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Subset selection strategy
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A new technique for representative subset selection is presented. The advocated method selects unambiguously the
most important objects among the calibration set and uses this subset for themodel development without significant
deterioration in the predictive ability. Themethod is called boundary subset selection and it is an inherent part of the
Simple Interval Calculation (SIC) approach. SIC is a method for linear modeling, which is based on the assumption of
error boundedness. The primary SIC consequence is an object status classification (OSClas) that reveals the most
influential objects and also designates the most stable and reliable ones. The OSClas is used as the main tool for
representative subset selection. The presented results are compared with widely used Kennard–Stone algorithm and
D-optimal design procedure employing three real-world examples. Copyright � 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Often, in calibration transfer [1], in applying multivariate analysis
to the industrial data [2,3], and also for other data analytical
objectives, it is necessary to select a special subset from a large(r)
calibration set that shall bear the burden of representing the
entire relevant data model. In general, such a subset must satisfy
two opposing requirements: (1) it should be of maximal
representativity with respect to the entire set, but (2) it should
simultaneously be noticeably smaller than the total set. There
have been presented several solutions to this dilemma [2–5], to
which we append that of the Simple Interval Calculation (SIC)
method. SIC is a method of linear modeling that gives the result
of prediction directly in the interval form [6,7] and also provides
wide possibilities for the leverage-type OSClas. In subsection 2.1 a
brief description of this method is presented. The results of the
SIC design for representative subset selection are also compared
with two well-known techniques: the Kennard–Stone [8] design
and the D-optimal design [9]. All these methods may be used in a
situation when no standard experimental design can be applied
and all objects are candidates for the representative subset.
It is known that representativity is a vague term, which can be

interpreted in different ways. The goal of the paper is to present a
technique that selects unambiguously the most important
objects among the calibration set and to use this subset for
model development without significantly deterioration in the
predictive ability of the model. Most likely this subset should be
called not a representative, but an influential subset.
An important issue inevitably arises here. How can the

predictive ability of a model be evaluated? There are numerous
techniques on how to control this, but generally accepted
approach still does not exist [10]. The application of the Root
Mean Square Error of Prediction (RMSEP) [11,12] calculated with
an independent test set should be applied with care as it greatly
depends on the ‘quality’ of this test set. For example if all objects
of the test set are situated closely to the centroid of the training
set, the predictive ability of the model may be overoptimistic. The
inherent flaw of RMSEP is that such a characteristic of predictive
etrics 2008; 22: 674–685 Copyright � 20
ability evaluates the model only on average. Therefore RMSEP is a
necessary, but not a sufficient characteristic of model quality. So,
there is a need for a more careful comparison of different models’
predictive ability using ‘traditional’ influence plots and/or their
novel analogs called the object status plots (OSP) originated form
the SIC modeling.
2. THEORY

2.1. SIC basics principles

Let us consider a linear regression model

y ¼ Xaþ ee (1)

where y is the n-dimensional response vector, a is the
p-dimensional vector of unknown parameters, X is the (n� p)
predictor matrix, ee is an unknown error vector; ordinarily rank of
matrix X is less than p.
The SIC approach is based on a single assumption that all

errors, ee, involved in calibration problem (1) are limited
(measurement errors in X and y, modeling errors, etc.) [7]. The
error finiteness means that there exists a maximum error
deviation (MED) of error e, which equals b, that is

9b > 0 Prob "j j > bf g

¼ 0; and for any 0< b<b Probf "j j > bg > 0 (2)

where Prob{�} denotes probability that an event occurs. Relying
on assumption in Equation (2), and employing given calibration
data set (X, y) with n samples, it is possible to build the entire
08 John Wiley & Sons, Ltd.



Figure 1. OSP. i: insiders (*, 1); ii: outsiders (&, 2); iia: abs. outsiders (~,
3); iii: outliers (^, 4). This figure is available in color online at www.
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system of inequalities regarding the unknown regression
parameters a,

A ¼ a 2 Rp : y� < Xa < yþf g; where y�i ¼ yi � b; yþi ¼ yi þ b

(3)

A is a closed convex set in the parameters’ space; it is called the
Region of Possible (parameter) Values (RPV). This is a volumetric
analog of the conventional parameter point estimates vector â,
which is calculated by some traditional regression method, for
example PLS.
Using the obtained RPV it is possible to solve a prediction

problem for any given predictor vector x (e.g. a new spectrum or
similar). If parameter a varies over A, it is clear that the predicted
value y¼ xta belongs to the interval

V ¼ ½v�; vþ�;where v� ¼ v� ¼ min
a2A

ðxtaÞ; vþ ¼ max
a2A

ðxtaÞ (4)

The interval V is the result of SIC prediction. In order to find this
interval it is not necessary to build RPV explicitly, as the solutions
of Equation (4) may be obtained by linear programming methods
[13], which are commonly used to find the optima of a linear
function on a convex set. However, the limited solutions of a
linear programming problem can be found if, and only if the set A
is bounded, that is X is a full-rank matrix. In the opposite case it is
necessary to apply a regularization procedure, for example the
PLS projection, and further on use a score matrix T instead of X in
the SIC method [7].
Usually the MED value is unknown and some estimate b is used

instead of b. In the present work two b estimates are used.
Estimator bmin is defined as follows

bmin ¼ min b; AðbÞ 6¼ ?f g (5)

