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A novel method for theoretical calculation of the type II (β) error in soft independent modeling by class analogy is
proposed. It can be used to compare tentatively predicted and empirically observed results of classification. Such
an approach can better characterize model quality and thus improve its validation. Method efficiency is demon-
strated on the famous Fisher Iris dataset and on a real-world example of quality control of packed raw materials
in pharmaceutical industry. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One-class classifiers (OCCs) are a special collection of methods
within the group of pattern recognition tools. A typical OCC
feature is that these methods try to distinguish objects of one
particular class, also called target class, from all other objects
and classes. The OCC model is established using a training set
that contains only target objects. An overview of various OCCs
can be found elsewhere [1,2].

Soft independent modeling by class analogy (SIMCA) is an
OCC that was initially proposed in its simplest version [3].
Afterwards, it underwent several modifications [4] and was made
more robust [5]. Nowadays, SIMCA is designed as an approach
that consists of a (robust) principal component analysis model
development, followed by the calculation of the orthogonal
and score distances with the subsequent determination of their
cut-off levels [6]. One of the unique SIMCA features is its ability
to calculate the errors of misclassification theoretically. The
development of various decision areas, both for a regular dataset
and in the presence of outliers, is described in [7,8]. Such a
modification of SIMCA is called DD-SIMCA.

An essential feature of OCC is the absence of an alternative
class at the stage of OCC training. Subsequently, the β-error for
OCC cannot be determined a priori. However, in case an alterna-
tive class is presented later, a particular β-error can be evaluated.
So far, this was performed empirically by calculating a number of
wrong acceptances in the alternative class [9–11]. In the current
paper, we present a theoretical method for the type II error
calculation, which can be used to compare the tentatively
expected and empirically observed results. We think that such
an approach better characterizes model quality.

This paper should be considered as an addition to the study
presented in [8], where the SIMCA approach review and the
discussion regarding the degrees of freedom (DoF) are
presented. At the same time, some basic formulas are repeated
in Section 2.2 for the purpose of clarity.

2. THEORY

2.1. Classification errors

None of classification models are complete without validation of
the model quality, which is primarily associated with the

expected errors of misclassification. The type I error, α, is the rate
of false rejections (false alarm), that is, the share of objects from
the target class, which are misclassified as aliens. The type II error,
β, is the rate of false acceptances (miss) [9], that is, the share of
alien objects that are misclassified as the members of the target
class. In general, the type II error for OCC is equal to 1� α as a full
OCC alternative includes all conceivable objects, which do not
belong to the target class.
When alternative classes are presented, the β-error can be cal-

culated for a given α-error as shown in Figure 1. The α-error is
equal to the area under curve 1 to the right of line 4. The β-error
is equal to the area under curve 2 to the left of line 4. Moving
critical level 4, we can change the risks of wrong rejection (α)
and wrong acceptance (β) decisions.

2.2. DD-SIMCA

Let X be the (I× J) matrix, which originates from the initial raw
matrix Xraw representing the target class data. Matrix X is the
result of matrix Xraw preprocessing. The principal component
analysis decomposition of matrix X is given by

X ¼ TPt þ E (1)

where T= {tia} is the (I× A) scores matrix; P= {pja} is the (J×A)
loadings matrix; E= {eij} is the (I× J) matrix of residuals; and A is
the number of principal components (PCs). Matrix Λ= TtT=

diag(λ1, …, λA) is a diagonal with elements λa ¼ ∑
I

i¼1
t2ia , which

are the eigenvalues of matrix XtX ranked in descending order [5].
The number of PCs (A) in the SIMCA classification is selected

using a parsimonious criterion, the minimal number at which
the goal is achieved. Certainly, the goal could be diverse, so
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the number can change. For a pure one-class problem, the goal
is to attribute the training and test samples properly, that is, to
make the amount of extreme objects agree with the type I error
level. If an alternative class is presented, the addition goal should
be achieved, which is to adjust the number of aliens to the type II
error. This could give a rise to the number of PCs.
Two statistics are important for interpretation and characteri-

zation of each target class object [4]. The first one is the score
distance,

hi ¼ tti T
tTð Þ�1ti ¼ ∑

A

a¼1

t2ia
λa
; i ¼ 1;…; I (2)

and the other one is the orthogonal distance,

vi ¼
XJ

j¼1

e2ij ¼
XK

a¼Aþ1

t2ia; i ¼ 1;…; I (3)

where K≤min(I, J) is the rank of matrix X.
Let us suppose that the majority of data samples X follow the

normal distribution N, and a minor part comes from the other
distribution D, that is,

