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For the construction of a reliable decision area in the soft independent modeling by class analogy (SIMCA) method, it
is necessary to analyze calibration data revealing the objects of special types such as extremes and outliers. For this
purpose, a thorough statistical analysis of the scores and orthogonal distances is necessary. The distance values
should be considered as any data acquired in the experiment, and their distributions are estimated by a data-driven
method, such as a method of moments or similar. The scaled chi-squared distribution seems to be the first candidate
among the others in such an assessment. This provides the possibility of constructing a two-level decision area, with
the extreme and outlier thresholds, both in case of regular data set and in the presence of outliers. We suggest the
application of classical principal component analysis (PCA) with further use of enhanced robust estimators both for
the scaling factor and for the number of degrees of freedom. A special diagnostic tool called extreme plot is proposed
for the analyses of calibration objects. Extreme objects play an important role in data analysis. These objects are a
mandatory attribute of any data set. The advocated dual data-driven PCA/SIMCA (DD-SIMCA) approach has demon-
strated a proper performance in the analysis of simulated and real-world data for both regular and contaminated cases.
DD-SIMCA has also been compared with robust principal component analysis, which is a fully robust method. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The word “robust” is the most popular word in modern
chemometrics [1]. The recent trend is employment of robust
statistics to any data set regardless of the necessity. This is
caused by the growing amount of data and their complexity.
We use the word robust in the sense described by Huber [2], that
is, robustness signifies insensitivity to small deviations from the
assumptions and at the same time larger deviations should not
cause a catastrophe.
In this paper, we are discussing the use of robust and “semi-

robust” methods on the example of principal component analy-
sis (PCA) and soft independent modeling by class analogy
(SIMCA) approach. To avoid any confusion, we should explain
the usage of term SIMCA within the paper context. Most often,
SIMCA is meant as a one-class classifier. However, it is evident
that the acceptance areas derived by the SIMCA classifier can be
used in explanatory analysis of data as well, for example, as the
decision rules for the outliers’ detection [3]. Formally, the regular
samples constitute a target class, whereas other data set objects
are tested to the class membership. Therefore, in this paper, SIMCA
is understood as a procedure consisting of PCA model construc-
tion, followed by calculation of the orthogonal and score distances
(ODs and SDs) with a subsequent determination of their cutoff
levels. The procedure of the cutoff levels’ determination is a very
important stage. The distance distributions cannot be proposed
in advance, because they depend on a particular data.
Chemometrics deals with data that could be viewed as ran-

dom values, which necessarily vary in replicated measurements.
The analysis of data aims at finding estimates for some unknown
but not random properties of interest (e.g., concentrations). Any
data-driven estimator is a statistic, that is, a function of this data

set, and therefore it is a random value, too. Parametric estimators
(which are traditionally the most popular ones) are based on dis-
tributional assumptions, the majority of which rely on the normal
distribution. A violation of these assumptions can potentially
lead to wrong estimates that do not meet our expectations.
Two typical cases can be considered. The first one is a bi-
modality or multi-modality distribution of data, in case the data
originate from different populations. A relevant example is
presented in Ref. [4] where pharmaceutical substances packed
into polyethylene (PE) bags are verified. This data set will be fur-
ther considered in Section 4.

Another case of a distribution distortion is outliers. These are a
few samples, which manifest atypical properties compared with
other objects in the data set. An outlier could appear as a blun-
der in the process of data acquisition, or it could be an intrinsic
object in the object population. For example, applying the
Near-infrared (NIR) based approach for counterfeit drug detec-
tion [5], we revealed a genuine batch that has a higher moisture
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contents compared with the other authentic samples.
Irrespective of the cause, being spoilage in production or
conventional moisture variability, these outliers should be treated
with special care. Otherwise, data analysis may lead to
misclassification. On the other hand, the outliers should not be
confused with extreme samples, which are always present in the
data. For example, in a population of 100 normally distributed
values, there is a good chance (probability 0.64) to find an ex-
treme sample located beyond 3s [6]. Excluding such fictitious out-
liers could significantly deform the data analysis.

It is often difficult to distinguish between the first case and the
second case. In the first case, special group of objects should
be isolated and analyzed (Section 4.4). The outliers should be
detected and removed (Section 4.3), although even a single outlier
may indicate the existence of a special population; whereas nu-
merous but non-structured outliers do not form the second mode.
The ultimate decision is always made post factum; if an abnormal
sample cannot be model, it is an outlier and has to be removed.

All these cases (bi-modality, outliers) are the examples of data
that do not follow an assumed regular distribution. To account
for these (and other) distortions, a number of robust estimators
have been developed [7]. They are based on the assumption that
the majority of data samples follow a regular distribution R, and a
minor part comes from the other distribution D. The whole data
set has therefore a mixed distribution

Rm ¼ 1� mð ÞRþ mD (1)

where 0≤ m< 1. For example, R is the normal distribution dis-
turbed with a few outliers that come from distribution D. Robust
estimators are designed to resist any type of distortions: outlier
resistant (small m) and contamination resistant (moderate m). In
any case, distribution Rm is considered to be close to R. The ma-
jority of the robust estimators are developed for the normal dis-
tribution R. This, however, is not the only case; the chi-squared
distribution may also give a regular basis [8] disturbed by small
deviations. Such a case is considered in Section 2.4.

