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The role of chemometrics in process analytical technology (PAT) solutions development is presented in the review on
the basis of publications from 1993 to 2011. Main areas of application, stages of implementation, instruments, and
chemometric methods used for the PAT implementations are reviewed. Generally speaking, PAT is considered to be
an approach applicable not only in pharmaceutical industry but also in any production area such as food industry
and biotechnology. PAT is claimed to be a new flexible manufacturing concept that accounts for variability and
adapts the process to fit it. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The term process analytical technology (PAT) has become widely
popular (in a rather small community) since 2004 when the Food
and Drug Administration (FDA) published the Guidance for
Industry [1]. We presume that the meaning of PAT is well known
to the readers of this review; therefore, only a short quotation
from the aforementioned guidance [1] is provided. “PAT is a
system for designing, analyzing, and controlling manufacturing
through timely measurements (i.e., during processing) of critical
quality and performance attributes of raw and in-process materials
and processes, with the goal of ensuring final product quality.”
The history of this document could be found in a review [2] that

gives a detailed account of the extensional and intentional aspects
of the PAT phenomenon. The scope of the current paper is
much more specific as it illuminates just a single issue being
chemometrics in PAT. The word chemometrics is never mentioned
in [1]. Instead, the term multivariate mathematical approaches is
used. These approaches are declared to include “the design of
experiments, response surface methodologies, process simulation,
and pattern recognition tools”. However, it is clear now that
chemometrics constitutes the essence of the matter. We can
definitely state that such PAT was de facto used by many
chemometricians, who, for more than 40years, have been applying
PAT without knowing it [3].
The PAT approach could be viewed in both narrow and wider

scopes. In the first case, PAT may be applied to pharmaceutical
industry only, and its methods are limited by a rather scanty list
of the aforementioned PAT tools. In this case, PAT is an approach
that has been exhaustively defined by the Food and Drug
Administration functionaries, and therefore, it may not be
interpreted in a broader sense. The wider view is not restricted
to drug manufacturing alone, and so PAT can be used in any
production area, that is, in biotechnology or food industry. PAT
instruments, methods, and tools are being developed endlessly,
and their list cannot be limited in principle. According to this
interpretation, PAT is an approach that is continuously developed
through collective input of researchers who are contributing by
means of numerous publications. This can be seen in line with
the old definition [4] that PAT is what PATtioners do.

Needless to say, this review represents the wider scope of PAT.
Therefore, we consider that the first paper [6] on PAT can be traced
back to 1984. The numerous publications onmultivariate statistical
process control (MSPC) [6–10] followed shortly after. There is no
doubt that MSPC is a PAT tool, and the Guidance for Industry [1]
confirms this. It is even more striking that only 5% of papers
that describe tools used in PAT apply MSPC. Process analytical
chemistry (PAC) [11–22] is a direct forerunner of PAT. Sometimes,
it is difficult to distinguish between the PAC and PAT approaches
as they both aim at manufacturing control and quality
improvement. One could say that PAT inclines to pharmaceutical
manufacturing, whereas PAC is not restricted to any production
area in particular. We suppose that the method of the process
analysis can be seen as the discriminating rule: off-line and at-line
monitoring is for PAC, and strictly on-line and in-line monitoring is
for PAT [23]. This, however, could be disputed – as late as 1984,
some in-line methods has been proposed [11] and applied [5].

Working on this review, we have analyzed about 690 relevant
papers, which have been published between 1993 and 2011,
with some exclusion. Fishing out the PAT papers was a difficult
task, as many authors claim having conducted a PAT research
but merely present roundabout reflections. On the other hand,
there are plenty of studies, for example [24–26], which represent
good PAT research but never mention this term. Among the 690
papers, directly or indirectly related to PAT, only 30% employ
chemometrics. These 245 chemometrics-related PAT (CRPAT)
papers constitute a representative set that is analyzed further
in this review. Figure 1 demonstrates the distribution of the
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papers among 63 journals, which are grouped in six categories.
About 100 of CRPAT papers are cited in this review.

The review is organized as follows. Section 2 presents three
main production areas and the PAT solutions utilized in these
areas. Section 3 is mainly devoted to indispensable stages of PAT
solution implementation from the chemometric, not procedural,
point of view. In Section 4, we provide a brief overview of
instruments that are fit for in-line and on-line monitoring and are
used in PAT solutions. Section 5 is the most important one as it
presents the main mathematical/chemometric methods applied
or sometimes specially designed for PAT solutions.

2. OBJECTS

Traditionally, PAT is considered as a specific pharmaceutical tool in
line with the PAT Guidance document. The latter claims that the
purpose of PAT is intended to support innovation and efficiency
in pharmaceutical development, manufacturing, and quality
assurance [1]. We prefer to see a bigger role for PAT solutions, as
there are numerous applications of it in biotechnology, food
industry, etc. In fact, from a chemometric point of view, it is
impossible to separate, for example, the analysis of manufacturing
of yeasts used in drug production and yeasts used for feed

production. Therefore, we consider PAT as a universal methodology
regardless of the area it is used in. The distribution among various
industries that (currently) employ PAT is presented in Figure 2.