This is a consistent but biased (bmin�b) estimate and bmin is
the lower limit of all possible b values. To estimate the upper limit
of b we apply a traditional statistical approach [14] to the
regression residuals e ¼ ŷ � y. Therefore it is possible to find an
estimator bSIC such that Prob{bSIC>b}> 0.90 and bSIC is as close
to b as possible. This enhanced estimator, bSIC, can be calculated
by formula [7]

bSIC ¼ bmaxCðn; s2Þ (6)

Here bmax¼max(je1j,. . .,jenj) and empirical function C(n, s2)
depends on n that stands for the number of objects in the
calibration set, and on the residual variance s2.
To quantify the quality of SIC prediction twomeasures are used

[7]. The SIC residual is the difference between the center of the
prediction interval (4) and the reference value y, (scaled by b), so
this is a characteristic of bias:

rðx; yÞ ¼ 1

b
y � vþðxÞ þ v�ðxÞ

2

� �
(7)

The SIC leverage is calculated as the width of the prediction
interval, divided by the MED b, so it has the character of
J. Chemometrics 2008; 22: 674–685 Copyright � 2008 John Wil
b-normalized precision:

hðxÞ ¼ 1

b

vþðxÞ � v�ðxÞ
2

� �
(8)

In paper [6] a new OSClas concept was proposed. It was shown
that this classification could easily be performed without an
explicit construction of the complex RPV in the parameter space.
It is instead based on the following statements.

Statement 1. An object (x,y) is an insider, iff jr(x,y)j � 1� h(x);
Statement 2. Calibration object (x,y) is a boundary object, iff
jr(x,y)j ¼ 1� h(x);
Statement 3. An object (x,y) is an outlier, iff jr(x,y)j> 1þ h(x);
Statement 4. An object (x,y) is an absolute outsider (explained
below) for any y, iff h(x)> 1.

Using these statements one can construct an OSP [6], the
archetype of which is shown in Figure 1. This OSP has the same
appearance for any dimensionality of the initial data (X, y) and
for any number of model parameters, which makes it a very
powerful tool. Statements 1–4 divide the SIC residual (r) versus
SIC leverage (h) plane into three areas, each corresponding to one
of the three object categories: insiders (area i in Figure 1),
outsiders (area ii) and outliers (area iii). A sample, for which the SIC
leverage is greater than one (h> 1, area iia in Figure 1, sample 3),
cannot be classified as an insider (area i) for any response value.
Such samples form a special class of objects, which are called
absolute outsiders. According to the SIC approach, all calibration
objects are insiders. Moreover there are objects that play a special
role in calibration. They are boundary samples, or boundary
objects (Statement 2), and these objects are of critical
significance for model construction. This is because the RPV is
not formed by all objects from the calibration set, but only by
these boundary samples. Therefore, if one excludes all objects
from the calibration set except boundary samples, the RPV will
not change (sample 5 in Figure 1 represents a boundary object.).
This means that boundary objects are the most influential ones, at
least from the SIC point of view.

2.2. Kennard–Stone design

The Kennard–Stone [8] design selects a set of objects, which are
‘uniformly’ distributed over the space defined by the candidates.
This is a classic method to extract a representative set of objects
from a given data set. In this method the objects are chosen
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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sequentially. The first two samples are selected by choosing the
two farthest apart from each other. The third object selected is
the one farthest from the first two samples, etc. Supposing that k
objects have already been selected (k< n), the (kþ 1)th object in
the training set is chosen using the criterion

max
k<r�n

min d1r ; d2r ; . . . dkrð Þ
� �

(9)

Here djr, j¼ 1,. . .k, are the squared Euclidean distances from a
candidate object r, not yet included in the representative set, to
the k objects already included in the representative set. The
procedure is very simple and intensively used [4,5,15–17]. One
more advantage of the Kennard–Stone algorithm is that it may
be applied to any matrix of predictors; there are no restrictions
regarding the matrix multicollinearity.

2.3. D-optimal design

The D-optimal design is a frequently used method [4,18–20]. The
principle of this method is to select the objects in order to
maximize determinant of the information matrix jXtXj for the
linear regression model. Fedorov’s [9] exchange algorithm is used
for this purpose. Procedure starts with an initial design of the
requested size. In each iteration, each point in the design is
compared with each point in the candidate list, and the exchange
is made for the pair that optimizes the design. The iterative
algorithm is terminated when there are no further improvements
in the optimality criterion. Samples selected with this criterion are
located at the border of the calibration domain. So, D-optimal
design, in contrast to the Kennard–Stone procedure, aims to
select the most influential, peripheral objects. On the other hand,
when the number of variables is larger than the number of
objects, D-optimal design cannot be applied directly because of
singularity of information matrix.
3. CASE STUDY OVERVIEW