Various estimators (statistics) can be employed for the analysis
of the same data set. For instance, both the sample mean x and
the sample median ex are estimators of the location parameter,
that is a data center, but the latter is robust. Obviously, a robust
estimator works better for not clean data (outlier contaminated),
whereas a classical statistics is preferred when dealing with
regular data (which are close to the normal distribution, no
outliers). Estimator misuse can lead to various problems. For
example, a classical estimator used for contaminated data is
often unable to detect outliers (masking effect), and, on the
contrary, it often identifies regular samples as outliers (swamping
effect). These issues were often presented in literature [7]. The
opposite case, when a robust estimator is used for regular data,
is not often discussed by statisticians. However, the gain in
robustness is always paid for by the loss in efficiency. For
example, the median estimator applied to a regular data is on
average 25% farther from the true location value compared with
the classical mean estimator [9].

Dealing with a mix of distributions is common in data analysis,
chemometrics being no exception. Any data point is influenced
by (at least) two random components, which are noted by d
and «. The first term, d, is responsible for the samples (objects)
variability, whereas the second term, «, appears as a result of
random distortions, such as measurement errors, violation of
experimental conditions, and so on. The difference in these

components can be explained in a virtual experiment, where the
number of replicated measurements tends to infinity. In this case,
the input of the second component can be neglected, whereas
the first term still has its influence. Thus, the first term, d, accounts
for the essence of things, whereas the second term, «, reflects the
imperfection of our means to learn about the essence.
The d and « mixture should not be considered as an instance

of Equation (1). Moreover, each component could be a mixture
of a regular and a distortion fraction. The d component is most
often contaminated with the second mode distribution, whereas
the « component can be a source of outliers.
To lessen the influence of outliers, different robust procedures

have been developed and applied at various steps of the PCA/
SIMCA method. It is possible to classify robust procedures along
the following stages:

(1) Data pre-processing,
(2) PCA decomposition, and
(3) Calculation of thresholds.

The first stage includes data scaling and centering using
robust estimators, for example, spherical PCA, which firstly pro-
jects all data objects onto a hyper-sphere and afterwards uses
regular PCA [10] and other similar methods that aim to neglect
the influence of atypical samples before data compression. The
application of a robust procedure on the second step is the most
straightforward approach. Numerous robust PCA algorithms,
such as projection pursuit (PP) and PCA algorithms based on ro-
bust covariance matrix, are overviewed in Ref. [7,11]. For the
threshold development, leverages and residuals are also
“robustified” by their normalization with the help of robust esti-
mators. The most popular algorithms, such as robust principal
component analysis (ROBPCA) [12] and spherical SIMCA [13],
try to apply “robustification” on all, or most, of the stages.
For data exploration and outlier detection, we propose to

robustify SIMCA only on the third step. This is performed by
conducting a robust data-driven estimation of the ODs and SDs
distributions combined with a special design of the acceptance
areas (thresholds). Moreover, the robust and non-robust accep-
tance areas are calculated for various significance levels. As a result,
the acceptance area is built for the specified value a of a type I error
and taking into account the presence/absence of the outliers.
This paper continues our research started in publication [14].

2. THEORY

2.1. Notation

Small bold characters, for example, x, stand for vectors, whereas
capital bold characters, for example, X, denote matrices. Non-
bold characters are used for vector and matrix elements. Super-
script t is used for vector and matrix transposition. I and J denote
the number of objects and variables, respectively; A denotes the
number of latent variables (principal components). An abbrevia-
tion DoF stands for the number of degrees of freedom. Other
notations used are as follows. X= {xij} is the (I� J) data matrix;
T= {tia} is the (I� A) score matrix; P= {pja} is the (J� A) loading
matrix; E= {eij} is the (I� J) matrix of residuals; Λ=diag (l1,. . .,lA)
is the (A�A) matrix of eigenvalues; I is the unit matrix of a
relevant dimension; 1 is the vector of ones of a relevant
dimension. Abbreviations SD and OD are used for the scores and
orthogonal distances, correspondingly; hi and vi are, respectively,
the SD and the OD values for sample i=1,. . ., I; N(m, V) is the
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multivariate normal distribution with expectation m and covari-
ancematrix V; N(0,1) is the univariate standard normal distribution;
Φ�1(a) is the a quantile of N(0,1); w2(N) is the chi-squared distribu-
tion with N DoF; w�2(a, N) is the a quantile of w2(N); w(N) is the chi
distribution with N DoF; operators E() and V() denote the mathe-
matical expectation and variance, correspondingly.