2.1. Pharmaceutical industry

The majority of PAT applications (about 70%) are developed for
pharmaceutical industry mainly because of the requirements of
the regulatory bodies in the USA and the EU. About 25% of
the solutions focus on the identification and quantification
of the active pharmaceutical ingredient (API) in the course of
manufacturing, for example, during granulation [27], as well as in
the finished products [28,29]. The necessity to assure the intended
product quality during a production process encourages the
implementation of on-line and in-line control of critical manufac-
turing stages (Figure 2b). A number of applications investigate
model development for prediction of the mixing [30] and blending
[31,32] homogeneity under different process conditions. The
purity of the end product and its physical, chemical, and biological
behaviors are often affected by the crystallization stage, which
is one of the important manufacturing units [33–36]. The imple-
mentation of the general PAT principles during drug manufactur-
ing at a small hospital pharmacy is described in [37]. An on-line
process control was performed for the identification of raw
material, blend uniformity analysis, and final content uniformity
of capsules.

2.2. Biotechnology

Bioprocesses for the API production by fermentation (e.g.,
antibiotics) belong to one of the segments where PAT solutions
help in monitoring, control, and significant enhancements of
process understanding. In [38], authors show that combining
different types of multistage process information provides the
possibility to predict the final titer of a nominal antibiotic
fermentation. The potential impact is in the improvement of
the process analysis, diagnostics, as well as redesigning both
monitoring and sampling schemes.
The PAT approach is successfully used to monitor and

understand biotechnical processes, which are far afield from the
pharmaceutical industry, for example, fermentation processes
in biogas plants. Study [39] focuses on a mesoscale biogas
plant unlike most studies devoted to the investigations of

Figure 1. Distribution of the chemometrics-related process analytical
technology papers among the journals grouped in six categories.

a. Areas using PAT methodology b. PAT in Pharmaceutical Industry 

Figure 2. (a) Areas using process analytical technology methodology, (b) process analytical technology in the pharmaceutical industry.
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laboratory-scale or minor pilot plants only. A robust multivariate
calibration/predictionmodel for the anaerobic digestion processes
is established. This enables designing reliable low-cost PAT
monitoring systems in biogas production.

2.3. Food and feed

In the food industry, PAT approach fully incorporates methods
of improvement of the end-product quality on the basis of the
investigation of raw material properties and process variable.
Monitoring of the fed-batch cultivation of filamentous fungi used
both in pharmaceutical and food industry, by means of in-line
multiwavelength fluorescence measurements and chemometric
analysis, is presented in [40].
A number of studies were conducted before 2004 when PAT

initiative was not claimed. The general approach is to consider
an industrial experimental problem starting with the definition of
the production stages, utilization of an appropriate experimental
design, and employment of measurements and parameters that
reflect the desired phenomenon. A study such as this, together
with a real-world example of low-fat mayonnaise production as a
four-stage process, is presented in [19]. Fluorescence spectroscopy
coupled with chemometric techniques have been identified as
ideal PAT tools for process monitoring and quality control of sugar
production [41].

3. STAGES

In this section, we present the essential stages of the PAT design
and implementation. In this context, the term stage relates to
PAT development rather than to manufacturing steps. However,
the former partly overlaps with the production stages. The analysis
of CRPAT papers enables us to suggest the following sequence of
stages: feasibility, quality by design (QbD), and before, in, and after
the process actions. Figure 3 shows the distribution of the CRPAT
papers among the stages. This split is of course ambiguous, as a
paper can relate tomany stages, but even a not-perfect classification
helps us to disclose the tendencies and trends in the current
PAT research.
Half of all papers are devoted to feasibility studies. The reasons

for this are clear; the laboratory studies are easier to conduct,
and the results of such studies are usually published. As to
manufacturers, they do not always welcome publication of the

results to avoid the disclosure of technical information. We
suppose that many more interesting PAT implementations exist,
but we either do not know about them or only heard little
something from the fellow chemometricians.

3.1. Feasibility studies

Before a PAT solution is suggested to amanufacturer, it is important
to test it in the laboratory to assure that the designed approach
works well enough. Often, there is another goal: to obtain lab-scale
results that help convince the manufacturer of the necessity of
the proposed solution. These preliminary studies investigate three
different issues.

The first set of studies evaluates the properties’ quantification
potential or monitors specific operations. The goal of study [42]
is the extraction of the meaningful information in real-time near
infrared (NIR) measurements of coagulation milk. In [43], two
techniques, the NIR spectroscopy and acoustic chemometrics,
were investigated as means to monitor the maize silage spiked
biogas process. A potential ability of the microwave resonance
technology sensor to predict the final granule size was studied
in [44]. The feasibility step can be considered as the “simplest”
as deviations in material properties and experimental conditions
are ordinarily supervised by an analyst.

Papers of the second type analyze the impact of variations in the
real manufacturing conditions, such as temperature, pressure, and
flow turbulence, as well as variations in the input material. Paper
[45] analyzes and models the effect of temperature variation on
NIR spectra and nuclear magnetic resonance (NMR) relaxation
data. In [46], a special method that can efficiently model the
external nonlinear effects is presented. Investigation of the effects
of scatter on quantitative analysis of the chemical composition
is presented in [28]. An algorithm that addresses the effect of
multiplicative light scattering is proposed in [47]. Study [48]
demonstrates how multiple external factors can be removed from
the spectral data by orthogonalization.

Feasibility papers of the third type are devoted to the
development of the reliable calibration models. In [49], a systematic
prediction error correction method is proposed. This method aims
at maintaining the predictive abilities of calibration models in the
cases where spectrometer or measurement conditions are altered.
In [10], a two-stage partial least squares (PLS) methodology for
the monitoring of processes that are known to be affected by
sources of variation is presented. These variations are an inherent
part of routine operations. A new methodology for construction
of calibration sets is developed in [50]. It is based on a selection of
laboratory samples encompassing the same variability sources as
the production samples.

It is hard to say how many feasibility studies have been, to any
degree, implemented in full-scale plants, but this laboratory
stage is, of course, indispensable.

