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We introduce a novel approach termed simple interval calculation (SIC) for classification of object

status in linear multivariate calibration (MVC) and other data analytical contexts. SIC is a method

that directly constructs an interval estimator for the predicted response. SIC is based on the single

assumption that all errors involved inMVC are limited. We present the theory of the SICmethod and

explain its realization by linear programming techniques. The primary SIC consequence is a

radically new object classification that can be interpreted using a two-dimensional object status

plot (OSP), ‘SIC residual vs SIC leverage’. These two new measures of prediction quality are

introduced in the traditional chemometric MVC context. Simple straight demarcations divide the

OSP into areas which quantitatively discriminate all objects involved in modeling and prediction

into four different types: boundary samples, which are the significant objects (for generating the

entire data structure) within the training subset; insiders, which are samples that comply with the

model; outsiders, which are samples that have large prediction errors; and finally outliers, which are

those samples that cannot be predicted at all with respect to a given model. We also present detailed

comparisons of the new SIC approach with traditional chemometric methods applied for MVC,

classification and outlier detection. These comparisons employ four real-world data sets, selected for

their particular complexities, which serve as showcases of SIC application on intricate training and

test set data structures. Copyright # 2005 John Wiley & Sons, Ltd.

KEYWORDS: projection methods; SIC method; object status classification; representative subset selection; outlier

detection

1. INTRODUCTION

Projection methods are based on the concept of latent variables

(basis vectors spanning a subspace). The best-known exam-

ple in chemometrics without doubt concerns bilinear projec-

tion methods, e.g. PCR and PLS (See References [1,2] and

references cited therein). One of the main advantages of

these model-forming approaches is the possibility to explore

hidden data structures visually with the aid of simple two-

and three-dimensional projection windows in both the object

and variable spaces. These multivariate calibration (MVC)

methods are widely used today within chemometrics and

also in increasing fashion outside this field [3,4].

However, there is at least one important aspect of bilinear

modeling, and most likely several others, which is still out in

the open: objective recognition and status of outliers. Consider

for example how to form decisions regarding the importance

and quantitative role of a particular sample in a typical data

set (training set, test set, etc.), i.e. how to classify qualitatively

the specific type of outlier and to quantify its ‘influence’ on

e.g. calibration modeling, predictions, etc. Traditionally, the

concept of influential objects is mainly discussed in the light

of outlier detection. In ordinary regression analysis, different

measures are used, i.e. the Cook distance [5,6], the AP

distance [7] or a combination of these statistics [8]. A discus-

sion of influence measure in bilinear modeling is given in

Reference [9]. Detailed descriptions of different types of

errors—errors in predictors, errors in response, errors in

calibration data and errors in future prediction data—as

well as the different ways of treating these errors are

presented in Reference [1]. The most commonly used tool

in MVC is the influence plot [1,3], which helps to reveal the

most significant and most dangerous outliers and also to find

the most informative and therefore important sample in

calibration. Although strategies for more or less automatic
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outlier elimination are presented in References [10,11], in

many cases the ultimate decision can be made only by the

user, who must have sufficient contextual background

knowledge to distinguish between the different types of

outliers; therefore such designations are made informally

[1–3,12,13]. Another MVC problem closely connected with

these issues is that of prediction reliability. There are numer-

ous technical methods on how to control this, but a generally

accepted approach does not exist [14–16].

We present here a complete object status classification

theory corresponding with most data analytical objectives. It

is based on a novel approach termed simple interval calcula-

tion (SIC). This is a method for linear modeling [17] which is

here applied to the MVC realm, where it is shown to bring

about a new systematic insight into MVC object leverage and

outlier analysis, as well as providing for a new object discrimi-

nation analogy to various variable selection approaches which

have seen significant activity in the last 5–8 years [18–21].

Below we briefly present the SIC theory behind the new object

status classification (OSClas), which allows us to distinguish

quantitatively the most important object types for modeling,

termed boundary objects, among all calibration samples (train-

ing data set), as well as to differentiate three status categories

for prediction objects, as insiders, outsiders and outliers respec-

tively. This classification is made automatically with the help

of simple and explicit formulae, which can also be geometri-

cally presented using the new object status plot introduced in

the paper. This is a two-dimensional plot for any model

complexity. The position of an object in this plane fully

characterizes the object’s status. Such an approach has the

evident advantage of being an unambiguous status classifica-

tion method that draws strict borders between the different

classes of model samples. As the SIC method has in its back-

ground a postulate that differs from the traditional regression

concept, the SIC object status classification brings a new

insight into data set structure.

2. SIC BASIC PRINCIPLES

The SIC approach is based on the single assumption that all

errors involved in the MVC problem are limited (sampling

errors, measurement errors, modeling errors, etc.), which

would appear to be a reasonable supposition in many

practical applications [22,23].

2.1. Region of possible values
Let us consider the linear MVC model

y ¼ Xaþ e ð1Þ

where y is the n-dimensional response vector, a is the

p-dimensional parameter vector, X is the n� p predictor

matrix and e is the error vector.

Definition 1
Error finiteness means that there exists a maximum error

deviation (MED) of the error ", which equals �, i.e.

9� > 0 Prob j"j > �f g ¼ 0

and for any

0 < b < � Probfj"j > bg > 0 ð2Þ

where Prob{�} denotes the probability that an event occurs.

