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Acceptance areas for multivariate
classification derived by projection methods
Alexey L. Pomerantseva*
J. Chemom
In the projection methods (PCA, PLS) two distance measures are of importance. They are the score distance (SD, a.k.a.
leverage) and the orthogonal distance (OD, a.k.a. the residual variance). This paper shows that both distancemeasures
can be modeled by the x2-distribution. Each model includes a scaling factor that can be described by an explicit
equation. Moreover, the models depend on an unknown number of degrees of freedom, which have to be estimated
using a training dataset. Such modeling is further applied to classification within the SIMCA framework, and various
acceptance areas are built for a given significance level. A triangular area, constructed using the sumof the normalized
SD and OD, is deemed to be the most practical. This theoretical notion is supported by three examples. The first is
based on a simulated dataset, while the other two employ real world data. Copyright� 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Projection methods (principal component analysis (PCA), partial
least squares (PLS), etc) are the most popular chemometric tools
[1]. A simple geometrical representation of these methods
provides a good illustration of the approach. Let matrix X consist
of I rows that stand for the objects and J columns that correspond
to the objects properties. The objects can either belong to
different samples or represent a single sample that evolves
during a process. The data matrix X can be viewed as a cloud of I
points in the J-dimensional property space. It is important to note
that in most chemistry-originated applications the cloud has a
specific shape [2]. It is flattened in such a way that the points are
located close to a hyperplane (a subspace) of the effective
dimensionality A< J. The oblateness is mainly due to inter-
correlations of the properties. The point of the space origin may
be placed into the center of the cloud gravity; therefore the
center belongs to the subspace as well. There are various
techniques which help to reveal the subspace within the whole
property space. The PCA uses only one block of data (matrix X).
PLS regression additionally employs a response data matrix Y.
However, the projection concept remains the core of both
methods.
Each element of the data cloud can be presented as a sum of

two vectors: a vector that lies in the subspace (a projection) and a
vector transversal to the hyperplane (a residual). The lengths of
these vectors are important indicators that characterize a sample
position with respect to the subspace (model). These statistics are
often referred to as the leverage and the residual variance. In this
paper they will be termed as a score distance (SD) and an
orthogonal distance (OD) correspondingly. Often the objects are
assumed to be randomly selected members of the general
totality (class). In this case, the SDs and ODs obtained for the
known class members constitute two samplings that represent
the population. By exploring these datasets the critical member-
ship levels can be established. Therefore, when a new candidate
object x is considered it can be projected onto the model
etrics 2008; 22; 601–609 Copyright � 20
subspace, and its own SD and OD values can be calculated.
Further on, they are compared with the known critical levels to
make a decision on the membership of the class.
The outlined approach has been applied in numerous

applications, which can be divided into three main groups.
The first one is, obviously, the SIMCA (soft independent modeling
of class analogy) method [3], which is a popular chemometric tool
for supervised pattern recognition, i.e. for the qualitative analysis.
This is a standard problem of the affiliation with a predefined
class [4–6]. A typical example has been explored in reference [7],
where NIR spectroscopy was employed for the counterfeit drugs
detection.
The second application is multivariate statistical process

control [8,9]. In this case the class data X is a set of process
variables measurements obtained under the normal operating
conditions. The pertinent PCAmodel is built and the critical levels
for the SD (termed as D statistics) and OD (termed as Q statistics)
are established. A new process batch x is projected onto this
model and the corresponding D and Q statistics immediately
indicate whether the batch is in control.
The third area is multivariate calibration, namely PCR and PLS

methods. A well-known influence plot [10] serves this. Each point
of the plot represents a calibration object in the ‘SD versus OD’
coordinates. The point position marks the role of a sample in the
calibration routine: the most influential objects are located in the
peripheral areas with the large SD or OD values. The critical levels
help to reveal outliers.
Within these applications several statistical problems are of

vital importance. Firstly, the form of the SD and OD distributions
should be specified. Moreover, in each specific case, the
distribution parameters are to be evaluated using a training
08 John Wiley & Sons, Ltd.
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data set. Secondly, it is important to set up the rules that reveal
the extremes and outliers in the data. Finally, the acceptance area
in the influence plot should be defined. This area includes all
probable SD–OD values, which indicate the affiliation of a sample
to the class. The acceptance area is built with respect to a given
type I error [11], which is an event when an object is erroneously
assigned to be a class outsider, while it in fact belongs to the class.
The corresponding probability is termed as a significance level.
The posed problems have already been discussed in numerous