3.2. Quality by design

One of the basic ideas of the PAT Guidance [1] is that quality of the
end-product “should be built-in or should be design” and that PAT
procedures “would be consistent with the basic tenet of quality by
design”. At the same time, the studies on the QbD procedures are
emerging as specific areawith its own vocabulary represented by a
set of abbreviations, such as QTPP (quality target product profile),
CPP (critical process parameter), DS (design space), and CQA
(critical quality attribute). More and more papers use QbD along

Figure 3. Process analytical technology stages studied in the chemometrics-
related process analytical technology papers.
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with PAT in their titles or keywords. This could attract additional
attention to publications, but from our point of view, this is nothing
but a wordplay. As far as QbD is concerned, this is of course an
inherent part of the design and development of well-understood
processes. Usually, the QbD tools, for example, design of
experiments (DoE) and response surface analysis, help develop
DS and reveal the sources of variability of the process. Afterward,
a PAT tool can be used to control the process in the established DS.

Paper [51] uses the QbD approach to study calibration design
that had large variations in drug concentration (15%–85% w/w)
and compaction pressure (100–500MPa). These properties are
used as process variables in the development of a pharmaceutical
formulation. Such a large variation in both chemical and physical
variables does not allow building a PLS model with good
predictive ability; therefore, the three-way calibration method
was employed.

In [52], the QbD approach is applied both to end products and
process development. The authors consider a manufacturing
process that involves five unit operations: high-shear wet
granulation, milling, blending, compression, and coating. DoE
and response surface analysis were used to evaluate the influence
of three designed factors (water amount, wet massing time, and
lubrication time) on response variables and to establish design
space. In addition, many other variables, including both process
variables and quality attributes, were considered across all unit
operations. The application of multivariate analysis (principal
component analysis (PCA) and PLS) helps predict the impact of
material properties and process variables on the intermediate
and final product quality attributes. As it is fairly noted in [52],
QbD and multivariate data analysis are complementary tools.
The level of understanding would not be achieved with either
approach alone.

3.3. Before the process

Routine control of the rawmaterial properties is an essential part of
PAT. In pharmaceutical industry, such a procedure is mainly used
for confirmation of a satisfactory quality of each lot of the
input materials. In [53], a procedure for the routine testing of
pharmaceutical substances directly in warehouses is presented.
NIR measurements are conducted by remote fiber optic probe
through the closed polyethylene (PE) bags. Direct PCA approach
to classification failed because about 25% of the drums with
good substance were classified as outliers. This was a great
disappointment both for process engineers and instrument
supplies. To make the whole procedure reliable, a special
trichotomy classification procedure, which takes into account
possible spectra distortion by PE bag folders, was designed.

Paper [54] investigates the application of fiber-optic probes with
NIR spectrometers for the measurements of powder samples in
process streams. It is shown that the magnitude of the spectral
residuals depends on both the sample speed and the sample area
presented to the probe.

In the food industry, variations in material properties often
originate from the biological nature of the raw stock. These
unwanted variations influence the end product. Sorting raw stock
into homogeneous groups helps stabilize the end-product quality.
Three such methods are presented in [20] with application
to baking.

Sometimes, it is necessary to measure specific properties of
input materials to tune the process parameters. In biotechnology,
the at-line determination of input material properties is presented

in [21]. NIR measurements are applied to rapidly determine
moisture content in the forest biomass that was used for
energy production.

3.4. In the process

Implementation of PAT solutions designed in a laboratory (or even
tested in a small-scale plant) faces various difficulties in the course
of transferring these solutions to full-scale manufacturing. Obvious
challenges are posted by the nonideal conditions compared with
those in a laboratory, limited possibilities of varyingmanufacturing
conditions, unfeasibility to test PAT solutions at extreme fault
conditions, etc. An active role of product engineers is also of great
importance. As a rule, manufacturing staff is extremely busy
solving daily problems, for example, spoilage abatement. Under
such pressure, they have no time to analyze historical process data
(already recorded and bulked) and to implement prospective PAT
solutions. In connection to this, it is worth referring to paper [55],
which describes the whole chain from feasibility study to real-time
on-line application. From this paper, we can conclude that
company engineers greatly help in project implementation. The
aim of the solution is to develop an on-line process monitoring
and control system for the automatic dosing of ammonia for
production of low methoxylated amidated by using on-line
optical-fiber NIR transmittance spectroscopy of the amidation
liquid. The authors describe all challenges related to transferring
the laboratory NIR measurements and synthetic calibration model
to the full-scale plant. In particular, the paper discusses the
adjustments to nonideal conditions of real-time manufacturing.
The implementation was very successful and resulted in multiple
benefits of the improved control of the ammonia dosing system.

3.5. After the process

Application of the PAT solutions with real-time release testing can
replace the end-product testing, for example, in-line monitoring of
the pellet coating thickness can replace the time-consuming final
drug release test [56]. At the same time, this does not replace the
quality control step. The aim of the latter is not to investigate the
end product properties in details but to confirm that all batches
are of the same satisfactory quality. This may be implemented as
a solution for a classification problem of attributing units of the
specific end product belonging to the class/classes of product with
satisfactory quality, as it is performed in [57,58]. The absence of a
pertinent quality control step at one of the Russian pharmaceutical
factories led to a fatal accident in February 2009. A batch of
ampoules for anesthesia, Lysthenon, was wrongly marked as
mildronate, a remedy for heart and blood vessel diseases. Two
persons died after injections because of respiratory standstill [59].
At the same time, NIR measurements of closed ampoules, as
presented in [60], provide rapid on-line control and could prevent
such accidents.
Another approach is to predict key end-product properties