Symmetry of e is used here for simplicity, but this assump-

tion is not essential for the method. We consider � to be

common for all objects, i.e. we assume error homoscedasticity

(which, however, is also not critical).

First we suppose that � is known. We call a pair

ðxi; yiÞ; i ¼ 1; . . . ; n, a calibration object. Here vector xT
i is

the ith row in the X matrix, which has a corresponding

response value yi. In this work the data analytical term

‘object’ will be used synonymously with ‘sample’, both

terms signifying one individual row in a conventional data

matrix (X, y).

According to our main assumption (2), we can write for

each calibration object i ¼ 1; . . . ; n

y�i � xT
i a � yþi ; y�i ¼ yi � �; yþi ¼ yi þ � ð3Þ

Naturally we do not know the true parameter vector, which

will be denoted here by a, but we can consider all vectors a

which agree with Equation (3). It is obvious that such vectors

a for a given i form a strip Sðxi; yiÞ in the space of parameters

Rp. The position and width of the strip depend on the

calibration object values ðxi; yiÞ. An example of such strips

can be seen in Figure 1, where we have two unknown

parameters, i.e. p ¼ 2, and five samples in the system, i.e.

n ¼ 5.

Let us consider all calibration samples and their corre-

sponding strips. It is obvious that any vector a satisfies all

inequalities (3) simultaneously if and only if it belongs to all

strips Sðxi; yiÞ (polyhedron in Figure 1).

Definition 2
A region of possible values (RPV) A for parameter a is a set in

parameter space determined by the intersection of all strips, i.e.

A ¼
\n
i¼1

Sðxi; yiÞ ð4Þ

Region A is a closed convex polyhedron [24,25] delineated by

the boundaries of intersecting strips. This is a random set,

because the RPV is constructed using random values y.

Naturally, randomness of A means that it depends on vector

y and varies when the response values are changed. For-

mally, randomness of A(y) means that for any a 2 Rp we can

calculate the measure y 2 Rn : a 2 AðyÞf g and thus calculate

the probability Prob a 2 Af g. This is of course just a general

definition [26] for the probability that confidence area A

covers some point a.

Figure 1. Strips in parameter space, p¼ 2. Typical shape of

RPV A (polyhedron), a (*) is the ‘true’ value.
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2.2. RPV properties
The RPV A has the following properties for any linear MVC

model (1).

Property 1
The region A is an unbiased estimator of parameter a.

In confidence interval theory [26] this means that the

probability of covering a false value of the unknown para-

meter is not greater than the probability of covering the true

value.

From the RPV definition it follows that the true value a
always belongs to the RPV:

Prob a 2 Af g ¼ 1 ð5Þ

In particular, this means that if A consists of only one

element, A ¼ fag, this element is the true parameter value a.

It is interesting that in the SIC analysis such a situation is

possible even when the number of samples is finite ðn < 1Þ—

in contrast with the traditional statistical approach.

Property 2
The region A is bounded if and only if rank X¼ p [24,25].

This means that if we work with a multicollinear system,

where rank X < p, we have to apply some regularization

procedure. To overcome these difficulties, we may apply

a standard technique [1,2] and project the initial data

(Equation (1)) on a lower-dimensional subspace as

y ¼ TPTaþ f ¼ Tqþ f ð6Þ

where the score matrix T has full rank k < p, and afterwards

apply the SIC method to Equation (6). This approach may be

used with any particular projection method (PCR, PLS, etc.)

or a ridge regression method. In this paper we will neither

discuss the choice of a method nor focus on the issue of

choosing the correct number of bilinear projection compo-

nents, etc., as this is widely known within chemometrics.

Property 3
The region A is a consistent estimator of a, i.e.

Prob A \ af g ¼ 1 as n ! 1 ð7Þ

under traditional weak conditions [27]

�p ! 1 as n ! 1 ð8Þ

as for the OLS estimate. This means that if the number of

calibration samples increases, A shrinks towards the true

value a.

Property 4
The RPV is formed not by all objects from the calibration set,

but only by the subset of so-called boundary objects. There-

fore, if we exclude all objects from the calibration set except

these boundary objects, the RPV will not change. In Figure 1,

all objects except sample 5 are boundary objects in this sense.

2.3. Predicting the response
Consider a response prediction for any new vector x using the

model in Equation (1). If parameter a varies over the RPV A, it

is clear that the predicted value y ¼ xTa belongs to the interval

V ¼ ½v�; vþ� ð9Þ

where

v� ¼ min
a2A

ðxTaÞ; vþ ¼ max
a2A

ðxTaÞ ð10Þ

The interval V (Equation (9)) is the result of an SIC

prediction. To find this interval, we need not present the

RPV explicitly, as the solutions of Equation (10) may be

obtained by linear programming methods [24,28,29], which

are commonly used [30] to find the optima of linear functions

in a convex set. It is known that the optimum is achieved in a

vertex of the set, and the Simplex algorithm [28] makes this

optimization by moving from one vertex to another. Being a

standard numerical analysis technique, it is not considered

further here.

The SIC interval stands in contrast to the more traditional

confidence interval estimators based upon theoretical error

distributional model assumptions, which certainly do not

always hold for practical data analysis of real-world techno-

logical and natural systems anyway [23].