publications; this paper references some of them. We consider
these questions to be still topical, however, as the proposed
solutions are often inconsistent and contradict each other, for
example, in a very popular software tool [12] the critical level for
leverage (SD) does not vary with the significance value. This
seems to be a practical implementation of the rule of thumb
formulated in references [10,13], which states that the critical
level of leverage equals its average value multiplied by 2 or 3. The
situation with the residuals measures is more intriguing. For
instance, paper [14] suggests two feasible critical levels: one
based on F-distribution (p. 96) and another one, given by a
formula derived from approximation of x2-distribution (p. 97). A
recent discussion at the ICS list [15] has demonstrated that all
such problems are still far from solution.
There is another motivation for this research that could be

called a mystery of the influence triangle in the multivariate data
analysis. It is well-known that the objects with both high leverage
and high residual values are dangerous and thus they can be
treated as outliers [10]. In other words, all regular calibration
samples should be located within a triangle in the influence plot.
However, there seems to be no proof, or substantiation for this
evident conclusion—a typical SIMCA plot represents a rectangle,
not a triangle. We failed to find any reference to such a fact
excepting [12]. On the other hand, applying the SIC method [16]
for the data analysis one immediately obtains the triangle of
insiders, which are the most trustworthy objects within the
calibration set.
This paper aims to trigger an open discussion on the topic that

could be formulated as follows. How does one establish a proper
acceptance area with respect to a given significance level? The
presented study does not give the final solutions of the posed
problem but presents and substantiates one of the possible ways
of the critical limits calculations.

2. THEORY

2.1. Notation

Small bold characters, i.e. x, stand for vectors and capital bold
characters, i.e. X, denote matrices. Non-bold characters are used
for vector and matrix elements. Superscript t is used for vector
and matrix transposition. The I and J denote the number of
objects and variables, respectively, K denotes the rank of Xmatrix
and A denotes the number of latent variables (principal
components). An abbreviation DoF stands for the number of
degrees of freedom. Other notations used are as follows. X¼ {xij}
is the (I� J) data matrix; T¼ {tik} and TA¼ {tia} are the full and
truncated score matrices with dimensions (I� K) and (I�A),
respectively; P¼ {pjk}and PA¼ {pja} are the full and truncated
loading matrices with dimensions (J� K) and (J�A), respectively;
EA¼ {eij} is the (I� J) matrix of residuals;L¼diag (l1,. . ., lK) is the
(K� K) matrix of eigenvalues; I is the unit matrix of a relevant
dimension; hi and vi denote the SD and the OD, respectively of
www.interscience.wiley.com/journal/cem Copyright � 200
sample i¼ 1,. . ., I; x2(N) is the x2-distribution with N DoF; x�2(N,
a) is the a quantile of x2(N); F(N1, N2) is the F-distribution with DoF
N1 and N2; F

�1(N1, N2, a) is the a quantile of F(N1, N2); operators E()
and V() denote the mathematical expectation and variance,
correspondingly. Symbols Sh and Sv stand for any estimates of the
SD and OD variances obtained with the corresponding training
sets, hi and vi. Notation x�G means that variable x is distributed
with distribution function G.

2.2. Principal component analysis

Let matrix X have a rank K�min(I, J). Note that K is an unknown
value, which is rather difficult to estimate. However, it does exist
and may be used in theoretical calculations. The PCA
decomposition of matrix X is

X ¼ TPt; (1)

where T¼ {tik} is the (I� K) score matrix and P is the (J� K)
loading matrix. Equation (1) assumes that matrix X is column-
centered, i.e.

XI

i¼1

xij ¼ 0: (2)

If matrix X does not satisfy Equation (2) it should be modified.
The influence of such a transformation on the statistical
properties of the PCA decomposition has been repeatedly
discussed, i.e. in reference [17]. In particular, it has been proposed
to reduce the effective number of objects by unity, i.e. to replace I
by I–1 [10]. This topic will not be further discussed in this paper as
a more general approach to the evaluation of DoF is proposed.
However, below it is assumed that matrix X agrees with the
condition given in Equation (2).
The (K� K) matrix L

L ¼ TtT ¼ diagðl1; . . . ; lK Þ (3)

is diagonal with the elements

lk ¼
XI

i¼1

t2ik (4)

These are the first K eigenvalues (others are equal to zero) of
matrix XtX ranked in the descending order. Matrix P consists of
the corresponding orthonormalized eigenvectors PtP¼ I. There-
fore,

L0 ¼ SpðXtXÞ ¼ SpðTtTÞ ¼
XK
k¼1

lk (5)

Let us consider the first A (A� K) principal components in the
decomposition given by Equation (1).