2.2. Principal component analysis

The PCA decomposition of matrix X is

X ¼ TPt þ E (2)

Matrix Λ

Λ ¼ TtT ¼ diag l1; . . . ; lAð Þ (3)

is diagonal with the elements

la ¼
XI

i¼1

t2ia (4)

which are the eigenvalues of matrix XtX ranked in the descend-
ing order.
Equation (2) assumes that matrix X is column-wise centered;

otherwise, it should be pre-processed using a classical (mean
based) or robust (median based) method.
There are two statistics that are important for PCA interpreta-

tion. The first one is the SD,

hi ¼ tti T
tTð Þ�1ti ¼

XA
a¼1

t2ia
la
; i ¼ 1; . . . ; I (5)

which equals the squared Mahalanobis distance from the model
center to sample i within the scores subspace.
The other one is the OD, calculated as the sum of the squared

residuals presented in matrix E= {eij}

vi ¼
XJ

j¼1

e2ij ¼
XK

a¼Aþ1

t2ia; i ¼ 1; . . . ; I (6)

where K≤min(I, J) is the rank of matrix X.
The OD, vi, is a squared Euclidian distance from sample i to the

scores subspace.

2.3. PCA statistics

Let a row vector x be a point in the J-dimensional variable space.
A sample set of such vectors {x1,. . .,xI}

t forms data matrix X. The
PCA statistical model defines the distribution of vector x as a
sum of two J-dimensional independent random components

x ¼ dþ «

The term d accounts for the data structure, and « is a noise term.

d / D 0;Vð Þ « / F 0;s2I
� �

(7)

In Equation (7), D and F are distributions with zero expecta-
tions, V is the (J� J) covariance matrix rank A, and ||V||>> s2.
In a clean PCA model, both D and F are the normal distributions:

d / N 0;Vð Þ « / N 0;s2I
� �

(8)

A non-clean model is more complex and cannot be described
by exact equations. A typical case designed in line with Equation

(1) is as follows. A contaminated data structure d combines two
normal distributions

D ¼ 1� m1ð ÞN m1m1;Vð Þ þ m1N �m1m1;V1ð Þ (9)
and the noise variable « presumes outliers

F ¼ 1� m2ð ÞN m2m2;s2I
� �þ m2N �m2m2;s21I

� �
(10)

It is evident that other models for d and « are also possible.
The PCA statistical model is employed for the development of

various tolerance areas and, therefore, for the assessment of an
object type. The most important are the following areas. At a
given significance level a, the acceptance area covers (1� a)
100% of all population. If an object belongs to this area, it is
assessed as a regular one; otherwise, it can be classified as an ex-
treme or an outlier. Given I is the data set size, let us consider the
acceptance area for a significance level 1� (1� g)1/I. The proba-
bility that not all samples from the data set are located in this
area (i.e., at least one sample lies outside) is equal to g, which
is therefore the probability of false outlier detection. In this
way, the outlier area can be defined. The area located between
the acceptance and the outlier areas is the extreme objects area.

The SIMCA method [15,16] designs the aforementioned areas
using the SD and OD statistics. It is evident that small values
of both the SD and OD characterize regular samples, whereas
large SD or OD values signal the presence of outliers. The
pertinent threshold limits can be developed using the SD and
OD distributions.

2.4. The SD and OD distributions

Both the SD and OD statistics are quadratic forms of indepen-
dent random variables. In case of a classical PCA model
presented in Equation (8), the SD follows the scaled chi-
squared distribution with A DoF [16]. The scaling factor is AI�1.
The OD distribution is more complex, even in case of the clean nor-
mally distributed data. In contrast to the SD, the OD (Equation (6))
is a sum of heteroscedastic components with variances equal
laI

�1. In a realistic case of PCA, given in Equation (9), it is impossible
to present a known parametric distribution for both the SD and the
OD. To emphasize the similarity between the SD and OD, we will
use notation UD, referring to both SD and OD.

The UD distribution problem has been repeatedly discussed
in chemometric literature. A detailed review can be found in
Ref. [14]. Meanwhile, the solutions to the same problem have
being developed in the applied statistics [17–20] since 1941. The
following facts are established [20]. The UDdistribution can bewell
approximated by the scaled chi-squared distribution

N
u
u0

/ w2 Nð Þ (11)

where u is the UD variable, u0 is the scaling factor, andN is the DoF.
The parameters u0 and N are estimated from the training set
u= {u1,. . .uI} by the method of moments

û0 ¼ u; N̂ ¼ int
2û2

0

s2u
(12)

where “int” stands for rounding to the nearest integer greater than
0, and u and s2u are the conventional mean and variance estimates

u ¼ 1
I

XI

i¼1

ui; s2u ¼
1

I � 1

XI

i¼1

ui � uð Þ2 (13)
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This method works well for a clean PCA (Equation (7)), even in
case of non-normal distribution of d, but it fails in a non-clean
PCA (Equation (9)), contaminated with outliers (Equation (10)).