3. SIC OBJECT STATUS CLASSIFICATION

To understand this new approach, one has to keep in one’s

mind two key issues.

(1) SIC provides a calibration error measure, which is

the maximum error deviation �. This error is shown in

Figure 2(a) by a black error bar associated with the reference

value. We call these the calibration intervals.

Figure 2. (a) Calibration intervals (black error bars) and prediction intervals (wide

gray bars). (b) Object status plot: i, insiders (*); ii, absolute outsiders (~); iii,

outliers (^).

404 O. Ye. Rodionova, K. Esbensen and A. Pomerantsev

Copyright # 2005 John Wiley & Sons, Ltd. J. Chemometrics 2004; 18: 402–413



(2) The SIC prediction interval V (Equation (9)) is a prediction

error measure. This is presented as wide gray bars in

Figure 2(a). It is necessary to mention that in this plot we

do not specify the type of the samples, which can be from the

calibration set or from the test set. Inspecting this plot, one

can see different relationships between all calibration and

prediction intervals. The gray bars are sometimes wholly

inside the black bars, such as for sample 1; this is a good case,

because the individual prediction error is here less than the

calibration error. This can be a calibration sample or a test

sample, which is rather similar to the calibration ones.

Sample 3 demonstrates the inverse case, where the gray

bar is wider than the black interval; this would reciprocally

be a bad case, as the prediction error is worse than the

calibration error. This is of course not a calibration sample,

but one of the test samples. Sample 2 represents a case in

which a small prediction interval is biased against the refer-

ence value. This is also a test sample which could have a

wrongly measured reference value y. Sample 4 displays the

worst case, i.e. when the calibration and prediction intervals

do not intersect at all. This could for example be a test sample

which has totally another structure in predictor vector x. The

last sample 5 is of special interest, because its prediction

interval touches the calibration interval. If this sample be-

longs to the calibration set, it is a boundary object (see

Property 4).

Thus in this type of SIC plot we can simultaneously

observe both the position of interval V Equation (9), regard-

ing the known reference value y as well as the interval’s

magnitude with respect to value �, which together charac-

terize the ‘quality’ of the prediction. To quantify this new

characteristic (‘quality’), we introduce the following two SIC

measures.

Definition 3
SIC residual is defined as

rðx; yÞ ¼ 1

�
y� vþðxÞ þ v�ðxÞ

2

� �
ð11Þ

The SIC residual is seen to be the difference between the

center of the prediction interval and the reference value

(scaled by �), so it is a characteristic of bias.

Definition 4
SIC leverage is defined as

hðxÞ ¼ 1

�

vþðxÞ � v�ðxÞ
2

� �
ð12Þ

The SIC leverage is calculated as the width of the prediction

interval divided by the calibration error, so it has the

character of �-normalized precision.

Using Equation (3), it can be shown that all calibration

samples satisfy the inequality

jrðx; yÞj � 1 � hðxÞ ð13Þ

Calibration samples for which the equality in (13) is achieved

are boundary samples (see Property 4).

This approach is seen to be helpful when establishing an

explicit classification of new objects (new test set samples or

new X-data alone) in relation to a specific calibration model,

which is represented by its pertinent RPV A. It is evident that

adding a new sample (x, y) to the calibration set could

modify A in only one of the following ways:

(1) A does not change, i.e. Anþ1 ¼ An;

(2) A shrinks, i.e. Anþ1 �¼ An;

(3) A disappears, i.e. Anþ1 ¼ ;.

Here An stands for the RPV that is constructed with the help

of a calibration set consisting of n objects.

The first case corresponds to samples which are to be

termed insiders (sample 1 in Figure 2(a)). They agree com-

pletely with the model; thus insiders can be trusted abso-

lutely in prediction. The second case means that such objects

are located outside the existing model, and they are therefore

termed outsiders (samples 2 and 3 in Figure 2(a)). Outsiders

do not contradict the model, but, when added to the calibra-

tion set, they actually improve the calibration (modeling)

accuracy. However, while they are not in the calibration

set, outsiders are less than perfect with respect to prediction.

There may be two reasons: the width of the prediction

interval (i.e. the SIC leverage) is greater than the calibration

error, or there is a bias (characterized by the SIC residual). In

the third case, such samples totally conflict with the estab-

lished model (sample 4 in Figure 2(a)). They are clearly

outliers in every sense of the term; they cannot be used in

prediction at all.

It was shown [31] that such a classification of new objects

could easily be performed without explicit construction of

the complex RPV in parameter space. It is instead based on

the following statements.

Statement 1
An object (x,y) is an insider iff jrðx; yÞj � 1 � hðxÞ.

Statement 2
Calibration object (xi; yi) is a boundary object iff

jrðxi; yiÞj ¼ 1 � hðxiÞ.

Statement 3
An object (x; y) is an outlier iff jrðx; yÞj > 1 þ hðxÞ.

Statement 4
An object ðx; yÞ is an absolute outsider (explained below) for

any y iff hðxÞ > 1.

Using Definitions 3 and 4, one can construct a new object

status plot (OSP), the archetype of which is shown in

Figure 2(b). This OSP has the same appearance for any

dimensionality of the initial data (X, y) and for any number

of model parameters, which makes it a very powerful MVC

tool. Statements 1–4 divide the SIC residual (r) vs SIC

leverage (h) plane into three areas, each corresponding to

one of the three new object categories: insiders (area i in

Figure 2b), outsiders (out of area i) and outliers (area iii).