Different strategies of subset selection were investigated for
three real world examples. The first data set represents the wheat
calibration [6]. To demonstrate various aspects of a subset
selection this data set is analyzed in details. The second data set
contains the acoustics spectra used for quantitative determi-
nation of trace oil concentrations in water [21]. This example
evaluates subset selection in application to a rather small data set
and a simple two-dimensional PLS model. In the third example,
the multistage technological process is under consideration [22].
This data set demonstrates the influence of the representative
subset size on the predictive ability of a model.
In each example the various sets and subsets of samples are

considered. To avoid any confusion and in order to make the
statement more clear, the following systematic notation is used.
The G set is the entire set of objects (samples) under
investigation. This is further divided into the calibration C set
and the test T set, which together give the G set, that is C setþ T
set¼G set. The numbers of objects in these sets are noted by NG,
NC and NT, correspondingly. The PLS model calibrated over C set
and validated over T set is named Model_C. The number of PCs in
this model, L, is fixed to be used in further PLS modeling. After
that, some subset selection algorithm is applied to the C set in the
PLS score domain calculated for Model_C. This procedure
designates objects to be included in a representative subset.
www.interscience.wiley.com/journal/cem Copyright � 200
Such a subset is called B set or K set or D set (SIC, Kennard–Stone
or D-design) with respect to themethod applied. Notations NB, NK

and ND are used for the number of objects in such subsets. The
rest of C set samples that are out of the representative subset are
named redundant objects. They form a set, which is called RB or
RK or RD set, in dependence of the algorithm. It is clear that any
representative subset, for example B set, jointed with the
corresponding redundant set, for example RB set, gives the C set,
that is B setþ RB set¼ C set. The new PLS models which are
recalibrated over B, K and D sets and validated over T set, are
named Model_B, Model_K and Model_D, correspondingly. All of
them employ the same number of PCs as Model_C, but span the
different PLS spaces. The values of the root mean squared error of
calibration (RMSEC) calculated with respect to the corresponding
model are named by RMSEC_C, RMSEC_B, RMSEC_K and
RMSEC_D. They are calculated over their own training sets, for
example

RMSEC C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NC � L

XNC

n¼1

yn � ŷnð Þ2
vuut

where yn are the C set reference values and ŷnare the
corresponding calibrated values. Similarly, the values of the
RMSEP are marked by RMSEP_C, RMSEP_B, RMSEP_K and
RMSEP_D. They are calculated over the same T set using the
pertinent model

RMSEP C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

n¼1

yn � ŷCn
� �2

vuut

where yn are the T set reference values and ŷCn are the
corresponding values, predicted with Model_C. Sketches of all
data sets and models under investigation are presented in the
flow-chart (Figure 2).
For each example several SIC models are constructed using the

scores matrices obtained by the correspondingmodels: Model_C,
Model_B, etc. However, for each SIC model, the same bSIC
estimate is used. This value is calculated for Model_C and it is not
revised further as well as the number of PCs obtained from
Model_C.
To show that a subset X (X may be B, K or D) is indeed

representative the following procedure is undertaken:

1: Build a PLS model; Model X; based on the X set with

the given number of PCs; and construct the

corresponding SIC model with the given bSIC value:

2: Validate Model X using the test T set

3: Employ Model X for prediction of samples

from the redundant RX set:

4: Compare the results of calibration and prediction

with results obtained from Model C: ð10Þ

A number of models or subsets characteristics are used in the
examples. Among them there are the SIC and PLS residuals that
are calculated with respect to y values using Equation (7) for SIC
and formula rPLS ¼ y � ŷ for PLS. The SIC and PLS leverages are
calculated by Equation (8) for SIC and standard formula for PLS
[11]. In each case it will be clear which model (C, B, K or D) is
applied for calculation of a specific characteristic.
In graphical presentations a special marking will be used over

the paper in all figures (Figure 3–Figure 7). All objects from the
8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 674–685



Figure 2. Data sets and models under consideration. This figure is available in color online at

www.interscience.wiley.com/journal/cem

Figure 3. Wheat data: Model_C with four PLS components. Calibration set: *, insiders; *,

boundary samples. (a) SIC OSP; (b) influence plot. This figure is available in color online at
www.interscience.wiley.com/journal/cem

Figure 4. Wheat data: SIC OSP for Model_B. Prediction of the T set and the RB set (a) &, test
objects; (b)~-RB objects. This figure is available in color online at www.interscience.wiley.com/

journal/cem

J. Chemometrics 2008; 22: 674–685 Copyright � 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 5. Wheat data: Four PLS component Model_B. *, B set; ~, RB set. (a) PLS y residuals versus

PLS leverages; (b) PLS leverages for the B and RB sets. This figure is available in color online at
www.interscience.wiley.com/journal/cem
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calibration set, in spite of their further role in different models,
are marked by dots. These objects are further annotated with
their SIC designations: filled dots represent boundary samples,
while open dots present insiders. All objects from the test set are
denoted by squares and objects from the redundant sets
are marked by triangles. The shaded markers emphasize the
objects, which may be of special interest, and therefore
mentioned in the text.
Figure 6. Wheat data: PLS leverages for various

and D sets). (a) Model_B; (b) Model_K (c); Mode
www.interscience.wiley.com/journal/cem

www.interscience.wiley.com/journal/cem Copyright � 200
4. CASE STUDY 1: DETERMINATION OF
WATER IN WHOLE WHEAT FROM
NIR SPECTRA