such as API content [61,62].
There is one more important issue that should be taken into

account. Many circumstances can decrease model predictability
or even make it invalid. There could be numerous reasons for this,
for example, deterioration of manufacturing equipment, aging of
sources, probes, and detectors in measuring instruments, and
environmental influences, such as temperature and humidity
variation. Thus, the essential part of each PAT solution is
continuous model validation. Methods that provide multivariate
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calibration transfer are often applied to fulfill this purpose. A
detailed review is presented in [63]. In paper [55], described in
Section 2.4, the authors also mentioned this stage in their PAT
solution. Despite the fact that the predictions are regarded with
high confidence at all levels of the organization, process operators
still acquire samples for titrations. This is performed to both
validate the NIR predictions and maintain the ability to continue
production in the event of a breakdown of the ammonia
dosing system.

4. INSTRUMENTS

Instruments applied in PAT solutions should be able to reflect the
state of the process in a real-time scale. Various process analyzers
are incorporated as on-line and in-line process monitoring devices.
The distribution among different instrumentation methods
applied in PAT is shown in Figure 4. The majority of analyzers are
spectroscopic instruments, which are built into manufacturing
process by means of flow cells, quartz windows, and immersion
probes. An overview of spectroscopic analyzers is presented by E.
Skibsted and S. B. Engelsen [23]. The authors picturesquely explain
the differences between a traditional industrial process control and
the advantages of remote sensing. General requirements for
spectroscopy analyzers and various spectroscopic techniques,
such as Fluorescence, Visual, NIR, IR, Raman, and H1NMR, are
reported with their areas of application as well as the pros and
cons in implementation.

4.1. Near infrared

Near infrared instruments rank first among PAT analyzers. NIR
spectra can be recorded without sample preparation, and this
provides possibilities to conduct on-line and in-linemeasurements.
The ability to penetrate inside of a sample provides NIR spectra
monitoring and calibration with both chemical and physical
properties, such as viscosity [64] or crystallinity [36]. A fiber-optic
cable for an NIR instrument can be up to 100m long and enables
remote spectra measurements in hazardous or super-sterile
environment. In industrial applications, spectra acquisition and
observed samples are far from the well-controlled laboratory
conditions. Samples may be highly heterogeneous as in the case
of moisture determination of forest biomass [21], or samples/
substance may be packed in closed PE bags [53]. Various external

conditions, and first of all temperature fluctuations, should be
taken into account [65].

4.2. Raman spectroscopy

There is an increasing interest in using Raman spectroscopy.
Similarly to NIR, Raman spectroscopy can be used without sample
preparation and implemented directly on the production line by
using optical fibers with probes or quartz windows. Paper [66]
presents the first Raman application to API in tablets. In paper
[67], it was shown that Raman spectroscopy used by means of
fiber-optical immersion probe is suitable for the in-line real-time
monitoring of the blending process. Feasibility studies devoted
to identification of polymorphic forms and phase changes
monitoring are presented in [68,36]. The employment of Raman
spectroscopy for quantitative assessment of chemical content is
described in several publications. Powder samples are analyzed
in [29], whereas API in intact tablets is predicted in [61]. The
possibility for elucidating chemical reaction information from the
Raman data arrays is shown in [69,70]. High selectivity to inorganic
substances and polymorphs and low sensitivity to water make
Raman spectroscopy a promising instrument for in-line and on-line
process monitoring.

4.3. Middle infrared

Middle infrared spectroscopy is widely used in analytical practice
both for scientific studies and routine analysis in the laboratories.
One of the main obstacles for industrial application is strong
absorption of water in 2500–4000nm range. This can be
surmounted by application of the attenuated total reflectance-
Fourier transform infrared spectroscopy (ATR-FTIR) technique.
The most widely used ATR-FTIR application in PAT is the in-line
monitoring of crystallization, which is an important purification
unit operation in manufacturing of pharmaceuticals. In paper
[34], the ATR immersion probe was employed to monitor the
solute concentration throughout the crystallization process of
sulfathiazole from different mixtures. In-line monitoring of the
batch cooling crystallization of two monosodium glutamate and
L-glutamic acid is described in [33]. Another obstacle pointed out
in paper [23] is the inability to use an optical fiber probe. We
foresee that this problem can be avoided with the application
of new technologies, such as chalcogenide infrared fibers for
1500–6000nm spectral range and polycrystalline infrared fibers
for 4000–18000nm spectral range.

4.4. Other instruments

There is a variety of other analytical methods that were shown to
be applicable in PAT solutions.

Fluorescence analysis, in particular, two-dimensional excitation–
emission spectroscopy, is a sensitive in-line monitoring tool used
in food [17] and biotechnological industries [40,71]. Visual
imaging is used to determine particle size and mean layer
thickness in monitoring of fluid bed pellet coating process
[72,27]. Hyperspectral imaging [21] is applied to distinguish
pine from spruce and to identify bark. It is shown that such
an approach can replace slow laboratory analysis. A feasibility
study, which applies acoustic measurements to fluidized bed
granulation of a fertilizer product at a semi-industrial pilot plant,
is presented in [73]. In paper [29], the Terahertz (50–300 cm�1)
pulse spectroscopy is shown to be a high-throughput technique
with many areas of potential application in pharmaceutical

Figure 4. Instruments and analyzers used in process analytical technology
applications.
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industry. X-ray diffraction [74] is one of the most widely used
methodologies for the in situ analysis of kinetic processes involving
crystalline solids. Application of the X-ray diffraction together with
smoothed principal component analysis can significantly improve
the signal-to-noise ratio and hence lower the detection limit.
In [75], the authors propose a procedure that can be implemented
as the high-performance liquid chromatography (HPLC) analysis that
runs according to PAT concept aiming for real-time release. Paper
[76] discusses the application of NMR, which has a huge future
potential as PAT analyzer.