X ¼ TAP
t
A þ EA; (6)

Matrices TA and PA include the first A columns of matrices T and
P, respectively. The (I� J) matrix EA¼ {eij}is the residual matrix. A
value

RðAÞ ¼

PA
a¼1

la

L0
(7)
8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22; 601–609
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is referenced to the explained data variation. It varies from 0 (at
A¼ 0) to 1 (at A¼ K)

2.3. The score distance (SD)

For a given number of principal components, A, the value

hi ¼ tti ðTtATAÞ
�1ti ¼

XA
a¼1

t2ia
la

; i ¼ 1; . . . ; I (8)

is named the SD [13]. It is equal to the squared Mahalanobis
distance from the model center to sample i within the score
subspace [18]. From Equation (4) it follows that

h0 ¼
1

I

XI

i¼1

hi �
A

I
; (9)

Equation (9) is an identity, which always holds by PCA
construction. The same equation is given in many publications
(e.g., [10,13]), but it is construed statistically, as E(h)¼ h0. However
there is no variability in Equation (9) since the mean SD will
always equal A/I regardless of possible changes in the samples, or
even in the whole dataset. In other words, if the number of
objects equals I, and the number of PCs used is A, then the
average of SD is equal to A/I exactly.
Constructing the SD distribution it is necessary to remember

that X matrix is centered. Therefore, at a fixed a, all random
variables tia have zero expectation and variance laI

�1. Taking
Equation (3) into account it can be assumed that

Nh
h

h0
� x2ðNhÞ (10)

where Nh is DoF. DoF equal A if the a-scores of all samples are
distributed normally. Such an approach is used in reference [19].
In papers [8,9,20] the authors suggest to use another SD
distribution

I � A

I þ 1

h

h0
�FðA; I � AÞ (11)

This equation results from the assumption that each column
vector xj is distributed normally. It is worth mentioning that at
I�A, Equation (11) turns into Equation (10), where Nh¼A.
The normality of either the initial variables xj, or the scores ta, is

just an assumption that cannot be verified. In our opinion, as the
PCA subspace is formed by the linear combinations of vectors xj,
the scores ta could be viewed more ‘normal’ than the initial
variables. Therefore, x2-distribution seems to be a preferred
alternative to F-distribution. We suggest evaluating the DoF in
Equation (10) in order to allow for the non-normality in the scores
distribution. The DoF can be estimated using the method of
moments (MM).
From Equation (10) it follows that the SD variance (denoted as

V(h)) is equal to

VðhÞ ¼ 2h20
Nh

¼ 2A2

NhI2
: (12)

Therefore, DoF, Nh, can be estimated by equation

N̂h ¼
2h20
Sh

¼ 2A2

I2Sh
(13)
J. Chemometrics 2008; 22; 601–609 Copyright � 2008 John Wil
where Sh is an estimate of the SD variance, V(h). This variance can
be estimated in many ways. The conventional method
Sh ¼

P
hi � h0ð Þ2

.
I � 1ð Þ is rather sensitive to outliers. There-

fore, in references [14,19,21] it has been proposed that robust
variance estimators should be used, e.g. MAD [22].
We apply another robust method. This is the interquartile

approach that leads to the following equation:

1

Nh
x�2 Nh; 0:75ð Þ � x�2 Nh; 0:25ð Þ
� �

¼ 1

h0
IQR h1; . . . ; hIð Þ (14)

which should be solved with respect to Nh. IQR stands for the
interquartile range statistics calculated using the SD training
samples. In practice, Equation (14) may be replaced by an explicit
equality

N̂h ¼ exp 4:36 ln
1:24

IQR

� �0:72

(15)

that may be applied for 1< I< 100 with the accuracy no worse
than 7%.