Robust estimators for parameters u0 and N should be devel-
oped within the concept presented by Equation (1). In this case,
R is the chi-squared distribution distorted by an unknown
distribution D. In [14], we proposed a robust estimator of
parameter N. In the present paper, we suggest using enhanced
robust estimators both for scaling factor u0 and the DoF N. The
method of moments is applied again, but the classical mean
and variance statistics are replaced by their robust analogs,
being median M and interquartile range S statistics. From
Equation (11), it follows that

M ¼ u0
N
w�2 0:5;Nð Þ

S ¼ u0
N

w�2 0:75;Nð Þ � w�2 0:25;Nð Þ� �
8<: (14)

The systemof equations (14) should be solvedwith respect to the
unknowns u0 (real number) and N (natural number greater than 0).

Scaling parameter u0 can be excluded

S
M

¼ w�2 0:75;Nð Þ � w�2 0:25;Nð Þ
w�2 0:50;Nð Þ ¼ f Nð Þ (15)

By direct calculations, it can be shown that for N< 50, function
f(N) is well approximated by a non-linear expression

f Nð Þ ¼ b exp �azcð Þ;where z ¼ ln Nð Þ
with parameters a= 0.72414, b= 2.68631, and c=0.84332.

By using this approximation, a robust estimator for the DoF
can be explicitly obtained

eN ¼ int exp
1
a
ln
bM
S

� �1
c

" #
(16)

Because of rounding, the solution does not satisfy Equation
(15) exactly. Therefore, it is better to use an averaged estimator
for the scaling factor u0

eu0 ¼ 0:5eN M

w�2 0:5; eN� 	þ S

w�2 0:75; eN� 	
� w�2 0:25; eN� 	

0@ 1A
(17)

Robust estimators presented in Equations (16) and (17) can
be used as the alternatives to the conventional estimators
given in Equations (12) and (13). In applications, it is always
useful to compare the classical and robust estimates of h0,

v0, Nh, and Nv. If the corresponding values (e.g., N̂h and eNh )
differ considerably, it is indicative of a data set being contam-
inated with outliers. A special attention should be paid to the
cases where the classical DoF estimates N̂v ¼ N̂h ¼ 1. This often
points out a mixed structure of a data set. The examples of that
are presented in Section 4.

2.5. The tolerance areas

The fact that both the SD and OD follow the scaled chi-squared
distributions provides a possibility for developing of various tol-
erance areas that were explained in Section 2.3. A weighted sum

of the SD variable, h, and the OD variable, v, follows the chi-
square distribution with Nh+Nv DoF

Nh
h
h0

þ Nv
v
v0

/ w2 Nh þ Nvð Þ (18)

Therefore, given a significance level a, the acceptance area Ha
is calculated as the (1� a) quantile of the chi-squared distribu-
tion with Nv+Nh DoF

Ha ¼ h; vð Þ : Nh
h
h0

þ Nv
v
v0

≤w�2 1� a;Nh þ Nvð Þ

 �

(19)

The a value specifies a type I error in a decision making. This is
the share of the false-negative decisions. For example, in a simu-
lated data set (Section 3.3) of 100 objects, theoretically, five ex-
tremes can be expected for a=0.05, and there should be only
one extreme object for a=0.01. It is worthy of mentioning that
the acceptance area does not depend on the data set size I.
The number of extremes increases proportionally to I, as it can
be seen in the data set of size 10 000 (Section 3.2) and of size
100 (Section 3.3).
The outlier area Og has a similar form

Og ¼ h; vð Þ : Nh
h
h0

þ Nv
v
v0

> w�2 1� gð Þ1=I;Nh þ Nv

� 	
 �
(20)

where g is the outlier significance level. The area of extremes is
situated in between. Figure 2 (left panel) illustrates these areas.
The statistical meaning of the g level essentially differs from that
of the a level. g specifies the probability that at least one regular
object from the data set will be erroneously considered an
outlier. That is why the outlier area depends on the data set size
I. For a specific g value, the greater I, the farther the outlier area.
For example, in a case of one large data set (Section 3.2), no out-
lier was detected among 10 000 objects at g=0.5. At the same
time, in a series of 10 data sets of a medium size (100 objects
each, Section 3.3), in total, one outlier was singled out for
g=0.05. In the latter case, the full probability of outlier detection
(1� 0.9510� 0.4) is close to that in the first case.
The whole concept, including the dual (classical and robust)

data-driven (no presumed distributions) assessment of the
tolerance areas in PCA/SIMCA method, is further validated using
simulated and real-world data. For simplicity, this concept will fur-
ther be called DD-SIMCA. The MATLAB code for DD-SIMCA can be
downloaded from http://rcs.chph.ras.ru/SIMCA/DDSIMCA.zip