4.1. Exploratory analysis

The Xmatrix consists of NIR spectra in the range of 908–1120 nm,
recorded at 118 wavelengths; the reference y vector includes
models.&, test T set;*, training subsets (B, K

l_D. This figure is available in color online at

8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 674–685



Figure 7. Wheat data: Model_K with four PLS components. ~, RK objects; ~, marked RK

objects. (a) OSP for RK set; (b) leverage versus object number. This figure is available in color
online at www.interscience.wiley.com/journal/cem
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moisture content of 139 samples as quantified in the laboratory
by a standard analytical method (evaporation loss-of-weight).
Outliers are already removed. The data are centered and scaled to
unit variance. For the beginning, the entire data set (139 objects)
is used for modeling. Employing 10%-out cross-validation, the
PLS model with four components is built. Summary results of PLS
regression are presented in Table I.
The first column of Table I reports dimension. The next column

shows cumulatively how much of X has been used. For example
the first score vector accounts for 31.84% of X-variance, two score
vectors account for 86.86%, etc. Similarly column 3 shows how
much of the variation of y is explained. Last column shows the
correlation coefficient rtu between the score vector t and the
associated u vector. There is a noticeable relationship between
the first four sets of vectors.
This PLS subspace is used further for statistical comparison of

the training and test sets. It is known [2] that the results of
comparison depend not on the data itself, but also on the
working variable-subspace, which in its turn depends on the
calibration model, that is the number of PLS components.
Using the established PLS model, a pertinent SIC model is built

and b estimates are calculated, namely bmin¼ 1.03, bSIC¼ 1.5. The
results of this modeling, that is the number of PLS components
and b estimates are used for further analysis.

4.2. Data analysis with calibration set
and test set: Model_C

Applying random selection, the initial data set is divided into the
calibration set comprising 99 objects and the test set containing
Table I. Wheat data [PLS modeling for initial data set (G set, 139 o
characteristics corresponding to chosen PCs

PCs X%-explained y%-explained

1 31.84 51.42
2 86.86 61.93
3 95.58 81.51
4 99.50 89.65
5 99.70 89.81
6 99.77 90.11

J. Chemometrics 2008; 22: 674–685 Copyright � 2008 John Wil
40 objects. As it is mentioned in the Section ‘Introduction’, the
quality of the test set with respect to the calibration set and
constructed model is very important for reliable evaluation of
model prediction ability. The generalization of Bartlett’s test is
applied for comparison of variance–covariance matrices of two
data sets. This test lets us compare the orientation of the clouds of
points in space as well as compare the dispersion of the data
around their respective means. Additionally, the Hotelling T2 test
checks that two centroids are situated at the same place in space.
The implementation of these two statistical tests is described in
detail in Reference [2]. Statistical comparison of the calibration
and test sets gives the following results, C¼ 12.3 (Ccrit¼ 18.4) for
Bartlett’s test and F¼ 0.99 (Fcrit¼ 2.44) for the Hotelling T2 test.
The PLS modeling of the calibration set produces a four-

component model. The summary results of PLS regression are
presented in Table II and they are similar to those reported in
Table I. External validation is done by means of the test set. In
accordance with the general rules of notation given in Section 3,
this model is named as Model_C.
Using Model_C, the SIC model and the corresponding OSP

[Figure 3(a)] can be established. Following the OSClas rules, 19
calibration objects that are located on the border of the triangle
(Statement 2) are boundary samples. Further, all the objects from
the calibration C set are named C1, C2,. . ., C99. All the objects
from the test T set are denoted T1, T2,. . ., T40.
Comparing the SIC OSP, [Figure 3(a)] and the traditional

influence plot [11,12] [Figure 3(b)] one can see that all the most
influential samples revealed from the influence plot are at the
same time the boundary samples determined by OSClas. For
example objects C29, C41 and C69 are boundary samples and
bjects)]. Bold digits indicate the optimal model complexity and

RMSEC RMSEP (CV) rtu

0.622 0.638 0.72
0.551 0.565 0.47
0.384 0.400 0.72
0.288 0.299 0.66
0.285 0.301 0.13
0.281 0.300 0.17

ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table II. Wheat data (general characteristics for PLSModel_C). Bold digits indicate the optimal model complexity and characteristics
corresponding to chosen PCs

PCs X%-explained y%-explained RMSEC_C RMSEP_C rtu

1 30.15 51.80 0.639 0.504 0.72
2 86.76 62.83 0.561 0.496 0.48
3 95.44 82.98 0.379 0.354 0.74
4 99.45 90.74 0.280 0.313 0.63
5 99.70 90.94 0.277 0.311 0.13
6 99.74 91.49 0.268 0.313 0.20

O. Y. Rodionova and A. L. Pomerantsev

6
8
0

they may be treated as important judging by both plots, OSP and
influence plot. If there are similar objects, only one of such objects
is included in the boundary subset. Influential object C28 is an
insider, but it is located very close to the border and to the
boundary object C45. The same situation can be seen with C96
(insider) and C34 (boundary). In the influence plot these samples
are also located very close to each other. So, the SIC OSClas helps
to reveal all important samples in the calibration dataset
(Statements 1–2).
The comparison of OSP and influence plots (Figure 3)

demonstrates that the concept of boundary samples makes
sense not only inside the SIC approach, but it also characterizes
the data set structure optimally and may be useful for a
representative subset selection. At the same time OSP provides a
strict numerical distinction between the boundary and non-
boundary objects.