2.4. The orthogonal distance (OD)

The OD is another important characteristic of PCA model (6). It is
calculated as the sum of the squared residuals presented in
matrix EA¼ {eij}

vi ¼
XJ

j¼1

e2ij : (16)

The OD, vi, is the squared Euclidian distance from object i to the
model subspace. Often this value is divided by K–A [14,23], or by
J–A [24], and then the square root is extracted [14,23,24].
However, following [9,20] we keep value (16) as it is.
It can be shown (e.g. [23]) that

vi ¼
XK

a¼Aþ1

t2ia ¼ L0 �
XA
a¼1

t2ia (17)

where L0 is defined in Equation (5). Taking this into account one
can obtain the following equality:

v0 ¼
1

I

XI

i¼1

vi �
L0
I

1� R Að Þð Þ (18)

which is always fulfilled by the PCA construction. Here R(A) is
defined in Equation (7).
The authors of papers [21,23,24] have proposed to employ the

following distribution:

v

v0
�F K � A; K � Að Þ I � Að Þð Þ (19)

However, in most of the practical cases, the value of (K–A) (I–A)
is so large that Equation (19) can be replaced by

K � Að Þ v
v0

� x2 K � Að Þ (20)

As mentioned previously, K is usually unknown and is difficult
to estimate. It is easy to see that the distribution in Equation (20)
could be derived from Equation (17), if each component had the
same variance. However, in contrast to the SD, the OD consists of
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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non-normalized variables each of them having its own variance
being equal to laI

�1. Therefore, Equations. (19) and (20) are badly
fitted for the OD distribution. Back in 1987, it has been noted [25]
that SIMCA method has a tendency to reject too many new
objects increasing the Type I error. In order to improve the
classification efficiency numerous modifications of Equation (19)
have been proposed [23]. The apt solution has been found by
Nomikos and MacGregor [8], who employed the idea published
in reference [26]. They proposed to apply the distribution
g1x

2(g2). The two unknown parameters g1 and g2 are to be
estimated with the training set. This approach was repeatedly
used in the subsequent papers, e.g. in reference [14].
We employ a similar formula for the OD distribution

Nv
v

v0
� x2 Nvð Þ (21)

that, however, depends on a single unknown parameter, Nv,
because other parameter, v0, can be estimated independently
from Equation (18). The OD variance is equal to

V vð Þ ¼ 2v20
Nv

: (22)

Therefore,

N̂v ¼
2v20
Sv

(23)

where Sv is an estimate of the OD variance. Certainly, the IQR
approach presented in Equation (14) may be used in the case of
OD as well.
Figure 1. Distribution of the SD (&) and OD (*) in SIM data. Sample
probability an versus theoretical probability a. Vertical bars represent the

tolerance intervals. This figure is available in colour online at www.

interscience.wiley.com/journal/cem
3. APPLICATION

3.1. Data

Three data sets are considered in this paper. The first set contains
simulated data for which I¼ 100, J¼ 25. These data were built
using historical observations of a real industrial process that has
been presented earlier in reference [27,28]. Hundred of the most
reliable objects selected from the initial dataset are modeled by
PCA with five PCs. The matrix T5P

t
5 was further disturbed with a

pseudorandom white noise with standard deviation being equal
to 0.05 max jxijj. This dataset is denoted as SIM and it is mainly
used for the illustration purposes. The DoF values calculated
using the MMs are Nh¼ 5.7, Nv¼ 21.6, and these obtained with
the IQR approach are Nh¼ 5.0, Nv¼ 20.0. It is known [22] that the
robust estimates are less effective but more reliable with respect
to outliers. In our case the corresponding DoF values are similar
but the IQR estimates are smaller, hence their acceptance areas
are wider. Therefore, the IQR estimates look more trustworthy,
and they are used in the subsequent analysis.
The second dataset consists of the real spectra obtained by a

NIR instrument (J¼ 3501 wavelengths in the interval
4000–7500 cm�1) in the diffuse reflectance measurements. They
were used in the discrimination of the genuine and counterfeit
tablets by themethod presented in reference [7]. The set includes
75 samples that are divided into a training set (40 genuine tablets,
I¼ 40) and a test set (15 authentic and 20 fake tablets). The whole
dataset is labeled BMT. The number of PCs is 2 (A¼ 2).
The third example represents a multivariate calibration

problem that has earlier been described in reference [29]. The
www.interscience.wiley.com/journal/cem Copyright � 200
X set consists of the NIR spectra obtained for the whole grain
samples in the interval 9050–10850 cm�1 (J¼ 118). The Y block
includes the water content values obtained by a conventional
analytical method. The dataset consists of 123 samples (I¼ 123)
and it is named GRAIN.