Figures 2(a) and 2(b) show in fact two representations of the

same data set.

It should be mentioned that the triangular shape of the

insider’s area in the OSP (Figure 2(b)) may appear somewhat

similar to the conventional influence plot (See Figure 4(b)).

In Reference [1] (p. 286) it was written: ‘Large leverage alone

or large studentized residual alone is not necessary enough
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for the observation to be influential. At least a moderate

contribution from each of these quantities is required for the

influence to be large’. This finding is very much along the

same lines as developed here. Certainly, the similarity be-

tween the influence plot and the OSP is not a coincidence.

This comes from a well-known basic statistical relationship

[2] which relates modeling accuracy (RMSEC), precision (SEC)

and bias (BIAS):

RMSEC2 � SEC2 þ BIAS2 ð14Þ

In the SIC approach, in which the MED value � is the

calibration accuracy, the SIC leverage h stands for the

(normalized) precision and the SIC residual r is responsible

for the (normalized) bias, Equation (14) may then be repre-

sented in the following form:

�2 ¼ �2h2ðxÞ þ �2r2ðx; yÞ ð15Þ

which actually conforms to Equation (14).

On the other hand, we should recognize a substantial

difference between Equations (14) and (15), as Equation (14)

has sense only for the whole data set, i.e. on average, while

Equation (15) is valid for every sample in the data set.

Usually, when working with a new sample in MVC, we do

not know its reference value y. In this case it is of course

impossible to calculate the SIC residual r (Equation (11), but

we can still calculate the SIC leverage h (Equation (12)). From

Figure 2 it is clear that such a new sample for which the

leverage is greater than one (h> 1, area ii) cannot be classified

as an insider (area i) for any response value. Such samples

form a special class of objects which are called absolute

outsiders (Statement 4). Thus, even when having no informa-

tion about their reference values, we can nevertheless

state that the prediction error of such samples will be greater

than the calibration error. Using Equation (12), we can

establish the equality

hð�xÞ ¼ j�jhðxÞ

from which we see that for any calibration predictor (or

score) xi , vector �xi is an absolute outsider iff j�j > 1=hðxiÞ.
As a result, for any given calibration data we can construct

the region in predictor space occupied by these absolute

outsiders. The following statement defines this area.

Statement 5
Let D be a set in X- (or T-) space, defined as a linear

combination of weighted calibration predictors (or scores) xi:

x ¼
Xn
i¼1

�i

hðxiÞ
xi;

Xn
i¼1

j�ij � 1

Then all absolute outsiders are to be found exclusively outside

this region D. An example of this area is presented in

Section 7.1.

Therefore we have shown that the SIC approach lets

us introduce a novel method for classification of all

MVC objects (calibration samples as well as new or test

samples). This classification is termed here object status

classification (OSClas). It is based on Definitions 3 and 4

and on the consequential Statements 1–5, which follow

from them.

To apply OSClas, one has to know the value of MED

defined in Equation (2). Ordinarily it is unknown and some

estimate b is used instead of �. It is clear that in this case the

RPV A depends on b and that A(b) is extended monotonically

with increasing b:

b1 > b2 ) Aðb1Þ � Aðb2Þ ð16Þ

Therefore we can claim that if we have a sequence of

consistent � estimates b1> b2> . . . 	�, then Properties 1–4

are true for A(bn) as well.

Furthermore, it is evident that

Að0Þ ¼ ;; Að1Þ 6¼ ; ð17Þ

From Equations (16) and (17) it follows that there exists a

minimum b such that A(b) 6¼ ;. This minimum value can be

taken as an estimator for the unknown parameter �:

bmin ¼ min b;AðbÞ 6¼ ;f g ð18Þ

The estimate in Equation (18) is consistent but biased

(bmin ��), and it is the lower limit of all possible �

values. bmin is a useful characteristic of a calibration set

and a calibration model, but we need to estimate the

upper limit too. Applying the traditional statistical

approach [32] to the regression residuals (ŷy� y), it is

possible to find an estimator bSIC such that, for probability

P close to one, Prob{bSIC>�}>P and bSIC is as close to � as

possible [31].

The calculation of different � estimators is rather compre-

hensive and is outside the scope of this paper. However, we

can present a rule of thumb that helps to evaluate the

estimators roughly. This could be termed the ‘1-2-3-4 sigma

rule’. If we accept that RMSEC� 1�, then bmin� 2�, bmax� 3�

and bSIC� 4�. Certainly, this rule represents just a tendency,

which also depends on the number of samples in the

calibration set. Nevertheless, our experience in application

to numerous examples shows that this rule appropriately

characterizes the situation. To confirm this claim, we present

Table I. In this table we have collected relevant information

from all examples that are examined below.

The arguments for this rule are very simple. For any error

distribution, MED should be more than 2�; the marginal case

is the uniform distribution where �¼ 1.71�[32]. Then, for the

usual number of data samples (say, less then 1000), we could

not expect an outlier farther than 3�. Finally, the 4� limit

gives us the assurance that new samples will never lie

outside this border. Therefore we can state that all possible

values of unknown MED are located within the interval [3�,

4�]. It is natural to ask whether such variations of MED could

influence the results and conclusions of OSClas. The answer

is negative, inasmuch as the main SIC quality measures r and

h are defined as relative ratios; see Equations (11) and (12).