4.3. Boundary subset: Model_B

According to the OSClas concept, boundary samples detected by
the SIC model are then the most important objects for modeling
and all the other samples may be treated as redundant in this
sense. Further, the boundary set (B set, NB¼ 19) and ‘redundant’
set (RB set,NRB¼ 80) will be distinguished. The RB set is formed by
the calibration objects (C set) that are not included in the B set. It
can be expected that (1) the B set may be used instead of the
calibration C set for model building; (2) the objects from the
redundant RB set may be reliably predicted with the model
calibrated over the B set. From the regression point of view, there
should be a rather small RMSEP for the RB set. From the SIC point
of view, all these objects should be insiders.
To show that the B set is representative the procedure

presented in Equation (10) was applied. As it may be seen from
Table III (rows 1, 2), the calibration error (RMSEC_B) for Model_B is
Table III. Wheat data: summary table (prediction ability of differe

Model Training set RM

Model_C C set 0
Model_B B set 0

Model_K K set 0

Model_D D set 0

www.interscience.wiley.com/journal/cem Copyright � 200
significantly worse than that for Model_C. This may be easily
explained as for Model_B only the most peripheral, influential
objects in calibration set were used. All objects that are located
closer to the center of the model were eliminated. However, just
these objects have small residuals and small leverages
simultaneously.
On the other hand, there is no significant deterioration in

predictive ability of Model_B in comparison with Model_C.
But this is the comparison of two models on average. Now let

us analyze the uncertainty in prediction for individual objects
from the test T set. The SIC status of samples from the T set
determined by both models is absolutely the same, therefore
only one OSP plot [Figure 4(a)] is presented here. The SIC leverage
for each object from the T set calculated by Model_C coincides
with the corresponding SIC leverage calculated by Model_B. This
implies that the width of the SIC prediction interval calculated by
Model_C and Model_B is similar for each object from the test set.
Several outsiders, T15, T27, T28, T29, T32 confirm that some

objects from the T set differ from the B set objects. The presence
of the mild outsiders among the test samples is important for
the trustworthy validation of calibration model stability.
Now let us consider how Model_B predicts insiders, that is the

objects collected in the RB set. If the boundary approach is
correct, then the RB set consists of the most stable samples, with
small leverage and small residual values. First, let us consider the
results of the ‘traditional’ PLS prediction. In Figure 5(a), the PLS y
residuals are plotted against the PLS leverages. The boundary
samples (closed dots) are the most influence samples. On the
other hand, PLS leverages for all boundary samples do not vary
seriously [Figure 5(b)]. It is worth mentioning that there are no
training objects (B set) with very low or very high leverages. This
means that all objects play practically the same role in model
building. As for the test objects (from the RB set), all of them have
rather low leverages and from moderate to low residuals. Only
nt PLS models with four components)

SEC Test set RMSEP

.280 T set 0.313

.426 T set 0.330
RB set 0.246

.212 T set 0.339
RK set 0.311

.266 T set 0.333
RD set 0.305

8 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 674–685
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object C86 has a high PLS residual, but its PLS leverage is the
lowest [Figure 5(a)].
Thus one can conclude that all RB samples are close to the

center of the model and reliable in prediction. Prediction
reliability is confirmed by Table III (row 3).
At the same time, the SIC OSP [Figure 4(b)] shows that all

samples from the RB set are indeed insiders. It may be interesting
to analyze the location of some objects in the influence plot
[Figure 5(a)] in comparison with OSP [Figure 4(b)]. Object C86 has
a high PLS residual [Figure 5(a)] and it also has a high SIC residual
[Figure 4(b)], though it is located in the insider area as its SIC
leverage, and at the same time PLS leverage is rather low. Object
C96 has the highest PLS leverage among the RB samples
[Figure 5(b)] and at the same time it is located very close to the
insider border and even to the border of absolute outsiders.
Thus it can be stated that the goal has been reached: (1) the

model constructed with the help of the selected subset can
predict the test samples with the accuracy that is not worse than
the prediction error evaluated on the whole data set; (2) the high
accuracy of prediction for the RB objects conform the
‘redundancy’ of these samples for model construction; (3) the
boundary set is indeed significantly smaller than the training set,
19 samples out of 99.
It is worthy of mentioning that RMSEP calculated for the RB set

is rather small (see Table III). This may be easily explained by the
concept of the boundary samples. After the selection of the most
important (boundary) objects from the calibration set, the
samples that are left are the most ‘average’ ones and are situated
closer to the center of the model and have low y-residual values
too. That is why prediction of these samples shows much lower
value of RMSEP. This should be taken into consideration when the
calibration and test sets are selected. If test set consists only of
’average’ samples, the RMSEP will be small, but such a model will
be overoptimistic. Though in practice there are some situations
when an investigator uses calibration set on a wider range,
adding extreme samples, but validates the model on the test set
that represents a narrower region. We consider that such a tactic
may be effective in some practical cases, but it may not be used in
general case for the methods of model comparison.
6

