on the well-known equation of ideal network deformation [25]:

P
S
� G Yÿ 1

Y2

� �
�59�

HereP is the loading,S is the cross-sectional area of undeformed fibre,Y= L/L0 is the ratio of the
current sample length to the initial one andG is the elastic modulus, which is proportional to the
total concentration of network knots. Further, it was assumed that the network consists of two kinds
of knots: chemical knots, i.e. cross-links which were formed during radiation curing, and physical
knots caused by molecular interaction [26]. Thus the joint modulusG is represented as a sum of two
components: chemicalGc and physicalGp. Physical knots degrade under loading in the course of the
experiment. The analysis of experimental TMA curves has shown that the kinetic model for the
destruction of physical knots may be represented as the sum of fast and slow exponential terms:

Gp � Gp
10 exp�ÿk1t� �Gp

20 exp�ÿk2t�; k1� k2 �60�

In this equation the parameterGp
10 is proportional to the concentration of weaker physical knots

which degrade quickly with a large kinetic constantk1, while the parameterGp
20 is proportional to the

concentration of stronger knots with a small destruction constantk2. Equation (60) is a typical ‘soft’
model, as the number of exponential terms in it is limited only by the calculation possibilities (again,
multicollinearity is a companion of the ‘soft’ model). Thus, using the ‘hard’ equation (59) and the
‘soft’ one (60), we obtain the final model, which is an implicit function:

0� S
P
�Gc �Gp

10 exp�ÿk1t� �Gp
20 exp�ÿk2t�� Yÿ 1

Y2

� �
�61�

In this equation the variableY is the response to be evaluated and the variablest, P and S are
predictors. It is essentially a non-linear model with five unknown parameters. The parameterGc is

Table III. Coefficients of non-linearity

Model and data
Exact coefficient of

non-linearityÿ
Rough coefficient of

non-linearity


TGA (Equations (2)–(5) 1⋅14 1⋅14
DSC (Equation (42), Figure 6) 8⋅43 >5
MGH10 (Figure 5) 151⋅0 >5
Bayes (Equation (44)) 34⋅7 >5
Aging (Equation (52), Figure 9) 2⋅8 3
Aging (Equation (52), Figure 12) 0⋅96 1
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the required characteristic of network density. The other parameters�Gp
10; k1;G

p
20; k2� are outline our

attention. Model (61) is shown in Figure 14 as it is presented on the worksheet.
In solving the problem of extrapolation out of the observation area, model adequacy acquires the

primary importance. In our case, model verity is proved by the independence of the estimatedGc

value on the conditions of measurement, i.e. loading and heating rate. Figure 15 shows TMA curves

Figure 14. TMA model as presented on worksheet.

Figure 15. TMA data and fitting curves for PE fibre irradiated by 10 Mrad dose. Experimental conditions are
given in Table IV.

Table IV. Estimates of chemical modulusGc for different experiments

Series � (°C min71) P (g) s2 Gc (g mm72)

1 10 10 1⋅441� 1077 10⋅609� 0⋅008
2 10 7 12⋅03� 1077 8⋅312� 0⋅038
3 5 5 0⋅075� 1077 8⋅707� 0⋅026
4 10 5 0⋅649� 1077 8⋅708� 0⋅046
5 15 5 1⋅915� 1077 8⋅587� 0⋅066
All — 7⋅871� 1077 8⋅328� 0⋅029
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of the irradiated fibre measured at different conditions. The points on the plot are experimental data
and the curves are due to model fitting. The results in Table IV show that the required parameterGc

really does not depend on the conditions of measurement. The finalGc value was obtained by joint
processing of all five curves with application of successive Bayesian estimation. This is shown in the
last row of Table IV. The dependence of the parameterGc on the irradiation dose for three different
grades of PE is shown in Figure 16. The optimum dose was determined by interpolation of these
data. For this purpose we used the simple linear model

Gc � Gc
0 � qD

Fibre A is used as a standard. For example, if for fibre A the standard dose is 10 Mrad, then fibreC
should be irradiated with a dose of 18 Mrad to obtain the same network density.

This example shows the efficiency of a proper combination of ‘hard’ and ‘soft’ models in practice.
Very often such a combination helps to reduce the number of experiments and to obtain much
valuable information. It is important to use a reliable NLR tool to estimate the parameters of the
model. The model may have a very complicated mathematical form but a clear physical basis.

10. CONCLUSIONS

We have presented our ideas and methods for non-linear regression analysis. The goal is to show that
this technique lets us find solutions for many chemical problems. The main conclusions can be
drawn as follows.

* The choice of model remains the main trouble in NLR application. Regarding this problem, we
want to emphasize that a non-linear model may be ‘soft’ and a linear one may be ‘hard’. Very
often a model may be constructed like a nut with a hard shell and a soft kernel. The TMA
example illustrates this idea.

* With respect to the extrapolation problem, non-linear regression can be considered as the
primary method. Contrariwise, a linear model is more helpful in interpolation.

* We believe that there are no specific problems in estimation and interpretation of NLR models.
All difficulties are similar to those in linear analysis.

* We propose a new concept of coefficient of non-linearity as a random value and show the
criterion that helps to estimate the non-linearity of the model.

Figure 16. Dependence of chemical modulusGc (g mm72) on irradiation dose for three different grades of PE
fibre.
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* The presented examples demonstrate that NLR analysis can yield interesting results in
chemometric applications. Especially we recommend using it for analysis of dynamic methods
with variable temperature (TGA, DSC and TMA).

* The general suggestion is that one should not hesitate to apply NLR where a non-linear model is
prescribed by the nature of the investigated phenomenon. Modern NLR tools allow one to
handle it as easily as a linear one.
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APPENDIX

List of Symbols

a = (a1,…,ap)
T vector of unknown parameters (Equation (9))

â = (â1,…,âp)
T vector of parameter estimates (Equation (21))

â* = (a1
*,…,ap

*)T vector of generated parameter estimates (Equation (51))
A Hessian matrix (p� p)(Equation (35)–(37))
b = (b1,…,bp)

T vector of prior parameters (Equation (16))
B(a) Bayesian term (Equation (23) and (24))
C variance–covariance matrix (p� p) (Equation (34))
F F matrix (p� p) (Equation (39))
H prior information matrix (p� p) (Equation (17))
I unit matrix (p� p)
n0 prior number of degrees of freedom (Equation (19))
N number of observations
Nf number of degrees of freedom by fit (Equations (29) and (30))
Nw number of observations with non-zero weights
p number of parameters
Q(a) objective function (Equation (26)–(28))
s2 estimate of weighted error variance (Equation (31))
s2
0 prior value of weighted error variance (Equation (18))

S(a) sum of squares (Equation (22))
w = (w1,…,wN)T vector of weights (Equation (8))
x = (xl,…,xm)T vector of settings (predictors) (Equation (6))
y = (y1,…,yN)T vector of observations (response) (Equation (7))

 rough coefficient of non-linearity
ÿ exact coefficient of non-linearity (Equation (58))
ee = (ee1,…,eeN)T vector of measurement errors (Equation (12))
��

2 weighted error variance (Equation (15))
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