3.2. Joint distribution

In the theoretical section of this paper, it was shown that
employing the training values of hi and vi (i¼ 1,. . ., I), it is possible
to build the object distribution within a class. Vector sets (t1,. . .,
tA) and (tAþ1,. . ., tK) are orthogonal, therefore the SD and OD
values are statistically independent. Let us introduce notation c
keeping in mind that c (c0) could be either h (h0), or v (v0), and,
respectively, Nc is either Nh, or Nv. The corresponding quantiles
Prob(c> ca)¼a are calculated by Equation (10) and Equation (21)
as ca ¼ c0x

�2 Nc;að Þ=Nc .
In Figure 1 it is shown that the sample probability

an¼ number{ci> ca}/I corresponds to the conjectural probability
a for SIM data, in which A¼ 5. It can be seen that, in general, the
SD and OD are well fit by the x2-distributions as all sample values
fall into the confidence intervals [a�2d, aþ2d], where
d 2¼a(a–1)/I. These intervals are shown in Figure 1.

3.3. Outlier detection

In the outlier detection procedure it is necessary to account for
the size of a training set, I, and to obtain the p-values, which are
the occurrence probabilities of each particular SD and OD value.
They are calculated as

Pout cið Þ ¼ 1� 1�C cið Þ½ �I� 1� exp �IC cið Þ½ � (24)

whereC is a cumulative distribution function of each statistics h,
or v. If any of the p-values is less than a given critical level (e.g.
0.05), the corresponding object can be considered as an outlier.
Alternatively, the p-values based on the x2-distribution are
calculated using C cið Þ ¼ x2 Ncci=c0;Ncð Þ.
8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22; 601–609
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The pertinent example of the outlier detection is presented in
subsequent section, where the BMT data are explored.

3.4. The acceptance regions

Let x be a new sample. It is required to determine whether the
sample belongs to the same class C as the initial training set X. In
making the decision two typical errors could occur. The type I
error happens in a case when the sample is rejected, while it
actually belongs to the class. The type II error is the acceptance of
the sample, which in fact does not belong to the class. The type I
error is directly connected with the acceptance region of a class.
The larger the area is the smaller the type I error. In the composite
hypothesis testing (SIMCA is just the case) the type II error cannot
be established. Moreover, it is typically equal to 1. A simple
example illustrates this unpleasant claim. Let Ce be a class of
samples that does not coincide with C. At the same time Ce
converges (in some sense) to C at e! 0. These two classes may be
seen as two parallel planes located at the distance e It is evident
that the type II error tends to 1 as e! 0.
Let g be a given value of the type I error (the significance level).

Using two class statistics, h and v, one can build various
acceptance areas, which are dependent on the significance.
These areas are demonstrated in the SD–OD plot that is
constructed for dataset SIM, at g ¼ 0.05. The plot is shown in
Figure 2.
Usually (e.g. [19]), the acceptance region Hg is defined as a

direct product of two tolerance intervals for the SD and for the
OD values. From Equations. (10) and (21) it follows that

Hg ¼ 0;
h0
Nh

x�2 Nh;að Þ
� �

	 0;
v0
Nv

x�2 Nv ;að Þ
� �

: (25)

Here a ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
is the probability that statistics (h or v)

does not belong to the corresponding interval. This conventional
acceptance area is bounded with dashed rectangle I in Figure 2.
Seven samples of SIM data (7–9, 11–15) are out of the area.
Figure 2. Various acceptance areas for SIM data. Eighteen (of 100)

notable samples are marked. This figure is available in colour online at

www.interscience.wiley.com/journal/cem
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To construct the second area a well-known equation

Nh
h

h0
þ Nv

v

v0
� x2 Nh þ Nvð Þ (26)

is used. This gives an area presented by an equation

Hg ¼ ðh; vÞ : Nh
h

h0
þ Nv

v

v0
� x�2 Nh þ Nv ; gð Þ

� 	
: (27)

It has a triangular shape bounded with hypotenuse II in
Figure 2 and the catheti along the axes. Three points 8, 9 and 10
miss the area.
A similar approach has been proposed earlier in reference [19],

where classification is made based on a linear combination of the
SD and OD

b

ffiffiffiffiffi
h

h0

s
þ 1� bð Þ

ffiffiffiffiffi
v

v0

r
; b

h

h0
þ 1� bð Þ v

v0
: (28)