4.4. Investigation of representative properties
of different subsets

In this section the boundary approach will be compared with the
Kennard–Stone algorithm (see Subsection 2.2) and the D-optimal
design (see Subsection 2.3). As these methods do not specify the
subset size, it was fixed equal to NK¼ND¼ 19 that is the size of
boundary subset, NB¼ 19. Employing the calibration C set and
Model_C, the Kennard–Stone set (K set) is formed. Objects that
are left in the C set comprise a ‘redundant’ set (RK set). Then, the
procedure given by Equation (10) is applied to the K set. This
establishes Model_K with four PLS components and the
corresponding SIC model with the related OSP. The same
procedure is also repeated with the D-optimal algorithm and 19
samples are selected from the C set in accordance with procedure
described in Subsection 2.3. These samples form the D set. The
objects left in the calibration set are collected in a ‘redundant’ set
(RD set). This results in a Model_D with four PLS components, SIC
model and corresponding OSP. Once again it should be
emphasized that for validation of all models the same test T
set is used.
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Comparing RMSEP values for the various models (Table III, rows
1, 2, 4, 6) one can state that on average the prediction abilities of
these models are slightly different. For Model_B andModel_D the
OSClas of the test objects is absolutely similar. As to Model_K, one
more absolute outsider appears there. Nevertheless the SIC
leverages for Model_K are sometimes equal to, but mostly
greater, than the SIC leverages for Model_B. As the SIC leverage
(8) shows the size of the SIC prediction interval, the prediction
with Model_K will be less precise than with Model_B for the
individual test objects. As to Model_D, the SIC leverages for
the individual test objects coincide with those for Model_B. The
same situation may be observed for the PLS leverages shown in
Figure 6. One can ascertain that the maximum PLS leverage
values in training objects in Model_B [Figure 6(a)] and Model_D
[Figure 6(c)] are essentially less than in Model_K [Figure 6(b)]. The
leverages for Model_B and Model_D are very similar both for the
test and training objects.
Therefore it may be concluded that the D and B sets have

similar properties and the models obtained using these subsets
have a comparable predictive ability. The model established on
the base of the K set is worse in this sense. This may be easily
explained by analyzing the strategy for each subset selection.
Boundary approach and the D-optimal design try to select the
most important, peripheral objects, whereas the Kennard–Stone
algorithm selects objects uniformly.
Now let us analyze how Model_K predicts redundant samples

(RK set). Studying the corresponding OSP [Figure 7(a)], one can
see that there are many objects classified as outsiders. From the
SIC point of view, the K set cannot be considered as a
representative one, as while predicting the redundant samples,
not all of them are insiders. There are totally 12 outsiders and 4
absolute outsiders among them. As to the PLS diagnostics, RMSEP
for the RK set is nearly the same as for the T set, and there are
objects with high leverages that may even be treated as outliers
[i.e. C29 in Figure 7(b)].
Model_D better predicts its redundant objects (RD set). Due to

OSClas, only seven objects within the RD set are outsiders. All of
them are located very close to the model and there are no
absolute outsiders at all. Againmodels built with the help of the B
and D sets demonstrate similar prediction properties.

4.5. Different training sets

To confirm the boundary approach and to show that such a
successful subset selection is not fortuitous, the following
procedure was repeated 10 times:1. Divide initial data set (G
set, NG¼ 139) randomly on the training set (C set, NC¼ 99) and
the test set (T set, NT¼ 40).2. For each such pair of the C and T sets
establish the appropriate PLS model with four components and
SIC model, with predefined bSIC¼ 1.5 (Model_C).3. For each C set
and the corresponding Model_C determine the appropriate B, K
and D sets and apply to them the procedure given by Equation
(10).
It is natural that the number of boundary samples and the

values of RMSE vary slightly, but on the whole the results in
Table IV confirm the effectiveness of the SIC approach.
The last row of Table IV demonstrates the average results (after

10 runs) for the four types of models.
So, the presented example reveals that boundary samples,

which form an influential subset, are not only the significant
objects for SIC models, but also constitute the relevant objects for
bilinear projection models.
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem

8
1



Table IV. Wheat data: PLS models with four components (boundary subset selection and models’ evaluation for 10 calibration/test sets).
Bold digits are the main results that were obtained in the course of statistical simulations