2.6. Fully robust procedure

DD-SIMCA can be applied in a classical variant (CDD-SIMCA), if
the conventional estimators (Equations (12) and (13)) are used,
or it can be semi-robust (RDD-SIMCA), if the robust estimators
(Equations (16) and (17)) are applied. However, it is not fully ro-
bust because of the application of classical PCA. Certainly, it
would be interesting to combine various robust PCA methods
with the DD-SIMCA approach and assess the benefits of this as-
sociation. This work is being planned, but in this paper, another
interesting problem is considered. The goal is to compare the
DD-SIMCA with a completely robust method. For comparison,
we use the ROBPCA method [12] that employs the PP algorithm
[21] realized in the ROBPCA toolbox [22].
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In ROBPCA, the SD and OD are calculated similar to Equations
(5) and (6) with one distinction of usage of the robust scores,
loadings, and eigenvalues. For each distance, a cutoff value is
specified. It is supposed that the SD values are approximately
w2 distributed with DoF equal to A. For the OD values, the
Wilson–Hilferty approximation [14,23] is used. This implies that
the ODs to the power 1/3 are distributed approximately normally
with mean m and variance s2. The estimates m̂; s2 for these
parameters are obtained using the robust statistics [24]. The
original cutoff values then are equal w�2(0.975, A) for the SDs

and m̂ þ sΦ�1 0:975ð Þ� � 3
for the ODs.

Unlike the original ROBPCA, we do not use any fixed predefined
threshold values in our comparison. We employ the acceptance
area that is calculated in a way similar to Equation (19)

Ha ¼ SD;ODð Þ : SD > w�2 ’;Að Þ and OD > m̂ þ sΦ�1 Φð Þ� �3n o
(21)

where ’= (1� a)½. The outlier area is calculated by Equation (21)
with ’= [1� (1� g)1/I]½.
The reasons for the application of Equation (21) are as follows:

1. The cutoff levels determination is an essential part of a
specific SIMCA method; therefore, we may not change the
procedure suggested by the authors of ROBPCA.

2. At the same time, for impartial methods comparison, the spe-
cific cutoff levels for the extreme samples are not fixed but
calculated in dependence on the type I error a, in line with
the DD-SIMCA method. The same is performed for the outlier
cutoff level values, which depend on g.

Originally, ROBPCA employs the square root of both distances,
OD½ and SD½. The same transformation is used in all plots
related to the ROBPCA application (e.g., Figure 1, right panel). It
is also important to emphasize that in ROBPCA, robustification
is applied in three steps: firstly, applying a robust pre-
processing; secondly, using a robust version of PCA; and thirdly,
applying the robust estimates for the cutoff calculations.

3. CASE STUDY I: SIMULATED DATA

3.1. Data design

Simulated data sets are used in case I. The clean normally distrib-
uted data are developed in line with Equation (8). They have the
following characteristics. The numbers of variables J= 3, and the

number of principal components A= 2. The d component prop-
erties are E(d) = 0, V11 = V22 = V33 = 0.25, rank(V) = 2. The « com-
ponent properties are E(«) = 0, s= 0.05. Two sets of different
sizes, I= 10 000 and I=100, were studied. In the third data set
(Section 3.4), s=0.2 was used for the outliers generation.
Because of the data simulation procedure (with zero expectation
and equal variances), no pre-processing is needed.

3.2. Large regular data set

In this case, 10 000 regular samples were simulated and analyzed
with DD-SIMCA. The parameters of the SD and the OD distributions
were obtained by Equations (12)–(13) and Equations (16)–(17).
Classical estimates are

ĥ0 ¼ 0:0002000; v̂0 ¼ 0:000832; N̂h ¼ 2; N̂v ¼ 1

Robust estimates have very similar values

eh0 ¼ 0:0001997;ev0 ¼ 0:000835; eNh ¼ 2; eNv ¼ 1

The known theoretical values [14]

h0 ¼ A=I ¼ 0:0002; Nh ¼ A ¼ 2;Nv ¼ J � K ¼ 1

are also very close. Therefore, no practical differences can be
noted between the CDD and RDD methods.

The result is shown in Figure 1, left panel. This is a so-called
SIMCA plot, in which the scaled ODs (v/v0) are shown in corre-
spondence to the scaled SDs (h/h0). A triangular structure of
the data points’ allocation is evident. The right panel represents
the result of ROBPCA. The solid lines (significance level a=0.005)
divide the plot into the acceptance area (below) and the extreme
area (above). The region above the dashed lines is the outlier
area (significance level g=0.5).

Table I shows the number of the extreme objects depending
on the significance level a. Theoretical values (column expected)
are equal to aI. The 0.95 tolerance limits are shown after the sign
�. They are calculated using the binomial distributions. A close
alignment between the theory and the experiment (column
observed) confirms that DD-SIMCA works well in a classical PCA
case. It is also important that both CDD and RDD-SIMCA give
almost the same results for a regular data set. ROBPCA provides
results that are below the tolerance limits at a> 0.05.

Figure 1. SIMCA plot for a large regular data set. Solid line is the border of acceptance area (a=0.005). Dashed line is the border of outlier area (g=0.5).
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3.3. Many regular data sets of a moderate size

In this experiment, 10 regular data sets of a moderate size
(I= 100) were simulated and analyzed with DD-SIMCA and
ROBPCA. Figure 2 represents the SIMCA plots for the ninth set.