The necessity of rapid in-line and on-line monitoring of
process data, innovations in instruments, and design of new
multivariate data processing methods will inevitably change
the diagram presented in Figure 4 in the future.

5. TOOLS

In this section, we consider the “multivariate tools for design, data
acquisition, and analysis” [1] or, in other words, chemometric
methods employed to find a PAT solution. Figure 5 presents
the frequencies of a particular method usage in PAT applications.
It is worth mentioning that the length of the related subsections
that follow in this chapter does not correspond to the size of
the pie-chart slices in Figure 5. We consider that some rarely
used methods are quite promising and therefore deserve
closer attention.

The present part of the review cannot be used as a tutorial as
we do not explain the methods in detail. For the latter purpose,
we could recommend an excellent paper on chemometrics in
PAC [77] or the newest tutorial on multivariate data analysis in
pharmaceutics [78].

5.1. Partial least squares

Partial least squares is the most popular chemometric tool in
PAT. However, the majority of such PLS/PAT solutions can be
presented by a simple formula

API ¼ PLS NIRð Þ:

Publications based on the aforementioned formula present
the routine applications of PLS modeling; therefore, they are

not reviewed here. An exception could be made for paper [31]
that claims the old-fashioned ordinary least squares (OLS)
algorithms took advantage of pure component scans to
produce the most sensitive calibrations when compared with
PLS regression. Because the authors luckily avoid their own
interpretation of sensitivity, which is a very ambivalent
concept, therefore, we cannot evaluate the efficiency of the
NIR calibration method applied for pharmaceutical blend
monitoring.
An interesting challenge in the PLS analysis of the process

data is combining the predictor variables’ blocks originated from
the different sources, for example, spectral readings with process
parameters [24] or NIR spectra with Raman spectra [79], in one
regression model. A similar problem arises in simultaneous
modeling of different process stages [80]. A plain augmentation
method does not work as it reduces the influence of (very)
important but scanty process variables, which are typically
counted in dozens whereas spectral readings are counted in
thousands. Alternative approaches are LS-PLS [25] (least squares -
partial least squares) regression and path modeling [81]. The
LS-PLS algorithm starts with regressing the response on the design
variables by using OLS. The residuals are then regressed on the
spectra by using PLS regression. PLS scores are combined with
the design variables in a new OLS regression, and updated
regression coefficients and residuals are calculated. This procedure
is iterated until a stable solution is obtained. This approach has been
applied in optimizing a fish feed production process [24].
Paper [82] aims at investigating the potential benefits of

combining NIR and MIR spectral regions for employment in
calibration development of soybean flour quality properties.
Initially, both spectra blocks are analyzed separately using single
PLS, and then, they are combined in modeling by multiblock PLS
in a parallel mode (MB-PLS) or in a serial mode (S-PLS). The
results seem to be moderately advantageous, as each multiblock
approach just reduces the number of PLS components, whereas
root-mean square error of cross-validation values remain rather
similar to the single NIR/PLS model.
Basic methods of path modeling are concerned with a

network of data blocks, where certain matrices (data blocks)
are defined as input data and some others as output data blocks.
Path modeling suggests that the regression should be carried
out in steps. At each step, a weighing procedure, which reflects
the emphasis of the analysis, should be applied. For example,
there should be a weight vector found such that the score vector
has certain optimal properties [81].
On the other hand, it is problematic when single block of

predictors X is regressed on multiresponse block Y. Each sample
in the Y block could be a continuous curve representing a
specific property of the sample, for example, the particle size
distribution or the drug release profile. In [56], a new method
for the prediction of drug release profiles during a running pellet
coating process from in-line NIR measurements has been
developed. The NIR spectra are acquired during a manufacturing
process through an immersion probe. Yet the pellets sampled at
the process time points are subjected to dissolution tests. In this
case, the drug release profiles have a sigmoid form, which is
modeled by the autocatalytic kinetics by using nonlinear
regression. The estimated kinetic constants are then used as
the new responses in PLS regression. This two-step approach
enables prediction of the release profiles from the process NIR
data. It was used to monitor the final pellet quality in the course
of a coating process.

Figure 5. Chemometric tools used in process analytical technology
applications.
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5.2. Principal component analysis and soft independent
modeling of class analogy

Principal component analysis is the earliest approach in
chemometrics but still popular for classification, especially when
PCA is strengthened by the soft independent modeling of class
analogy (SIMCA) method. This combination has a wide usage in
PAT (Figure 5), in particular, for the MSPC applications [34].
In the SIMCA method, two distance measures can be

employed. These are the space distance (SD, a.k.a. leverage)
and the orthogonal distance (OD, a.k.a. the residual variance),
which characterize a sample position with respect to a PCA
model. For each of the distances, the critical membership levels
can be established. Therefore, as soon as a new candidate object
is considered, it is projected onto the PCA subspace, and its own
SD and OD values are calculated. They are further compared with
the known critical levels to make a decision on the membership
of the class [83].
This approach, however, is often restricted to the consideration

of OD value only. A typical example is paper [32], in which a
halved SIMCA was applied to predict the blend homogeneity of
independent blend samples under different processing conditions.
In this paper, PCA and SIMCA are applied to the NIR spectra
collected at-line for the designed samples. In this simple case,
the OD measure alone was enough to acceptably determine
homogenous samples.
It is interesting that paper [67] has the same objective. It