Rμ ¼ 1–μð ÞN þ μD; where 0≤ μ << 1 (4)

In [7], it is shown that in this case, the distributions of both
distances are well approximated by the scaled chi-squared
distribution

Nh
h
h0∝χ2 Nhð Þ Nv

v
v0∝χ2 Nvð Þ (5)

where v0 and h0 are the scaling factors, and Nh and Nv are the
numbers of the DoF. We consider these parameters unknown a
priori and suggest to estimate them using the distance samples
(vi, hi), i= 1, …, I, obtained from the training set by a method of
moments as explained in [8].
The fact that both distances follow the scaled chi-squared

distributions provides a possibility to introduce a new statistics
that can be called the total distance, c. It is calculated as a
weighted sum of the score distance variable, h, and the orthog-
onal distance variable, v,

c ¼ Nh
h
h0

þ Nv
v
v0∝χ2 Nh þ Nvð Þ (6)

It is clear that c has the chi-squared distribution with Nh+Nv

DoF. Therefore, given the type I error α, the acceptance area is
determined by

c≤ccrit αð Þ (7)

where

ccrit ¼ χ�2 1� α;Nh þ Nvð Þ (8)

is the (1� α) quantile of the chi-squared distribution with Nv+Nh

DoF. TheMATLAB code for DD-SIMCA can be downloaded from [12].

2.3. The type II error

To distinguish between symbols that stand for the target and
alternative classes, we will apply a stroke character for the
alternative class symbols, for example, I stands for the number
of objects in the target class, and I′ stands for the number of
objects in the alternative class, and so on.

Let us consider the (I′× J) matrix X′, which is constituted of I′
objects from the alternative class. Matrix X′ is assumed to be
preprocessed in the same way as the target class matrix X. The
projection of X′ on the PC space formed by the target class is
determined by the equations

T′ ¼ X′P E′ ¼ X′–T′Pt (9)

and the score and orthogonal distances for the alternative class
objects are calculated by

h′i ¼ t′
t
i T

tTð Þ�1t′i ¼ ∑
A

a¼1

t′
2
ia

λa
; SD′

i ¼
h′i
h0

v ′i ¼ ∑
J

j¼1
e′
2
ij ¼ ∑

K

a¼Aþ1
t′
2
ia; OD′

i ¼
v ′i
v0

(10)

The total distance c′ is calculated by

c′i ¼ Nh
h′i
h0

þ Nv
v ′i
v0
; i ¼ 1;…; I′ (11)

where parameters h0, v0, Nh, and Nv have been estimated using
the target class data. Then, the type II error, β, is defined by

β ¼ Pr c’ ⩽ ccritf g (12)

To calculate this value, we will make two assumptions. The first
one is that statistics c′ has the following distribution:

c′

c′0
∝χ ′

2
k; sð Þ (13)

where c′0 is a scaling factor, and χ′2(k,s) is the noncentral chi-
squared distribution [13]. This is a generalization of a well-known
chi-squared distribution. The noncentral χ′2(k,s) depends on two
parameters: k that specifies the number of DoF and s that is the
noncentrality parameter. The second assumption is that k=Nh+
Nv, that is, we suppose that distributions in Equations 6 and 13
have the same number of DoF.

The ground for these assumptions is as follows. In case the
alternative class objects are distributed in line with Equation (4)
around their own center, their projections on the PC space
formed by the target class also have a distribution that agrees
with Equation (4).

Let us consider the sum U ¼ u21 þ⋯þ u2n, where u1,…, un are
independent variables with expectations m1, …, mn and
variances v1, …, vn. Then,

(1) In case μ= 0, and m1 =…=mn=0, and v1 =…= vn= 1, U has
the chi-squared distribution with n DoF—by definition [13];
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Figure 1. Fisher’s iris dataset. Probability density distributions of statistics
c and c′ in case Versicolor (1) is the target class, while Virginica (2) and Setosa
(3) are the alternative classes. Line 4 represents the critical cut-off value.
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(2) In case μ= 0, and v1 =⋯= vn=1, U has the noncentral chi-
squared distribution with n DoF and the noncentrality
parameter s ¼ m2

1 þ⋯þm2
n—by definition [13];

(3) In case μ≠ 0, and m1 =⋯=mn= 0, U/A can be approximated
by the chi-squared distribution with k DoF, where A and k
can be estimated in various ways—see [8].

Therefore, one can expect that

In general case, U/A can be approximated by the noncentral chi-
squared distribution with k DoF and noncentrality parameter S.
Parameters A, k, and s are unknown and have to be estimated
from given u1, …, un.