The acceptance area and the outlier area are designed for
a= 0.05 and g= 0.05. The left panel shows the CDD-SIMCA result,
whereas the right panel shows the ROBPCA result. CDD-SIMCA
revealed five extreme samples and no outliers. The ROBPCA find-
ings are six extreme samples plus one outlier sample.
The results obtained from all data sets are shown in Table II.
They agree well with the expected values that are anticipated

for regular data: the total numbers of the extreme and outlier
samples are correspondingly 10� aI= 50, 10� g=0.5. The RDD
shows a slight over-robustness with three outliers found.

3.4. Regular data sets with outliers

In this experiment, 10 regular data sets (I= 100) were simulated
again, but in contrast to the previous section, the « component
in the last three objects was generated with s= 0.2. This was
performed for simulation of possible outliers. Each data set was
analyzed four times, employing different techniques.
Initially, first 97 objects were utilized as a training set, and the

last three, which could be outliers, were predicted as a new (test)
set. This technique allows us to develop a clear PCA model (a ref-
erence model) that is not contaminated with outliers and to
compare the results with the other techniques (CDD-SIMCA,

Figure 2. SIMCA plots for a regular data set of a moderate size. The left panel shows the CDD-SIMCA result, and the right one represents the ROBPCA
result. Dots are regular samples, and diamonds are extreme samples. Solid line is the border of acceptance area (a=0.05). Dashed line is the border of
outlier area (g=0.05).

Table I. Number of the extreme objects in a regular data set
of size 10 000

Significance a Expected Observed

CDD-SIMCA RDD-SIMCA ROBPCA

0.0001 1� 2 0 0 0
0.0005 5� 4 5 5 2
0.0010 10� 6 10 10 4
0.0050 50� 14 47 46 32
0.0100 100� 20 97 96 75
0.0500 500� 43 500 503 423
0.1000 1000� 58 1007 1005 878
0.2500 2500� 85 2529 2529 2314
0.5000 5000� 98 4989 4987 4890

Table II. The results obtained from 10 simulated regular data sets

Set no. CDD-SIMCA RDD-SIMCA ROBPCA

Extremes Outliers Extremes Outliers Extremes Outliers

1 5 0 2 0 4 0
2 6 0 5 0 8 0
3 4 0 3 0 4 0
4 3 1 4 1 7 0
5 7 0 8 1 8 0
6 4 0 5 0 5 0
7 6 0 9 0 4 0
8 6 0 6 0 5 0
9 5 0 4 1 6 1
10 5 0 3 0 3 0
Total 51 1 49 3 54 1
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RDD-SIMCA, and ROBPCA), which utilize all 100 samples as the
training set. Four corresponding SIMCA plots obtained in the
analysis of the first data set are presented in Figure 3.
The first reference technique (plot a) revealed two outliers and

seven extreme objects. One of the extremes represents an un-
successful outlier. CDD-SIMCA (plot b) lost one outlier (masking
effect) and added it to the extreme objects. The RDD-SIMCA (plot
c) results are very similar to the reference model (plot a). At last,

ROBPCA (plot d) is close to CDD-SIMCA, having found one outlier
and six extreme objects.

In this irregular case, it is difficult to calculate the expected
numbers of extremes and outliers; therefore, the reference
technique results were considered as the target values: a
total of 58 extremes and 23 outliers in 10 data sets. The
overall results, obtained from all 10 data sets, are presented
in Table III. They confirm the findings from the first set: CDD-

Figure 3. SIMCA plots for a regular data set with outliers. Plot (a) represents a reference technique, plot (b) is for CDD-SIMCA, plot (c) is for RDD-SIMCA,
and plot (d) shows ROBPCA. Dots are regular samples, diamonds are extreme samples, and squares are outliers. Solid line is the border of acceptance
area (a=0.05). Dashed line is the border of outlier area (g=0.05).

Table III. The results obtained from 10 simulated regular data sets with outliers

Set no. Reference CDD-SIMCA RDD-SIMCA ROBPCA

Ext Out Ext Out Ext Out Ext Out

1 7 2 8 1 7 2 6 1
2 6 2 4 1 7 2 2 0
3 4 2 4 1 4 2 3 1
4 3 3 4 1 1 3 7 0
5 5 3 2 3 4 3 8 1
6 6 3 7 2 2 3 8 2
7 8 2 8 0 7 2 5 2
8 6 1 6 1 6 1 9 1
9 6 3 5 1 6 2 4 1
10 7 2 3 2 10 2 5 2
Total 58 23 51 13 54 22 57 11

Concept and role of extreme objects in PCA/SIMCA
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SIMCA and ROBPCA have a tendency to mask the outliers, and
RDD-SIMCA works very well almost in parallel with the reference
method. Recently developed algorithm [25], which was kindly
recommended by an anonymous reviewer, statistically confirms
that RDD-SIMCA outperforms other methods presented in Table III.