demonstrates that Raman spectroscopy can be used for the in-
line and real-time endpoint monitoring and understanding of a
powder blending process. The noninvasive, in-line monitoring
is a more complicated method of data acquisition, which reveals
the progressive increase of homogeneity in a batch process.
Several last spectra of each batch are chosen as reference
spectra, which are used to build the SIMCA model. The spectra
collected in the beginning of a batch are considered as the test
set. The goal is to verify whether they belong to the model class
or, in other words, whether or not the blend can be considered
homogeneous. SIMCA analysis of the test set revealed large
deviations both in OD and SD measures at the initial stage of
blending. Thus, the full-scale SIMCA model based on two
distance measures is crucial for the accurate determination of
the process endpoint.
The critical point in the SIMCA application is the proper choice

of the acceptance levels of both OD and SD values.

5.3. Multivariate image analysis

Multivariate image analysis (MIA) takes third place among the
chemometric tools for PAT. This approach becomes more and
more popular. However, in PAT applications, it tends to be an
ancillary tool used mainly for visual monitoring or measuring
some geometrical properties. At the same time, there are many
other important aspects of the process samples’ appearance,
besidesmeasurable distances, that can carry valuable information.
In paper [72], the MIAmethods are applied to at-line monitoring

of fluid bed pellet coating process. The quantitative description of
images of pellet samples, taken from different process stages,
has been obtained using two different approaches: wavelet
decomposition and angle measure technique. Both methods
reveal a strong correlation between image features and process
parameters with some advantage of angle measure technique. It
has been shown that pellet images, taken with a conventional

digital camera, can be used for at-line monitoring of the process,
in particular, for the control of the pellets’ growth during coating.
An algorithm for precise counting of pellets has been developed.
Combined with the sample weighing, it enables an accurate
determination of the mean added pellets’ weight.

Multivariate image analysis is frequently used at the
postprocessing stage, for example, as a reliable and rapid
analytical method to identify API in finished pharmaceutical
products [84,85]. Another area is combating counterfeit drugs.
Paper [85] suggests a concept that combines single-point
near-infrared spectroscopy (NIRS) and near-infrared chemical
imaging (NIR-CI) with statistical variance analysis. The
chemometric method is based on (1) summation and unfolding
of multidimensional predicted classification scores, which results
in a linear image signature, and (2) multivariate linear image
signature data analysis. This procedure not only represents an
approach for the identification of counterfeiting but is also
applicable to determine the product variability.

5.4. Multivariate statistical process control

The main MSPC concept is, firstly, to apply historical data on
performance attributes (X matrix) for construction of a linear
(calibration) model, which explains how the final results (y vector)
depend on the observed X variables and, secondly, to verify
that the process remains in a ‘state of statistical control’. Strictly
speaking, MSPC is not a tool, but a concept that employs various
chemometric methods. For example, paper [34] employs PLS,
PCA, SIMCA, and orthogonal signal correction for MSPC of the
polymorphic composition of sulfathiazole. Another paper [86] aims
at control of the particles size distribution employing the PLS and
PCA methods, both applied to the variablewise and the batchwise
decomposed matrix of the process variables.

Conventional MSPC approach provides a post factum optimi-
zation, whereas the most important issue in manufacturing is
an in situ optimization, which prescribes immediate actions
in the course of production to correct its current state and to
improve the future performance. Now, the traditional MSPC
concept is being extended to develop an approach for in-line
process optimization [81,87,88].

5.5. Filtering

Data preprocessing is always necessary in PAT. Along with the
well-known methods of data filtering, such as multiplicative
scatter correction [21] and orthogonal signal correction [89],
new algorithms are suggested for usage in PAT [90].

Several data preprocessing tools have been developed for
temperature spectral correction. For example, extended inverted
signal correction [91], which was developed mainly for spectral
scatter correction, is a potential alternative to account for variations
in NIR data induced by temperature (to a certain extent). The
main advantage of this approach is that knowledge of the tem-
perature is not required. Another method of filtering, termed
extended loading space standardization, can successfully model
both the temperature-induced spectral variations and multiplica-
tive effects caused by the fluctuations of other measurement
conditions. This is achieved by standardizing spectra measured at
different temperatures into an arbitrarily selected reference
temperature and then estimating the multiplicative parameters
from the standardized spectra [46].
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A series of new preprocessing methods has been developed
by Z.-P. Chen and J. Morris. A new method, systematic prediction
error correction, has been developed to maintain the predictive
abilities of multivariate calibration models when, for example,
the spectrometer or measurement conditions are altered [49].
A unique calibration strategy called multiplicative effects
correction was proposed to separate the Raman contributions
because of changes in analyte concentration from those caused
by the multiplicative confounding effects of the sample’s
physical properties [68]. Optical path-length estimation and
correction method [47] was developed to linearize spectral data
contaminated by multiplicative effects. Without any additional
requirements imposed on spectral data, optical path-length
estimation and correction can effectively correct nonlinear
multiplicative effects.

5.6. Multivariate curve resolution

The multivariate curve resolution (MCR) method is still an
underestimated approach in PAT. This is rather odd because
MCR has a unique ability for the simultaneous qualitative and
quantitative recovery of reaction constituents in real time. A
good exemplar is paper [92] that demonstrates a cheaper, easier,
and faster method of monitoring of the vinyl acetate monomer
process. The advantage of this approach is a vast reduction in
the calibration time and sample set. Therefore, this strategy
could be used for reactions for which it is impossible to prepare
mixtures of known composition because of the absence of
isolated stable reference materials.