The direct calculations by the method of moments show that
for a dataset of a reasonable size (n< 1000), parameters A and k
are highly correlated, and thus only one of them can be found.
Fixing k =Nh+Nv, we gain an evident advantage because the
distribution of statistics c′ becomes similar to the distribution of
statistics c excepting a non-zero center.

Estimating two unknown parameters c′0 and s in Equation 13
by the method of moments, we should use the right trimmed
sample mean and variance. The right trimming is necessary
because sometimes an alternative class consists of several
subclasses that should be separated. This case is studied in
Section 4. Additionally, trimming removes outliers. Fortunately,
the type II error is determined by the left-side samples that are
close to the acceptance area given by Equation 7.

Finally, the type II error is calculated by

β ¼ Pr χ′
2
k; sð Þ < ccrit

c′0

� �
(14)

where ccrit is defined in Equation (8). For calculation of the
noncentral chi-squared distribution, an approximation presented
in [14] can be used.

3. EXAMPLE I. IRIS DATA

To illustrate the proposed approach, a famous Fisher Iris dataset is
used [15]. These data are traditionally employed in chemometrics
to present a new classification approach [16,17]. The dataset
depends on four variables and consists of three classes of 50
samples [18]. Each class corresponds to one of Iris species: Iris
Setosa, Iris Versicolour, and Iris Virginica.
Let us use Versicolor as a target class and establish the DD-

SIMCA model with two PCs. The total distances, c, for both the
target and alternative classes are shown in Figure 1. The curves
present density functions for the theoretical distributions, while
the data-driven histograms are shown by columns. Classification
results are presented in Table I.
The table is divided into three horizontal sections. Each

section corresponds to an Iris class, considered as the target
class, while the others are used as the alternative classes. The
first column contains various α-values; the numbers of tenta-
tively expected and practically observed wrong rejection
decisions are presented in columns 2 and 3. The β-values
calculated for each alternative class are given in columns 4
and 7. The numbers of tentatively expected and observed
wrong acceptance decisions are presented in columns 5 and
6 (the first alternative class) and columns 8 and 9 (the second
alternative class). The β-values depend on α-value in line with
Equation 14 via Equation 8. Consider target class Versicolor
(the upper part of Table I). The first alternative class Virginica
partly overlaps with the target class (Figure 1), so the β-values
are rather large. The second alternative class (Setosa) is
located very far from the target class; therefore, the β-values
are close to zero.
From Figure 1, it can be seen that class Setosa is well separated

from other classes, and classes Virginica and Versicolor are very
similar. The second and third parts of the table confirm this.
The results presented in Figure 1 and Table I demonstrate a good
agreement between the theory and practice.

Table I. Fisher’s Iris dataset

1 2 3 4 5 6 7 8 9

Target class
wrong rejection

First alternative class
wrong acceptance

Second alternative class
wrong acceptance

α Expected Observed β Expected Observed β Expected Observed

Versicolor Virginica Setosa
0.1 5 7 0.109 5 5 2 · 10�11 0 0
0.05 3 1 0.157 8 6 1 · 10�10 0 0
0.01 1 0 0.285 14 14 4 · 10�9 0 0
0.005 0 0 0.344 17 18 1 · 10�8 0 0
Setosa Versicolor Virginica
0.1 5 7 3 · 10�9 0 0 1 · 10�8 0 0
0.05 3 3 6 · 10�9 0 0 2 · 10�8 0 0
0.01 1 0 2 · 10�8 0 0 4 · 10�8 0 0
0.005 0 0 4 · 10�8 0 0 5 · 10�8 0 0
Virginica Setosa Versicolor
0.1 5 7 6 · 10�20 0 0 0.074 4 3
0.05 3 3 5 · 10�19 0 0 0.119 6 6
0.01 1 1 3 · 10�17 0 0 0.259 13 11
0.005 0 0 1 · 10�16 0 0 0.329 16 17

SIMCA classification, three options (each class is considered as target).
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4. EXAMPLE II. CONTROL OF SUBSTANCES