Run # NB Model_C Model_B Model_K Model_D

RMSEC RMSEP RMSEC RMSEP RMSEC RMSEP RMSEC RMSEP

1 18 0.258 0.359 0.328 0.372 0.209 0.362 0.155 0.362
2 19 0.309 0.227 0.456 0.249 0.304 0.281 0.289 0.267
3 19 0.280 0.312 0.426 0.330 0.212 0.339 0.266 0.335
4 21 0.292 0.281 0.471 0.305 0.253 0.304 0.295 0.325
5 24 0.289 0.287 0.449 0.278 0.305 0.293 0.245 0.311
6 21 0.292 0.281 0.471 0.305 0.253 0.304 0.295 0.325
7 18 0.290 0.292 0.469 0.278 0.264 0.283 0.258 0.289
8 21 0.284 0.304 0.423 0.317 0.202 0.328 0.244 0.319
9 22 0.277 0.315 0.477 0.329 0.274 0.334 0.224 0.348
10 21 0.295 0.276 0.453 0.318 0.206 0.315 0.234 0.342
Mean values 0.287 0.293 0.442 0.308 0.248 0.314 0.251 0.322
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5. CASE STUDY 2: DETERMINATION OF
TRACE OIL CONCENTRATIONS IN WATER

The X matrix consists of 1024 acoustic frequency variables (after
FFT). The response vector y represents reference concentrations
of oil in the samples that were specially prepared in the test
laboratory. The calibration C set consists of 40 observations
(objects) and the test T set also consists of 40 observations.
The original (raw data) PLS model shows a nonlinearity in the

first component t–u plot, signifying a nonlinear relationship
between the oil concentration and its influence on the effective
surface tension of water. Therefore the raw y values are trans-
formed by y¼ log(1þ yraw), which is sufficient to linearize the
relationship. The final PLS modeling yields two-component
model, which explains a total of 60% of X-variance, but 99.9% of
y-variance.
Eight boundary samples are detected for the given C set by

OSClas, with bmin¼ 0.154, and bSIC¼ 0.29. Afterwards, three
subsets are selected: the B, K and D sets and three corresponding
models are established. Models’ names have the same meaning
as presented in Figure 2. The predictive ability of PLS models are
presented in Table V.
Model_B shows good prediction properties and it also treats

‘redundant’ objects from the RB set as reliable objects (column 3
in Table V). Other models also show satisfactory predictive ability
on average. OSClas generated by the SIC models presents more
detailed analysis shown in Table VI. Here such a characteristic is
the number of objects that are regarded as the outsiders and
absolute outsiders in the T set, and various ‘redundant’ (RB, RK
and RD) sets.
Table V. Trace oil concentrations in water, PLS models with two c

Model_C Model_B

T set T set RB set T s

0.092 0.100 0.070 0.12

Values in the table are RMSEP values calculated for the sets indicated in eac
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Table VI shows that the status of the test samples determined
by Model_C slightly differs from results for Model_B. This minor
discrepancy is not essential and may be easily explained as only
eight samples are used as the training, B set, for Model_B.
Nevertheless this example confirms the efficiency of selecting the
representative subset using the boundary approach.
6. CASE STUDY 3: PRODUCTION PROCESS
MODELING

The Xmatrix consists of 25 process variables. The response vector
y represents the final quality of the end product. The calibration C
set comprises 102 observations (objects) and the test T set
consisting of 52 objects. The data are centered and scaled as
described in Reference [22]. As previously, the T set is used
throughout the example for external validation for all established
models. The PLS modeling yields a seven-component Model_C,
which explains a total of 99.5% of X-variance and 99.9% of
y-variance.
Forty-six boundary samples are detected for the given C set by

OSClas, with bmin¼ 0.040 and bSIC¼ 0.058. Afterwards three
subsets are selected for evaluation: the B, K and D sets and
three corresponding models are built. Models’ names have the
samemeaning as shown in Figure 2. The predictive abilities of the
obtained models are shown in Table VII. Similar to the previous
examples there is no deterioration of predictive power of
Model_B in comparison with Model_C. On the other hand, the
predictive performance of Model_K and Model_D is worse. It is
interesting to analyze how many common/different objects are
omponents

Model_K Model_D

et RK set T set RD set

2 0.111 0.106 0.08

h column.
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Table VI. Trace oil concentrations in water: SIC-modeling (OSClas for different sets)

Training set Test set (NT¼ 40) Redundant sets (NR¼ 32)

Outsiders Abs. outsiders Outsiders Abs. outsiders

C set (Model_C) 8 1 — —
B set (Model_B) 10 0 3 0
K set (Model_K) 17 1 9 0
D set (Model_D) 10 1 5 0

Table VII. Production process modeling, PLS models with seven components

Model_C Model_B Model_K Model_D

T set T set RB set T set RK set T set RD set

0.018 0.018 0.010 0.020 0.018 0.027 0.028

Values in the table are RMPEP values calculated for sets indicated in each column.