Paper [50] has already been mentioned among the feasibility
studies focusing on calibration sets construction. Its second goal
is the use of the multivariate curve resolution-alternative least
squares (MCR-ALS) algorithm to examine potential polymorphic
transformations of the API during granulation. It is shown that
the MCR-recovered spectra of the powder and granulated
samples are very similar to those for the pure API. By contrast,
correlation with the spectrum for the amorphous form is much
lower, which suggests that it undergoes no polymorphic
transformation during granulation.

Interesting research has been performed in paper [28] that is
devoted to the analysis of the effects of scatter on quantification
of chemical composition. The authors suggest a novel approach
that consists of two steps. First, separate scattering spectral
fingerprints, denoted as S spectra, and absorption spectral
fingerprints, denoted as K spectra, are determined. Second, the
two spectra are used as hard model constraints for the MCR-ALS
algorithm to account for the spectral distortions due to the
interaction of scatter and absorption. The approach has been
employed to design standard tablets prepared by mixing of three
components at three different compaction levels. The samples
are measured by an ultraviolet/visual/near infrared (UV/Vis/NIR)
spectrometer in the range from 500 up to 2100nm. In comparison
with PLS modeling with EMSC pretreatment of spectra, the hard
model constrained MCR-ALS algorithm results in an improved
prediction of the concentration of the API together with a higher
robustness of the calibration models.

5.7. N-way

Multiway (N-way) methods are not very popular in PAT – they
constitute near 4% among other chemometric approaches. The
comprehensive N-way models (such as PARAFAC and Tucker3 [17])

are seldom in PAT. Often, researchers employ a more straightfor-
ward approach that unfolds the three-dimensional array into a
two-dimensional matrix, preprocesses it if necessary, and then
performs PCA or PLS on the unfolded two-dimensional matrix. An
example is paper [93] that presents the use of experimental
design, optimization, and multiway principal component analysis
to investigate the root cause of tablet dissolution shift (slow–down)
upon stability and to develop control strategies for a drug product
during formulation and process development.
Another example is described in publication [45] that develops a

quantitative method for simultaneous measuring of the flavor and
water contents in model spray-dried flavor delivery systems by
using the NIR and NMR relaxation spectra. In this study, three-
way data arrays are obtained by considering each sample
measured at different temperatures T as an independent sample.
Different calibration methods are applied to the data: two bilinear
PLS (with implicit and explicit inclusion of T) and one trilinear PLS.
Overall, NIR spectroscopy and NMR relaxometry are identified as
complementary techniques rather than competitive methods in
the characterization of encapsulated flavor systems.
A three-way calibration strategy has been used in paper [51]

to develop a simple method for drug quantitation in intact
pharmaceutical tablets. Parallel factor analysis (PARAFAC) is
applied to deconvolute the NIR spectra in scores associated
with drug concentration variation and loadings related with
wavelength and compaction ranges. The PARAFAC is followed by
multiple linear regression to obtain a more robust calibration
model than using a traditional two-way modeling technique.

5.8. Theory of sampling

Sampling is an essential part of the PAT solution. Esbensen and
co-workers have been pioneers for systemizing the sampling
situation in theory of sampling (TOS).
In paper [94], the didactic data sets are used to illustrate a

“how to do” representative process sampling. It is demonstrated
how selected process data lead to diverse variogram expressions
with different systematics. Following variogram data analysis
leads to a fundamental decomposition into zero-dimensional
sampling versus one-dimensional process variances, on the basis
of the three principal variogram parameters: range, sill, and
nugget effect. All presented cases of variography either solved
the initial problems or served to understand the reasons
and causes behind the specific process structures revealed in
the variograms.
Paper [95] represents a practical application of TOS to

monitor industrial bioenergy anaerobic digestion processes.
The analytical methods investigated are at-line NIR and image
analysis. Optimized sampling on four different scale levels allows
acceptable PLS prediction models for the process parameters.
It was found that PAT approach is critically dependent on
representative reference calibration sampling, which has to be
fully compliant with the TOS.

5.9. Design of experiments

The PAT Guidance [1] puts statistical DoE and response
surface methodologies in the first place among multivariate
mathematical approaches, which should be used for the PAT
benefit. Furthermore, it is remarkable that few papers in our
collection of the PAT papers report the usage of DoE (Figure 5).

A. L. Pomerantsev and O. Y. Rodionova

wileyonlinelibrary.com/journal/cem Copyright © 2012 John Wiley & Sons, Ltd. J. Chemometrics 2012; 26: 299–310

306



In the DoE context, two of the latest publications [64,96] can
be mentioned. They form a two-paper set representing work that
was conducted in the framework of a QbD project involving the
production of a pharmaceutical gel. By using historical data from
the previously manufactured batches, two QTPPs as well as five
CQAs are identified. The CQAs are considered as the predictor
variables. They are used to construct a D-optimal design aimed
to optimize QTTPs, treated as the response variables Y. Each
response is described by a second-order polynomial, which
included only binary interactions. The higher-order terms are
highly unlikely under the considered experimental conditions.
By identifying the best conditions for simultaneously optimizing
both QTTPs, a desirability function is used.
In the second paper [64], the NIR spectroscopy is applied. The

primary aim is to develop the PLS calibration models for the
in-line determination of temporal changes in the CQA values,
which affect the product quality. The study is completed by
using the batch MSPC method to compare the batches included
in the experimental design with the exemplary batches,
conducted under the normal operational conditions.
The nonlinear principal component regression is applied for

optimization of a hybrid binder formulation that includes a water
solution of sodium silicate (water glass) and polyisocyanate [97].
Optimization is performed with respect to 10 output quality
characteristics. Calibration modeling is performed as a two-step
procedure. At first, PCA is applied to the X block for variable
reduction. Then, a polynomial regression is used to predict a
particular quality characteristic as a function of score vectors. The
input variables’ reduction enables to choose an optimal binder
formulation that meets the predefined quality requirements.