Another issue concerns the SIC prediction intervals. These

Table I. Illustration to the ‘1-2-3-4 sigma rule’

Data n RMSEC/� bmin/� bmax/� bSIC/�

Oil 40 1.0 2.3 3.0 4.1
Ship 27 1.0 1.9 2.7 4.0
DSC 11 1.0 1.8 2.0 3.7
Wheat 139 1.0 2.8 3.0 3.7
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increase with b, and when b¼� these intervals have a

covering probability equal to one, by definition. On the other

hand, it can be shown [31] that the same intervals con-

structed with the estimated MED bSIC (for P¼ 0.90), instead

of the true � value, display a covering probability that in any

case is not less than 0.9999. This result confirms that not only

the proposed OSClas but also the whole SIC theory in

general can be used in practice.

4. SIC IN DATA ANALYSIS

Below we demonstrate how the SIC method can be applied

to four real-world data sets, each with its specific data

analytical objects, and show the additional SIC information

obtainable. Our analysis is based on bilinear projection

models that have been established and studied before. Two

data sets have been published; the other data can be acquired

on demand from the corresponding author. When applying

the SIC method to these problems, for each data set we use

the following procedure.

1. Establish a pertinent PLS or PCR model for the data set (or

use the known model).

2. Validate, in order to find the optimal number of PCs or

PLS components (or take this dimensionality from the

published literature).

3. Apply SIC modeling for this model complexity, i.e. calcu-

late bSIC, find prediction intervals V and obtain SIC

leverages h and residuals r.

4. Analyze and compare SIC and PLS/PCR results.

5. Discuss and conclude on the value of the added SIC

information.

Strictly speaking, the only relevant part of these four

analytical data sets/problems for the present purpose is

that they present (very) different internal data structures,

which allows us to demonstrate the SIC approach’s new

features in a variety of settings—but we do give a brief

overall description of their basic data analytical backgrounds

nevertheless. The ability of bilinear projection to display the

hidden data structures comes to the fore in the t–t score plots

(for PCA and PCR) and the t–u cross-score plots (for PLS). In

particular, we shall make use of dual-space illustrations com-

bined with a brushing facility, i.e. highlighting of objects

which have been delineated in one space in (all or selected)

other spaces—especially incorporating SIC classifications in

the more conventional chemometric plots.

5. ANALYSIS OF CALIBRATION SETS

5.1. Acoustic determination of trace oil
concentrations in water
This data set demonstrates the application of acoustic che-

mometrics for quantitative determination of trace oil con-

centrations in water [3]. The X matrix consists of 1024

acoustic frequency variables (after FFT). The response vector

y represents reference concentrations of oil in the calibration

samples that were specially prepared in the test laboratory.

The training data set consists of 40 observations (objects),

and there is a test set also consisting of 40 observations.

The original (raw data) PLS model shows a non-linearity

in the first-component t–u plot, signifying a non-linear

relationship between the oil concentration and its influence

on the effective surface tension of water. Therefore the raw y

values were transformed by y¼ log(1þ yraw), which was

sufficient to linearize the data set. The final model consists

of two PLS components only, since these explain a total of

60% of X-variance and 99.9% of Y-variance, with

RMSEC¼ 0.051, RMSEP¼ 0.092 for the external validation

(test set). The pertinent t–u plots are shown in Figure 3.

Circles (open and full) represent training objects.

Using this PLS model, we construct the SIC model and

corresponding OSP (presented in Figure 4(a)). The calibra-

tion objects in Figure 3 have been annotated with their SIC

designations (from Figure 4(a)): full circles represent bound-

ary samples. These boundary objects are marked (brushed) in

the t–u plots. It is easy to appreciate the peripheral positions

of the boundary objects. The gray polygon in Figure 3 is used

here to delineate the model backbone formed exclusively by

the SIC boundary samples. There are also to be found a few

calibration samples outside this boundary, which is quite

understandable, since the t–u plots are only projections of a

complicated model onto this plane. The interesting issue

is: what additional SIC information can be gleaned from

Figure 4?

By comparing the SIC object status plot (Figure 4(a)) and

the influence plot [1,3] (Figure 4(b)), we can state that all the

most influential samples found in the influence plot (nos 37,

38 and 40) and the sample with the highest residual variance

Figure 3. Trace oil-in-water data set. t–u plots for PLS model with two compo-

nents. Training set: *, insiders; *, boundary samples; gray line connects

boundary samples.
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(no. 5) at the same time are the boundary samples by OSClas.

Figures 3 and 4 demonstrate that the SIC object status

classification helps to reveal all important samples in the

training data set. To identify such samples, we have strict

and simple rules (Statements 1 and 2). This example shows

that the concept of boundary samples not only makes sense

within the SIC approach but also characterizes the existing

data set structure optimally. The next subsection and one

more example confirm this idea.

5.2. Representative subset selection
Often, e.g. in calibration transfer [33] but also for other data

analytical objectives, it is necessary to select a special subset

from a large(r) calibration set that will bear the burden of

representing the entire relevant data model. In general, such a

subset will satisfy two opposing requirements: (1) it should

be of maximal representativity with respect to the entire set,

but (2) it should simultaneously be noticeably smaller than

the total set. There have been presented several suggested

solutions to this dilemma [34,35], to which we will now

append that of the SIC method.