This real-world example has been originally presented in [19].
The task is a near infrared-based incoming inspection of a phar-
maceutical substance taurine packed in closed polyethylene (PE)
bags. Two hundred forty-six near infrared spectra were recorded
using a handheld diffuse reflectance fiber optic probe for 82
bags with the substance. For each bag, the measurements were
taken three times at different places. Additional experiments
that measured the substance directly in open PE bags and a
detailed data analysis [8,19] showed that the whole dataset
represents a mix of two groups. The first group consists of 200
spectra of fine measurements through a single PE layer. The
second group consists of 46 readings where the main substance
peaks are distorted by the varying thickness of PE bags caused
by the bags’ folds. In this case study, we will consider the first
group as a target class and the second group as an alternative
class in order to calculate theoretically and afterwards validate
empirically the type II errors. Here, we apply the results [8,19]
of data preprocessing and the target class complexity (three
PCs) yielded previously.
A thorough analysis of the alternative class samples showed

that they did not comprise a uniform class but broke down into
four alternative subclasses—AC1, AC2, AC3, and AC4—as
presented in Table II.
This partitioning can be performed by means of a sequential

right trimming of the total distances c′1;…; c′
I′

� �
. On the other

hand, we can suggest a solid explanation of this fact. Figure 2
demonstrates typical spectra related to our example. Spectrum
SUB represents the pure substance, and spectrum PE stands for
polyethylene. TC is a typical spectrum of the target class samples,
while AC1–AC4 are characteristic spectra of samples from the
alternative subclasses AC1, AC2, AC3, and AC4, respectively.
It can be seen that two absorbance bands of PE (5780 and

5663 cm�1) primarily influence the separation of the alternative
class. At the same time, a strong substance band at 5840 cm�1

is poorly visible in the alternative classes’ spectra. Therefore, a
straightforward reason of the alternative class partition is the
influence of PE, that is, the target class samples were acquired
though a single PE layer, the AC1 samples through two layers,
and so on. The last AC4 spectra were obtained through
numerous PE folds. Certainly, we do not insist on knowing the
exact number of layers behind each alternative subclass; this is
just a trend, not a strict rule.

Figure 3, the layout of which is similar to that of Figure 1,
demonstrates the probability density distributions of the total
distance statistics c and c′ for the target class (TC), and for the
alternative classes (AC1 and AC2). Other alternative subclasses
are located far to the right, and they are not shown.

The separation of alternative subclasses AC1 and AC2 is
clearly seen. We can also conclude that only AC1 provides a
significant β error.

Figure 4 presents the type II errors calculated by Equation 14
for alternative class AC1. It displays the numbers of wrongly
accepted alternative samples in dependence on the type I error
α. Theoretically expected numbers are shown by dots with 0.90
tolerance limits, while empirically observed numbers are
represented by squares. One can see that theory agrees well
with experimental findings in this plot.

Thus, this real-world example confirms that the suggested
theoretical approach to the type II error prediction could be used
in practice.

Table II. Alternative subclasses

Class Members c′ range c′ mean

AC1 12 18–77 41
AC2 22 111–364 204
AC3 8 610–1240 906
AC4 4 1980–4000 2636

Figure 2. Typical spectra of packed substances. Clear substance (SUB), poly-
ethylene (PE), the target class (TC), and the alternative classes (AC1–AC4).
Spectra of SUB and PE are shifted downward for convenience.

Figure 3. Substances’ dataset. Probability density distributions of statis-
tics c and c′ for the target class (TC) and for the alternative classes (AC1
and AC2). Line 1 represents the critical cut-off value.

Figure 4. The numbers of false accepted samples from alternative class
AC1 in dependence on the type I error α. Theoretically expected numbers
are shown by dots with 0.90 tolerance limits, while empirically observed
numbers are represented by squares. Calculated values of the type II
errors β are indicated near the markers.
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5. CONCLUSION

It was shown that in the presence of an alternative class, the type II
error can be calculated theoretically for the SIMCA classifier. In this
approach, the β-error can be obtained for a given α-error, and, vice
versa, the α-error can be found for a given β-error. Two examples
confirmed a good agreement between the theory and practice.

The ability to calculate the errors of misclassification theoreti-
cally is certainly an advantage over conventional empirical
calculation. Consider, for example, the area of the quality control
that employs the three main concepts. They are process analytical
technology, Quality by Design, and risk management. The main
point that unites all these issues is a science-based approach.
One can find in literature a number of interesting papers,
which successfully employed process analytical technology
and Quality by Design [20]. As to risk management, the authors
often confine themselves to such words as “understanding
of potential risks” or “risk-based framework”. At the same
time, every quality control procedure must result in making a
data-driven decision that relied on a quantitative risk assess-
ment. The latter should be based on the rule that no decision
rule is perfect, and inadvertent errors (α and β) can always be
expected and accounted to develop a decision that is optimal
with respect to the customer demands. It is evident that only a
theoretical relationship between α and β is able to give such a
decision. This approach has been successfully applied to a real-
world example of classification of drugs with identical active
pharmaceutical ingredients content [21,22].

Similar applications could be expected for the food products
authentication, in the process control, and in many other areas
where a quantitative risk assessment is necessary.
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