The tuning parameter b 2 [0,1] is selected to get the sensitivity
or the specificity maximized.
The third region follows from another well-known equation

v=v0
h=h0

� x2 Nvð Þ
Nv

Nh

x2 Nvð Þ � F Nv ;Nhð Þ (29)

where F(Nv, Nh) is the F-distribution. Thus,

Hg ¼ h; vð Þ : F�1 Nv ;Nh; 0:5gð Þ � v=v0
h=h0

� F�1 Nv ;Nh; 1� 0:5gð Þ
� 	

(30)

This unrestricted area is located between two dash–dot lines III
in Figure 2. Nine samples (1–6 and 14–16) lie outside the area.
The fourth area is constructed using an idea given in reference

[8]. It is known [30] that x2(m) distribution can be approximated
with the normal distribution as

x2=mð Þ1=3� 1� s2ð Þ
s

� N 0; 1ð Þ; s2 ¼ 2

9m
(31)

where N(0,1) is the standard normal distribution and m is DoF.
New variables z and w are introduced with the transformation, in
which the normalized SD and OD values

h

h0
� x2 Nhð Þ


Nh
! z;

v

v0
� x2 Nvð Þ


Nv
! w (32)

are substituted in Equation (31). SIM data in the new coordinates
are shown in Figure 3. The hit probability for circle 1 is equal to
1–g . The same area presented in the initial coordinates is
bounded by curve IV in Figure 2. Seven points (1–5 and 17–18)
are out.
It can be seen that area IV does not include the origin point (0,

0) in Figure 2. This is an evident shortcoming as the small SD and
OD values are obviously acceptable. The updated acceptance
area follows from the region bounded by curve 2 in Figure 3. Let
us calculate the probability of paired statistics (w, z) to belong to
this region. Curve 2 crosses the coordinate axes at distance r from
the origin. Therefore, the corresponding probabilities for each of
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 3. SIM data shown in the transformed variables z, w. Areas 1 and

2 have the same hit probability 1–g ¼ 0.95. This figure is available in colour

online at www.interscience.wiley.com/journal/cem

Figure 4. Validation of the acceptance areas at various significance
levels g ; gn is the rate of samples lying out of the areas: I (^), II (~),

III (&), IV (D), V (*). Two lines represent the tolerance intervals. This

figure is available in colour online at www.interscience.wiley.com/journal/
cem
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the four composite subregions are

P0 ¼ 0:25 1�exp �0:5r2
� �� �

; P1¼P2 ¼ 0:5 F rð Þ � 0:5ð Þ; P3 ¼ 0:25

(33)

where F is the cumulative normal distribution function.
Summarizing these values an equation for calculation of r is
obtained

1� g ¼ F rð Þ � 0:25 exp �0:5r2
� �

(34)

that corresponds to a given significance level g . Going back to the
initial coordinates the area that is bounded by curve V in Figure 2
is constructed. Five samples (8, 9, 11, 13 and 15) from SIM dataset
lie outside the area.
These acceptance areas can be obtained at various significance

levels g . Figure 4 shows the result of such modeling performed
with SIM dataset. Abscissa axis represents the considered values
of g : 0.001, 0.005, etc. Ordinate values are calculated as gn–g ,
where gn is the rate of samples that lie outside the corresponding
area (I, II, etc). In the ideal case gn¼ g ; however, some variability
in gn should be allowed. This is represented by the tolerance
intervals [g�2d, gþ2d], where d 2¼ g (g�1)/I, which are shown
by two lines in Figure 4.
The outcomes can be considered as a validation of the

proposed areas. It may be concluded that only three of them are
of interest. Figure 4 testifies for areas I, II and V. Region III is
unacceptable as it contains the arbitrarily large values of h and v.
Area IV is improper as it does not cover the neighborhood of
zero.

3.5. Example 1. BMT dataset

A problem of the medicines counterfeiting is important all over
the world [31]. The NIR spectroscopy together with the SIMCA
method has earlier been proposed [7] as a promising approach in
www.interscience.wiley.com/journal/cem Copyright � 200
the rapid recognition of false drugs. The above-mentioned BMT
dataset represents a real example that was considered in the
method development.
The PCA decomposition with two PCs (A¼ 2) explains 92% of

data variation (7). The average values given by Equations. (9) and
(18) are: h0¼ 0.05 and v0¼ 5.2� 10�5. The DOFs estimated by the
MMs (Equations. (13) and (23)) are equal to N̂h ¼ 4:1 and
N̂v ¼ 2:8, and these estimated using the IQR approach given by
Equation (14) are N̂h ¼ 3:1 and N̂v ¼ 2:3. The latter estimates are
used for the modeling.
Let us begin with the outlier detection in the training set. In