Thus SIC’s concept of boundary objects (Statement 2) is

applied for this selection. We demonstrate this by using a

data set representing wheat calibration [36]. The X matrix

consists of NIR spectra in the range of 908–1120 nm, recorded

at 118 wavelengths; the reference y vector includes moisture

contents of 139 calibration samples as quantified in the

laboratory by a standard analytical method (evaporation

loss of weight).

We originally conducted this work at the request of an NIR

instrument manufacturer who preferred to use LOO cross-

validation in the PLS modeling. The mode1 carries four

components, which explain 98% of X-variance and 89% of

Y-variance; RMSEC¼ 0.30, RMSEP¼ 0.33. On the basis of

this PLS model we construct the pertinent SIC model and

detect 23 boundary samples. These samples are then the

most important objects for modeling, and all other samples

may be treated as redundant. Therefore we fix the complex-

ity of the model to these four PLS components and undertake

the following procedure.

1. Use the 23 boundary samples as a new calibration set and

designate all the remaining objects as a new test set.

2. Construct a new PLS model with four components, based

on this new calibration set.

3. Predict all these test set samples using the SIC model with

the previously calculated bSIC.

From this we obtain RMSEP¼ 0.29 via a new test set

validation. The SIC object status plot (Figure 5) shows that

all samples from the new test set are indeed insiders. This

means that we have in fact reached our goal: (1) the model

constructed with the help of the selected subset can predict

all other samples with an accuracy that is no worse than the

error of calibration evaluated on the whole data set; (2) this

subset is indeed significantly smaller, 23 out of 139.

This example demonstrates that boundary samples are not

only significant objects for SIC models, but they constitute

relevant objects also for bilinear projection models. Not only

calibration transfer is in need of such subsets, of course. It

bears mentioning that the decision regarding selection of a

representative subset may not be so evident as above, since

the size of the subset can be constrained by practical neces-

sity and may have to be less than the total number of

boundary samples. Another problem concerns multire-

sponse data. If we have to construct different PLS1 models

for each of the responses, i.e. protein, moisture, etc., each

boundary sample subset may be different. Nevertheless, the

concept of boundary samples is useful as a starting point for

such more comprehensive subset selection.

Figure 4. Trace oil-in-water data set. (a) SIC object status plot. (b) influence plot

for y. PLS model with two components. Training data: *, insiders; *, boundary

samples.

Figure 5. Object status plot for wheat data set: &, ‘test

samples’ (all insiders).
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6. SIC ANALYSIS OF TEST SET OBJECTS

The most useful aspect of SIC’s facility of object status

classification concerns test sets. This is where the new SIC

prediction interval estimates for each test set sample contrast

most with the traditional ensemble RMSE estimates based on

a suitable validation data procedure [1]. SIC object status

classification helps to analyze the role of each sample not

only in the calibration set but also in the test set.

6.1. Norwegian cruise ship data set
‘Hurtigruten’
The following example is based on an MSc (Eng) optimiza-

tion study using PLS, aimed at elucidating the complex

relationships between the specific loading and ship’s engine

settings, the objective weather conditions encountered

en route and the resulting fuel consumption for a particular

Norwegian coastal cruise ship.

The data set used here encompasses seven characteristics

of weather conditions and officer-determined ship behavior

(e.g. wind and current, engine RPM, propeller pitch, etc.),

which make up the X matrix, while response y records the

actual bunker fuel consumption (l h�1). The training set

consists of 27 observations (objects), while the test set in-

cludes 18 observations, both carefully laid out in a strongly

problem-dependent experimental design while the ship

traveled the entire length of the Norwegian coastline (au-

tumn 1998). These observations managed to cover a rather

wide range of the ship’s running parameters under quite

different (hence well-spanning) weather conditions and

could therefore be considered as fairly representative at

large. Test set validation resulted in two PLS components

explaining 45% of X-variance and 99% of Y-variance, with

RMSEC¼ 15.2, RMSEP¼ 42.5. The data set has been under

proprietary confidentiality for 5 years but has recently been

released; the basic publication is currently being written up

by one of us (K.E.).

On the basis of the final PLS model we have constructed

the pertinent SIC model and found eight boundary samples.

From Figure 6 it is again easy to see that not all SIC boundary

samples are tantamount to objects that have a high ‘influ-

ence’ in the traditional PLS model influence plot; in fact, only

three objects stands out here (nos 17, 6 and 20). The disposi-

tion of the full boundary set gets more interesting when

brushed into the pertinent PLS t–u plots, displayed in

Figure 7. The particular layout of the boundary samples in

these t–u plots clearly shows their peripheral positions and

again confirms our assumption of their special role in model

construction; this is especially predominant in the first-

component t–u plot.

Now we shall analyze the role of each test sample regarding

the constructed model for the Norwegian cruise ship test set.