4. CASE STUDY II: REAL-WORLD DATA

4.1. Packed pharmaceutical substance

This real-world example has been presented in Ref. [4]. The task is a
NIR-based incoming inspection of taurine pharmaceutical sub-
stance packed in closed PE bags. The NIR spectra were recorded
using the Spectrum 100N FT-NIR spectrometer (PerkinElmer,
Buckinghamshire, UK) fitted with a handheld diffuse reflectance fi-
ber optic probewith a 2 cm�1 spectral resolution. The initial spectral
regionwas 4000–10000 cm�1, and the final region used for analysis
was 4400–7400 cm�1. For a validation purpose, four spectra of the
other substance, caffeine, also used at the same pharmaceutical fac-
tory, were acquired. Taurine is a non-essential sulfur-containing
amino acid, and pure caffeine is a plant-based alkaloid, which is
applied to enhance the heart function in a way similar as taurine.

We acquired 246 spectra for 82 bags with taurine. Each bag was
measured three times in different places. Additional experiments
of measuring the substance in open PE bags directly and the de-
tailed data analysis [4] showed that the whole data set is a mix of
two groups. Group G1 consists of 200 spectra of the fine measure-
ments through a single PE layer. Group G2 consists of 46 readings
where the main substance peaks were distorted by the varying
thickness of PE bags caused by bags’ folds. Thus, the data set pre-
sents a mix of two populations (Equation (1) with m=0.25), or, in
other words, the data set is contaminated with abnormal objects,
and the share of such objects is about 25%. The third data set
(group G3) was obtained in a separate experiment. It includes four
caffeine spectra that play a role of gross outliers.

In this case study, groups G1, G2, and G3 are combined in various
ways, which illustrates typical problems encountered in data analy-
sis. Before data processing, all spectra are column centered around
a (robust) mean value, but not scaled. Data set complexity, that is,
the number of PCs, was studded in Ref. [4]. Here, we apply previ-
ously yielded results and in all calculations use three PCs/robust PCs.

4.2. Clean data set G1

In this case, CDD-SIMCA provides the most reliable results. By
using classical estimators (12), the following DoF were obtained:

N̂h ¼ 3; N̂v ¼ 5. As to the robust variant given by Equations

(16) and (17), the DoF estimates were eNh ¼ 2; eNv ¼ 5 . It is
worthy of reminding that the DoFs should be compared in the

mating pairs, that is, N̂h with eNh , and N̂v with eNv : As a rule,
the classical and robust estimates of DoF do not coincide, but
do not differ materially either, as it can be in case when a data
set is not contaminated with outliers.
For analysis of the quality of the PCA models, we propose to

use the extreme plot (Figure 4). This plot demonstrates the
dependence of the observed number of the extremes versus
theoretically expected values, calculated as n= aI. In practice,
the plot is obtained by varying a= n/I. The gray area represents

the tolerance limits calculated as ta ¼ n� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að ÞIp ¼

n� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� n=Ið Þp

.
The results for data set G1 are shown in the left panel of

Figure 4. It confirms that the expected and calculated extremes
are sufficiently close for the CDD-SIMCA and ROBPCA methods.
RDD-SIMCA is worse, especially at small values of extremes. Both
classical and robust estimates of DoF are rather close; the
extreme plot shows CDD-SIMCA advantage. Thus, this is a regular
data set and CDD-SIMCA should be used.

4.3. Clean data set G1 contaminated with evident outliers G3

In case of set G1 being contaminated with four evident outliers
(group G3), a weakness of the classical approach can be seen.
Figure 5 presents the acceptance areas (a=0.1, solid curve) and
the outliers areas (g=0.01, dashed curve), obtained by CDD-SIMCA
(left panel) and RDD-SIMCA (right panel). The curved shape of the

areas is explained by the axes transformation
ffiffiffiffiffiffiffiffiffiffi
h=h0

p
;

ffiffiffiffiffiffiffiffiffi
v=v0

p
that

was made for better visualization. This is a useful trick that helps to
present the SIMCA plots with large outliers.
All threemethods single out all G3 samples as atypical ones. At the

same time, the classical approach (CDD-SIMCA) specifies only two ob-
jects as outliers, and the other two are considered as extremes.
Changing the a level does not influence the CDD-SIMCA results, till
a=0.1, when onemore extremeobject appears. Predictably, ROBPCA
as well as RDD-SIMCA shows proper performance, revealing the four
outliers. The extremeplot (not shown) demonstrates a proper depen-
dence of the number of extremes on the expected values.
In this case, the DoF estimates were N̂h ¼ N̂v ¼ 1 (classical)

and eNh ¼ 2; eNv ¼ 3 (robust). Strange dependence of the
CDD-SIMCA-based acceptance area on the a-level, and an

Figure 4. Extreme plots: observed number of extreme objects versus the expected number. Gray area represents the 0.95 tolerance limits. Diamonds
show CDD-SIMCA, squares are for RDD-SIMCA, and dots represent ROBPCA.
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essential difference between the classical and robust estimators
of DoF, indicates the presence of outliers. From Figure 5
(left panel), it can be seen that the CDD-SIMCA acceptance
area is distorted, especially in the OD (v) direction, because of
a wrong estimation of the DoF. In this case, the masking effect
is anticipated.