Figure 5 the normalized SD (h/h0) and OD (v/v0) values are shown
together with the relevant critical levels. These levels are
calculated applying Equation (24) at significance Pout¼ 0.05.
The x2-distributions (Equations. (10) and (21)) are employed for
calculation of levels 1, while critical levels 2 are obtained with
F-distributions (Equations. (11) and (19)). It can be seen that level
2 is too large regarding the SD, while for the OD it is too small.
Therefore, three samples from forty are qualified as the outliers
with respect to the OD level 2. They are G11-3, G12-5 and G03-4.
The corresponding p-values given by Equation (24) are 0.006,
0.004 and 0.01. This illustrates the fact that F-distribution is not
appropriate for the SD and OD modeling.
Now, let us consider the test set in BMT data. It includes

35 samples: 15 genuine and 20 counterfeit tablets. In Figure 6 the
samples are presented in the normalized SD–OD plot, which is
similar to Figure 3. The acceptance areas are shown as well: area I
is the conventional (25), area II is the triangular (27) and area V is
built by approximation (31). The significance level (type I error) is
g ¼ 0.01.
The counterfeit tablets (squares) are located far outside all

acceptance areas. Two genuine samples (filled circles) are worthy
of commenting. They are outside of area I but belong to both
areas II andV. Sample G10-04 is characterized by a large OD value
and a small SD value. In contrast, sample G10-01 has a small OD
8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22; 601–609



Figure 5. BMT data. Training set. Lines 1 and 2 represent the critical

values for outlier detection. Levels 1 are calculated with x2-distribution: h

by Equation (10), v by Equation (21). Levels 2 are calculated with

F-distribution: h by Equation (11), and v by Equation (19). This figure
is available in colour online at www.interscience.wiley.com/journal/cem

Figure 6. BMT data. Test set. The counterfeit (&) and genuine (*, *)

samples. Three acceptance areas I, II and V are shown. This figure is

available in colour online at www.interscience.wiley.com/journal/cem

Acceptance areas for multivariate classification
value and a large SD value. Therefore, areas II and V seem to be
preferable to area I.

3.6. Example 2. GRAIN dataset

In this example a calibration problem is considered. This is a
well-known task, in which the water content in grain is predicted
using NIR spectra. A detailed problem description can be found in
reference [29], in which this dataset is designated by ‘truncated
set’. The PLS model with four PCs explains 99% of the X and 92%
of the Y variations, respectively.
The PLS projection composes the space, in which the SDs, hi,

are relevant. Since this is a calibration case, two ODs should be
considered. The X residuals give the first OD, vi, that is obtained
using Equation (16). The Y (studentized) residuals present another
measure, ui. The latter is calculated as ui ¼ ðyi � ŷiÞ2=ð1� hiÞ,
where yi and ŷi are the measured and predicted response values,
respectively and hi is the SD value. All these measures, being
Figure 7. GRAIN dataset. Influence plots for X and Y data. Three acceptance

figure is available in colour online at www.interscience.wiley.com/journal/cem

J. Chemometrics 2008; 22; 601–609 Copyright � 2008 John Wil
calculated for the calibration set, constitute three samplings hi, vi,
and ui (i¼ 1,. . ., 123). They are further modeled by the
x2-distributions in a way that is described in the theoretical
section. The corresponding DoF values obtained by the MMs are
Nh¼ 4.5, Nv¼ 2.4, Nu¼ 0.9. The IQR approach yields the estimates
Nh¼ 4.7, Nv¼ 3.0, Nu¼ 1, which are used later. It can be noted
that both Nh values are rather close to A¼ 4, which is the number
of PLS components used. It was also expected that Nu would be
near 1 as this DoF corresponds to the sum that has only one item.
Figure 7 represents two influence plots, in which the

abovementioned acceptance areas (g ¼ 0.01) are delineated.
The left panel shows the X related measures, i.e. v. The right panel
demonstrates the same objects with respect to the Ydistance, i.e.
u. All objects except sample no. 101 lie inside the areas. This
agrees to the given significance level g ¼ 0.01 as one outsider
may be expected among the 123 calibration objects.
The triangular shape of the sample allocation is clearly seen in

both plots. It is natural to suppose that samples that are located
areas I, II and V are shown. Boundary samples (&) are highlighted. This

ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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closer to the hypotenuse (II or IV) are the most influential in
calibration. To confirm this claim a concept of boundary samples
is applied. This is an essential outcome of the SIC (Simple Interval
Calculations) approach [16], which gives a relevant object
classification in the calibration problems. The detailed method
explanation is presented in paper [32]. The SIC method yields 17
boundary samples highlighted in Figure 7. In the right plot (Y
related) they are in fact located close to the diagonal. In the left
plot this is not the case.
There are some interesting samples in Figure 7. For example,

boundary sample 23 is important for X relations and not so
important with respect to Y, and vice versa, sample 18 has a strong
influence on Y and not so important for X. Objects 94 and 123 are
located near hypotenuse in the left plot but they have very small
u/u0 distances in the right plot. In general, it can be seen that
boundary samples mainly relate to the right plot, which
represents the response Y distances.
4. DISCUSSION AND CONCLUSIONS

It can be concluded that in the modeling of the score and
orthogonal distances, x2-distribution is preferable to F-distribution.
The SD and OD distributions are rather similar. Each of them
depends on a single unknown parameter, Nh and Nv that are the
effective DOFs. The scaling factors (h0 or v0) can be estimated in
advance. The SD scaling factor (h0) does not depend on data and
thus it can be evaluated by the number of objects, I, and by the
number of PCs, A, as h0¼A/I. It is an astonishing fact that such an
evident finding has been still unnoticed in literature.
In our opinion, the estimation of DoF is a key challenge in the

projection modeling. In case of SD, DoF should be close to the
number of PCs used, i.e. Nh�A; and, in case of OD, DoF is
undoubtedly linked to the unknown rank of the data matrix,
K¼ rank(X), e.g. Nv� K–A. However, such evaluations are valid
only under an assumption that either data, or scores, are normally
distributed, which is always a dubious conjecture. Therefore, we
believe that a data-driven estimator of DoF, rather than a
theory-driven one should be used. The conventional MMs is
sensitive to outliers, therefore other techniques have to be
applied. The first approach is the robust estimation that has been
studied in papers [14,19,21,22]. The IQR estimator used in this
paper is of this kind. The second way is the statistical simulation
technique, such as bootstrap and jackknife considered in
references [11,17,33].
It is clear that any classification problem within the projection

approach should be solved with respect to a given significance
level, g , i.e. the type I error. This is an essential practical demand
that has to be complied with a duly care in various applications
such as the process control, anti-counterfeiting actions, etc. At
the same time, the SD–OD, a.k.a. influence plot is a valuable
exploratory tool for the identification of the influential, typical,
extreme and other interesting objects in data. In this plot
different acceptance areas can be constructed. They are the
regions where a given share, 1�g , of the class members belongs
to. Five of such areas were presented in the paper. All of them are
valid, i.e. they comply with the type I error requirement, but not all
of them are practical. The first place should be given to area II that
is constructed using the sum of the normalized SD and OD. The
triangular shape of this area is an evident advantage. For the
explanation of this claim let us return to the data cloud image.
This cloud could be viewed as an egg-shaped or a box-shaped
www.interscience.wiley.com/journal/cem Copyright � 200
one. Needless to say, that this choice has nothing in commonwith
the variable correlations. For example, multivariate normal
distribution always produces the egg-shaped data cloud, and
the correlations only change the cloud orientation. So, the shape
problem is a bit deeper. The conventional data interpretation
approach is mainly based on the near-normal distributions. This
reasonable way of thinking leads to the egg-shaped data cloud,
and then to the triangle shaped acceptance areas. Such
argumentation explains the above-mentioned mystery of the
influence triangle that is widely known but never claimed in
literature. It should also be mentioned that area II can be applied
even for the small values of DoF.
The second place is to be awarded to area V, which follows

from the normal approximation of the x2-distribution. This,
however, can be applied when DoF is large enough, namely, more
than 30 [30]. This is uncommon case though, as DoF usually does
not exceed 10. The conventional rectangle area I takes only the
third place. Other areas (III and IV) are unpractical for the reasons
explained above.
It is worth mentioning that the designed data should be

analyzed with a special care. Usually they do not constitute a
representative sampling. Therefore, the data drivenmethods may
lead to dubious DoF values. The HPLC–DAD data are a typical
example.
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