Using Statement 1, we can find 11 insiders and seven out-

siders (Figure 8(a)). Among the outsiders we can also make a

more detailed distinction. Samples 4 and 10 are outsiders,

but indeed rather close to the model. There may be two

reasons why these samples are not insiders: they could have

some large errors in the response values, or their X–Y

relation differs from that of the model (it is easy to look

closer to evaluate the particulars of such samples as soon as

they have been pointed to in the OSP). Samples 1, 2 and 5 are

absolute outsiders, since their X-data structure is not at all

compliant with that of the calibration samples. The SIC

prediction intervals are accordingly greater than MED �

for these samples. Finally, samples 17 and 18 are outliers.

We cannot trust in the prediction results for these samples

and they should be excluded from further consideration.

The specifics of each sample are reflected in their SIC

prediction intervals delineated in Figure 8(b). Let us com-

pare the SIC intervals with the prediction uncertainties for

individual samples (Figure 8(b), error bars) calculated by the

approaches laid out for PLS prediction in The Unscrambler

8.0 software [37], where the variance in an individual pre-

dicted response value is calculated as

RðyvalÞ 1 � kþ 1

n

� �
hþ RðxÞ

RðXvalÞ
þ 1

n

� �

Here R(yval) is the mean square residual of responses of the

validation set, h is the PLS leverage, R(x) is the mean square

residual of predictors of the object, R(Xval) is the mean square

residual of predictors of the validation set and k is the rank of

the PLS model.

As might be expected, these uncertainties reveal the

absolute outsiders well (nos 1, 2 and 5), since these samples

differ in their X-structure, and here we see a coincidence

with the SIC diagnostics. However, there are neither definite

diagnostics for outliers (nos 17 and 18) nor for outsiders from

these standard prediction uncertainties. It will be particu-

larly illuminating to compare this test set prediction OSClas

on the basis of the model t–u relationships with Figure 9.

Figure 6. Norwegian cruise ship. (a) SIC object status plot. (b) Traditional ‘influ-

ence plot’. Training set: *, insiders; *, boundary samples.
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Figure 9 presents the pertinent model t–u plots in which

the test set has been passively projected only. On these plots,

all test set samples are annotated in accordance with their

OSClas designations. This helps to assess and understand

the role of each sample. The gray boundary contours are

carried over from Figure 7 (all individual training data set

objects are left out for clarity). On the t1–u1 plot, one can e.g.

graphically appreciate the extreme behavior of samples 1, 2

and 5, while on the t2–u2 plot, samples 17 and 18 are evident

outliers.

Concluding for this example, we can state that SIC object

status classifications not only reveal different kinds of sam-

ples among the calibration set but also help to evaluate the

test set quality. The results mostly agree with conventional

Figure 7. Norwegian cruise ship calibration data set. t–u plots for PLS model with two

PCs. Training set: *, insiders; *, boundary samples; gray line connects boundary

samples.

Figure 8. Norwegian cruise ship test data set. (a) SIC object status plot: &,

insiders; &, outsiders; ~, absolute outsiders; ^, outliers. (b) SIC prediction: *,

reference values, , SIC prediction intervals; *, PLS prediction with uncertainty

bars.

Figure 9. Norwegian cruise ship. t–u plots for PLS model with two PCs. Test set

samples: &, insiders; &, outsiders; ~, absolute outsiders; ^, outliers; gray line

connects boundary samples.
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PLS analysis, but the SIC approach yields more detailed

information. The complementary PLS t–u and object status

plots reveal the entire object status layout of all objects in

both the training set as well as the test set.

7. OUTLIER DETECTION

Once a multivariate calibration model has been established,

it is usually used to predict the characteristics of new

samples. If a predicted sample is inconsistent with the

calibration model, the prediction will be bad (sample with

high value for prediction uncertainty); or worse, it will be

irrelevant (e.g. sample 4 in Figure 2(a) and samples 17 and 18

in Figure 8(b), for which prediction values and uncertainty

intervals are far from reference values). Traditionally, such

samples are simply called outliers, but there is no consensual

theoretical treatment of this class of object in traditional

chemometrics, except for a few recent attempts (see Refer-

ence [12] and references cited therein). From SIC’s point of

view, such samples are treated as absolute outsiders. For these

objects the SIC prediction intervals will be greater than the

maximum error deviation �. Statement 4 gives the rule for

their determination. This rule is explicit, simple and does not

depend on the reference value.

7.1. DSC example
In order to continue the comparison of SIC results and

conventional projection methods, we consider as a last

example the prediction of antioxidant activity in polypropy-

lene [17]. The X matrix includes values of OIT (oxidation

initial temperature) measured by differential scanning ca-

lorimetry (DSC) at five different heating rates; the y vector

consists of the corresponding values of long-term heating

aging (LTHA), which is a reference characteristic of antiox-

idant activity. There are again two data sets. The calibration

set consists of 11 samples (1–11) with antioxidants of differ-

ent types. There is a small test set (samples T1–T4) which is

used for both validation and prediction. It is not important

that both data sets are very small, since their data structure is

the decisive factor; also, their small size makes for potentially

clear illustration.

We used PCR regression and validated two PCs for this

model, which explained 93% of X-variance and 96% of Y-

variance. On the basis of this PCR result we construct the

Figure 10. DSC data set. (a) SIC object status plot for training and test sets: *,

insiders; *, boundary samples; &, ~, &, test samples. (b) SIC prediction: *,

reference values with error 
 bSIC; , SIC prediction intervals; *, PCR prediction.