4.4. Data set consisting of a mixture of two distributions

Let us consider the case of a data set consisting of 200 objects of
type G1 and 46 objects of type G2, 246 objects in total. For
g= 0.05, CDD-SIMCA revealed two outliers, RDD-SIMCA revealed
10 outliers, and ROBPCA revealed 41 outliers. The DoF estimates

Figure 5. The SIMCA plots for data set G1+G3. The left panel is for CDD-SIMCA, and the right one is for RDD-SIMCA. Solid curve limits the acceptance
area (a=0.1), and dashed curve limits the outlier area (g=0.01).

Figure 6. The data set cleaned by RDD-SIMCA. The left panel presents the RDD-SIMCA result, and the right one shows how this result is evaluated by
ROBPCA. Solid lines limit the acceptance area (a=0.01), and dashed lines limit the outlier area (g=0.05).

Figure 7. The data set cleaned by ROBPCA. The left panel presents the ROBPCA result, and the right shows how this result is evaluated by RDD-SIMCA.
Solid lines limit the acceptance areas (a=0.01), and dashed lines limit the outlier areas (g=0.05).

Concept and role of extreme objects in PCA/SIMCA
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were N̂h ¼ N̂v ¼ 1 (classical) and eNh ¼ 2; eNv ¼ 3 (robust). The
extreme plot (Figure 4, right panel) shows that if the results
provided by CDD alone are considered (diamonds), no traces of
suspicious objects can be found. CDD-SIMCA cannot reveal the
mixture of two distributions and treats the data set as a regular
one, without any contamination. This is an evident masking ef-
fect. Only a comparison with the robust methods helps to find
a significant share of atypical objects. The first symptom can be
seen in the extreme plot (Figure 4(b)), the number of extremes
obtained by RDD-SIMCA and ROBPCA is always greater than
the expected one. The second symptom is the high number of
objects revealed as outliers by both robust methods. The most
efficient results are provided by ROBPCA, but even this method
cannot reveal all objects from G2 group in one step.

To clean the data set, the outliers found during the step
should be excluded and the models recalculated. RDD-SIMCA
requires nine consequent steps to clean the data set. In Figure 6,
the results of cleaning by RDD-SIMCA are presented. Using this
approach, all 46 objects from G2 were revealed and excluded.
SIMCA plot for the remaining 200 objects (G1) is shown in the
left panel. This cleaning can be evaluated by ROBPCA, and the
right panel of Figure 6 represents this test. One object from of
type G1 (labeled as 1-199) was considered as an outlier.

ROBPCA cleaned the data set in three steps, and the result is
presented in the left panel of Figure 7. This method revealed 44
outliers, 43 from group G2 and one object (labeled as 1-199)
from group G1. Three objects from G2 (labeled as 2-001, 2-002,
and 2-003) have not been revealed. The evaluation of this result
by the RDD-SIMCA method is shown in the right panel of Figure 7.

These plots illustrate that both methods lead to the similar
results. RDD-SIMCA is stricter to the OD outliers, whereas
ROBPCA is more rigorous with the high-leverage objects.

5. CONCLUSIONS

The proposed dual data-driven PCA/SIMCA (DD-SIMCA) technique
has demonstrated a proper performance in the analysis of both
regular and contaminated data sets. The following issues in the
framework of the presented approach should be emphasized.

Extreme objects play an important role in data analysis. These
objects are a mandatory attribute of any data set, and they
should not be confused with outliers. The number of extremes
should be compared with the expected number, coupled with
the significance level a. A wrong number of such objects imme-
diately indicates violations in the presumed data structure. Too
large a number points out a mixed data structure, whereas too
small a number is a sign of the outlier presence. The proposed
extreme plot can assist in understanding the problem.

The extreme and outlier significance levels cannot be neglected.
If the samples are considered as regular objects, the acceptance
probability of (1� a) should be presented. If an object is detected
as an outlier, the probability of false detection (g) should be given.

The main advantageous of DD-SIMCA are as follows:

• data-driven approach to the evaluation of distances
distributions;

• dual method of estimation: classical for regular data and
robust for contaminated data; and

• clear association with extreme and outlier significance levels.

It is important to emphasize that for the reliable classification
of new objects, DD-SIMCA should be applied in an iterative

manner with exclusion of outliers revealed during intermediate
steps. Only afterwards, applying PCA to a purified calibration
data, the final reliable acceptance area can be built.
The proposed DD-SIMCA approach cannot be viewed as an

alternative to fully robust techniques, such as ROBPCA. In our
opinion, the maximal benefit can be reaped from the combina-
tion of DD-SIMCA with these methods.
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