Subset selection strategy
included in each subset. Sketches of the three subsets are
presented in Figure 8.
The percentages in intersection areas show the portion of

common objects. Only 20% of calibration objects are selected by
all strategies. That means that in general each method forms its
own subset.
In some applications, a representative subset comprising 45%

of calibration objects may be considered to be too large. So, it is
important to analyze the influence of the subset size on the
prediction quality of the corresponding models. According to
OSClas, the minimum number of boundary objects is determined
by bmin value. In the example, the minimal boundary set consists
of eight objects (NB� 8). Amplifying b from b¼ bmin to b¼ bSIC,
the increasing B sets are formed. In parallel, the Kennard–Stone
algorithm and the D-optimal design are used for comparison of
the subsets (K and D sets) of the same size. For each selected
subset a new PLS model with seven components is established,
and RMSEC and RMSEP (over the same T set) are calculated. In
such a case, RMSEC and RMSEPmay be considered as functions of
Figure 8. Subsets of 46 objects each. B–B set, K–K set, D–D set. This
figure is available in color online at www.interscience.wiley.com/journal/

cem
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the subset size (Figure 9) evaluated for the three types of models
(Model_B, Model_K and Model_D).
Dashed line (line 4, Figure 9) indicates RMSE values for

Model_C. The dimensionality of the PLS space is not changed,
but, of course, each subset forms its own PLS vector system. That
is why RMSEC and RMSEP are not monotonous functions of the
subset size. Explicit instability at the initial interval from 8 till
15 samples conforms that corresponding models are unstable. It
is obvious that, in general, the subset of 8 or 10 objects is too
small for establishing a model with 7 PLS components. As
expected, the larger the subset, the closer the RMSE values to that
calculated for Model_C. Figure 9(a) (curve 1) shows that RMSEC_B
for each B set is always greater than those characteristics for other
kinds of subsets. This confirms the role of boundary objects as the
most influential ones that have rather high residual and high
leverage. On the other hand RMSEP_B in most cases is the best
(the lowest) among other similar values and it converges with
RMSEP_C value obtained with overall Model_C. See Figure 9(b)
(curves 1 and 4).
Analyzing curve 1 in Figure 9(b) we can state that if the goal is

to choose a subset of objects that could be reliably used for the
model construction without any compromise in predictive ability,
not less than 42 objects should be used. This example shows not
only the importance of boundary objects, but also confirms that
the number of boundary objects, detected by OSClas is very close
to optimal.
6

7. DISCUSSION AND CONCLUSIONS

The new method for representative (influential) subset selection
has been presented. It is based on a combination of the SIC
approach with chemometric bilinear projection methods (PCR,
PLS). One of the main issues of the SIC approach is the OSClas,
which has been shown to be a powerful and visually simple
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 9. Production process modeling, PLS models with seven components. RMSE in dependence

of the size of the representative subset, 1: Model_B, 2: Model_K, 3: Model_D, 4: Model_C. This figure is
available in color online at www.interscience.wiley.com/journal/cem
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instrument for the detailed analysis of the status of individual
objects and therefore useful for the representative subset
selection. The three different real-world examples presented
here originate from various chemical problems; they have very
diverse internal data structures and PLS models of different
complexity are established for them. This allowed us to
demonstrate the advocated method in a variety of settings.
The examples show that the boundary samples, which form the
influential subset, are not only significant objects for SIC models,
but they constitute the relevant objects for bilinear projection
models as well.
It was shown that the strategy of selecting the representative

subset using the boundary samples is not user dependent, that is
not subjective. It is also important that the SIC approach uses no
new or extra parameters, which cannot be evaluated using the
data set and have to be set a priori.
It is worth mentioning that the term ‘redundant sample’ in

application to insiders in a training set should not be interpreted
directly. Of course such kind of samples is useful for the initial
data overview. The more samples are in the training set, the more
accurate is the determination of model complexity, that is the
number of principal components in PCR, or PLS modeling, and
the more accurate is the bSIC estimate.
Analyzing all three techniques for the subset selection

described in the paper we can state the following. The
Kennard–Stone procedure is effective in the case when it is
necessary to divide the initial data set into two equivalent sets, for
example into the training and test sets. The Kennard–Stone
method selects samples uniformly and, therefore, it works less
effectively than the other two procedures for the purpose of
selecting the most important objects. The D-optimal design and
boundary approach demonstrated perfect performance for the
purposes of the influential subset selection. Nevertheless we
believe that the SIC method has several advantages. It: (1)
determines the unambiguous number of influential objects for
the data and model under consideration; and (2) it takes into
account not only X values, but also y values.
At the same time, the D-optimal design is often used for the

selection of the training set. Here the researchers should realize
that after moving all the influential objects to the training set,
the remaining test set (samples left in the initial data set)
represents a narrower region and such a test set validation may
be misleading.
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8. SOFTWARE

All presented SIC calculations were made with software,
programmed and implemented as an add-in for Excel, which
includes: various NIPALS algorithms [11] for bilinear matrix
decompositions, a standard Simplex algorithm [13,23] for
optimizations, as well as a necessary suite of special procedures,
for example for preprocessing, transformations, etc. This software
is developed for internal use, but all algorithms are of well-known
types and may be easily implemented using various standard
packages. The Kennard–Stone and D-optimal procedures are
programmed using VBA and Excel interface.
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