5.10. Kinetics

It could be expected that kinetic studies play an important role
in the PAT applications. Both hard and soft kinetic modelings
are capable to disclose essential information about the
manufacturing process. Moreover, being combined with
spectroscopic data in a style of “gray modeling”, the kinetic
approach could be a powerful tool for the process control.
However, in this area, the PAT approach is overlapping with
another popular technique – chemical engineering. This could
be a reason for this rather poor representation.
In kinetic modeling, two concepts can be distinguished. The

first is a “hard” approach where a model is built on the basis of
the substantial physical and chemical consideration of the
phenomenon in question. Such a model is typically presented
in the form of differential equations accounting for consumption
and generation of the reaction constituents. The “soft” kinetic
model has no solid background and is typically represented by
a nonlinear data-driven function. The “hard” model may be used
for the out of data prediction (extrapolation), whereas the “soft”
approach is valid just inside the data area (interpolation) [98]. To
illustrate these concepts, two papers are considered.
The first paper [99] aims at basic understanding of an

industrial catalytic hydrogenation of API. It reports on combining
the at-line monitoring technique with a kinetic model of the
process. NIR spectroscopy and PLS regression are used to
monitor the most relevant reaction constituents. The obtained
concentration values are then employed to fit the proposed
kinetic model, which is capable of describing the industrial
process under diverse operating conditions. The model is
presented in a “hard” form as a system of differential equations.

The estimates of the kinetic parameters are found with the help
of nonlinear regression.

Another paper [42] considers the extraction of meaningful
information from NIR measurements of coagulating milk in
real-time scale. This information is then used to develop
automatic cutting time determination. The NIR spectra are
compressed by PCA, and the scores values are considered as a
function of process time. Milk coagulation includes three stages:
k-casein proteolysis, micelle aggregation, and network
formation. Two kinetic models are proposed to describe
coagulation: a total model for the entire process and a
composite model for the three individual stages. Each model
has a typical “soft” form being a combination of the logistic
equation (autocatalytic reactions), an exponential term (order
reactions), and an offset. It was shown that the total model
suffers from multicolinearity; therefore, the composite model
is preferable.

Paper [56] studied the process of drug dissolution by using
autocatalytic kinetics that was initially proposed just as the “soft”
model aimed at evaluation of kinetic parameters, which were
then used as the responses in PLS regressing of the process
NIR data. Afterward, on the basis of the specific properties
of the dissolution profiles fitting, the model’s meaning was
reconsidered and a guess on the “hard” nature of the model
has been claimed.

6. CONCLUSIONS

We are fully convinced that a review (simple analysis) of
publications cannot provide a complete understanding of
the tendencies and challenges connected with the PAT
implementation. We presented a chemometrically inclined view
of the phenomena, recognizing the fact that other viewpoints
are equally applicable. This, however, cannot stave us off a
temptation to claim several somewhat biased conclusions, which
could be considered as too sound.

The first conclusion follows from Figure 6 that represents
the number of PAT papers (separately CR and non-CR) published
in a corresponding year. The fast growth in 2004–2006
now changes to a rather slow increase or even stabilization.
Nevertheless, an interest in PAT is still high. This indicates
that the PAT approach is not a fashion phenomenon but a
response to the demands of modern manufacturing process.
The increasing share of CR papers confirms chemometrics to
be the working horse of PAT.

Figure 6. Papers on process analytical technology.
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The second conclusion is of general (or even philosophical)
nature. We suppose that PAT approach could become a new
industrial paradigm broadly applicable as a new manufacturing
model and going far beyond pharmaceutical (or related) areas.
The old but still active industrial paradigm is based on the
principles of differentiation and standardization. This means that
the whole production process should be divided into as many
different stages as possible, and each stage must be fully
standardized to reduce variability with a goal to fit with the
following stage. This concept made a revolution in the steam-
based industry and is still working well in the electricity-based
one. The well-known examples are the conveyer belt, Six Sigma,
GMP, and ISO 900X documents. In 1950, W. Edwards Deming
[100] wrote “If I had to reduce my message for management to
just a few words, I’d say it all had to do with reducing
variability.” However, modern industrial processes are aimed at
microsized and nanosized production by using the principles of
biotechnology and bionics. This type of manufacturing cannot be
standardized in principle. Variability is not an enemy but the
inherent feature of the materials and processes in use. The old
manufacturing methodology struggled with variations aiming to
push them into the rigid process framework. A newmanufacturing
concept has to use a flexible framework that accounts for
variability and adapts the process to fit them. In our view, PAT
approach could be such a methodology as it fully satisfies all
these demands because of various control tools: raw materials
inspection, in-line monitoring, post process tuning, etc.

The PAT method may not be viewed as an approach that
facilitates a process engineer’s work, making it less intensive. On
the contrary, PAT requires permanent attendance and treatment
both at the development and implementation stages. The main
PAT benefits are the additional degrees of freedom that come from
the flexibility of this approach. Actual in-line monitoring of the
process enables engineers to adjust it in real time with wide
possibilities to keep the process in the optimal state with respect
to the designed quality of the end product.
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