Figure 11. Score plot object status designations (t1–t2). (a) DSC example. Training

and test sets. (b) Norwegian cruise ship. Test set. Training set: *, insiders; *,

boundary samples. Test set: &, insiders; &, outsiders; ~, absolute outsiders; ^,

outliers. Border of absolute outsiders (——), convex hull (—) and second bound-

ary(— —).
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corresponding SIC model and find five boundary samples

(Figure 10(a)). Prediction of the test set reveals one absolute

outsider, T4 in Figure 10, owing to its abnormally high SIC

leverage.

For this example we can explicitly draw the border of

absolute outsiders (Statement 5) in the PCA score plot (t–t)

and compare this border with the convex hull and its second

boundary as calculated from the comprehensive procedures

in Reference [13], which were developed especially for out-

lier detection in prediction. Figure 11(a) shows this compar-

ison. Sample T4 is detected as abnormal by both methods.

However, sample T1, which is designated by SIC as a rather

reliable (Figure 10(a)) and well-predicted (Figure 10(b))

object, is wrongly interpreted by the convex hull method as

an outlier (Figure 11(a)).

7.2. Norwegian cruise ship X-space
relationships
We can perform a further X-space outlier detection comparison

and return to the Norwegian cruise ship data set. Using this

example, we want to show the various outlier areas as they

appear in the t–t score plot (Figure 11(b)) as well. Following the

rules described in Reference [13], we have constructed the

convex hull and its second boundary on the basis of

the pertinent training set. However, as we have a rather large

data set in this example (23 objects), we only project the test

samples in the plot. Abnormal objects are picked up and

annotated in the same way as in Figures 8(a) and 9.

Again, samples that are designated as absolute outsiders

by SIC (nos 1, 2 and 5) are marked up by the convex hull

method as well. Samples 17 and 18 cannot be distinguished

as abnormal samples in these score plots by any method, as

they differ from the calibration set data with respect to their

response values, while they are similar to the calibration

samples in their X-structure. Evidently, when analyzing new

samples with unknown response values, such a situation

cannot be distinguished.

The following reflections pertain to a more detailed com-

parison of these two methods of outlier (outsider) detection.

The border of absolute outsiders is constructed using all

samples from the training set. We enlarge their score values

(Statement 5) in such a way that corresponding SIC leverages

become equal to one. Therefore training samples are located

inside this border (Figure 11(a)). As to the convex hull, it is

constructed on the basis of the peripheral objects in the score

space in such a way that these objects serve as the vertices of

the convex hull. As further mentioned in Reference [13], a

‘second boundary’ is built on the basis of the convex hull,

taking into account the uncertainty of the model; in fact, the

uncertainty in X. In Figure 11(a) this second boundary is very

close to the convex hull. This is because we have used the

PCR model in which two PCs explain 93% of X-variance. The

data set shown in Figure 11(b) (Norwegian cruise ship)

represents quite a different PLS model in which the first

two components explain only 45% of X-variance. This is why

there is a marked visible difference between the convex hull

and its second boundary.

The last two examples show that the SIC concept of

absolute outsiders may be successfully applied for outlier

detection in new data sets. In these examples it was possible

to make an explicit construction of the border of absolute

outsiders, because these models require only two compo-

nents. Generally, however, we do not need to construct this

border explicitly, since we have the simple diagnostic rule

(Statement 4) which can be used regardless of the score space

dimensionality. This is a significant advantage of SIC.

8. CONCLUSIONS

We have presented a combination of the new SIC approach

with the well-known chemometric bilinear projection meth-

ods (PCR, PLS), which has been shown to be a powerful and

visually simple instrument for detailed analysis of the status

of individual objects in both calibration and test data sets.

The main thrust of the SIC approach is the object status

classification (OSClas), which follows directly from the basic

SIC concepts and which is not user-dependent, i.e. it is

objective.

The SIC approach offers strict, unequivocal rules for object

classification in different cases.

1. All calibration samples can be divided into two main

classes: boundary samples, which are the most influential

objects in the modeling, and insiders, which are the

redundant objects in the training set (Statements 1 and 2).

2. The test samples can be SIC typified with detailed and

explicit classification (Statements 1, 3 and 4). Thus these

objects can be divided into two main classes: insiders,

which are similar to the calibration samples, and outsiders,

which are dissimilar to the model. A further distinction

can be made between outsiders: absolute outsiders, which

differ greatly from calibration samples in their X-

structure, and outliers, which completely contradict the

model structure (Statements 1, 3 and 4).

3. For new samples we have the strict Statement 4, which also

marks up absolute outsiders which are inconsistent with the

calibration model. It is finally a powerful advantage that

the absolute outsider category may be found regardless of the

presence or not of reference y values. This feature is of the

highest importance for reliable prediction.

The SIC approach uses no new or extra parameters which

cannot be evaluated by the data set and have to be set a priori.

9. SOFTWARE

All present SIC calculations were made with software pro-

grammed and implemented as an add-in for Excel, including

various NIPALS algorithms [1] for bilinear matrix decom-

position, a standard Simplex algorithm [28] for optimization,

as well as a necessary suite of special procedures, e.g. for

preprocessing, transformations, etc. This software is cur-

rently in a beta-test version, but all algorithms are of well-

known types and may easily be implemented in various

standard packages.
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