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Bilinearity is the basic principle of multivariate curve resolution. In this paper, we consider a case when this premise
is violated. We demonstrate that the alternating least squares approach can still be used to solve the problem. The
developed theory is applied to calibration of spectral data that includes the so-called saturated peaks, which are
flattened because of samples with ultrahigh absorbance. We demonstrate that in spite of serious violations of the
Lambert–Beer law, the results of prediction are quite satisfactory, and the accuracy is better than in other competing
methods. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quantitative determination of analytes in mixtures by means of
spectroscopy together with chemometric data processing is an
approach widely used both in analytical laboratories and at
manufacturing sites of food and pharmaceutical industries,
chemical plants, and so on. Ultraviolet–visible (UV–Vis) and near
infrared spectrometry are well adapted for the in-line and on-line
control, and thus, they are employed in different process analyt-
ical technology (PAT) solutions [1]. The multivariate calibration
methods such as the partial least squares (PLS) regression and
its numerous modifications [2] are the most popular and well-
established techniques. These methods yield a prediction of an
analyte concentration without reconstruction of the pure spectra
of the mixture’s components. Another class of methods involves
a two-step approach. First, it aims at a reconstruction of
spectroscopic data; afterwards, it uses the spectroscopic profiles
to solve the quantitative calibration problem. The multivariate
curve resolution alternating least squares (MCR-ALS) method
belongs to the latter class [3]. In application of MCR-ALS to
calibration problems, special attention is directed at the employ-
ment of various types of constraints. Such constraints include
those that carry significant chemical/physical information and
help to avoid ambiguity of the result. In recent works, correlation
constraints were also employed to account for such side effects
as material aging, matrix effects, and temperature changes [4,5].

There are several studies that compare the performance of
PLS and MCR-ALS for the calibration of complex mixtures. The
results show that both methods generate comparable predic-
tions [5–7]. Despite the fact that the MCR-ALS computational
procedure is more complex, the additional information
regarding the pure spectra shapes, acquired in the course of this
procedure, is valuable to understand the processes under
investigation. The assumption of a bilinear relation between
the experimental data and the concentration of the
components/pure spectra is in the background of both methods.

Process control is often the ultimate purpose of the developed
calibration models. No doubt that a laboratory-scale calibration
model should be sufficiently secure to be transferred to

plant-scale implementation. During the transfer, the following
circumstances should be taken into account. First, the concentra-
tions in real life production could be occasionally out of the range
studied in the laboratory. Therefore, the model should be, to some
extent, stable in the case of a prediction out of the explored
concentration range. Second, the absorbance of some analytes
may be very high. As a result, the corresponding peaks become
distorted and flattened [8]. This effect can be viewed as an
apparent violation of the Lambert–Beer law, as concentration
increases, but the corresponding peak’s height remains unchanged.
Sometimes, such peak distortions are wrongly called detector
saturation. On the contrary, the transmittance signal is very low in
highly absorptive media. Therefore, we prefer to use the term peak
saturation in relation to a peak that is flattened because of ultrahigh
absorbance. There are many ways to avoid such situations in a
laboratory, for example, by means of sample dilution, shortening
of the optical path length, or, where possible, changing a spectral
region. In PAT applications, such methods are not always available.
Sometimes, we have to analyze mixtures of analytes

characterized by very high and very low extinction coefficients
simultaneously. Reduction of the optical path length makes
the determination of the components with low absorptivity
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impossible, while an increase of the optical path length causes
peak saturation for the highly absorptive component. Thus, we
face a challenge of quantitative determination of a mixture’s
components when bilinearity between spectral data and
concentrations/pure spectra does not hold. Claiming violation of
bilinearity, we bear in mind that, in general, the investigated
mixture is subject to the Lambert–Beer law. Had we had an ‘ideal’
instrument, the bilinearity would have been kept. However, the
real world detectors have limited sensitivity and, as a result,
produce distorted peaks for highly absorptive analytes.
To solve the problem, we are proposing a nonlinear modifica-

tion of the MCR-ALS method and call this technique nonlinear
MCR-ALS (NL-MCR-ALS). The performance of NL-MCR-ALS is
compared with PLS, classical MCR-ALS, and MCR-ALS with non-
linear correlation constraint. For this purpose, we use two data
sets. The first one is simulated by means of one-peak spectra.
Varying the dataset properties, we investigate various features
of the method.
The second example describes the determination of a nitric

acid concentration with the help of UV–Vis spectroscopy.
Despite the apparent simplicity of the latter example, quantita-
tive determination of nitric acid concentration using a spectro-
photometer is a rather complex problem, as an aqueous
solution of HNO3 has no absorbance peaks in visual region. At
the same time, nitric acid is widely used in various production
processes, where the in-line control of HNO3 concentration is
vital. To compare the robustness of the models, the test set
concentration ranges are selected to be wider than those for
calibration subsets.

2. THEORY

2.1. Conventional methods

Partial least squares [9] is a well-known method of calibration;
therefore, it will not be explained here in detail. In this paper, it is
used for the comparison of calibration and prediction results with
a newly developed method. For each dataset, two PLS models are
established. The first (full) model uses the entire spectral range. In
the second (short) model, the spectral range is reduced by the
exclusion of peak saturation areas. The number of the PLS latent
variables is determined in a common way, using the root mean
squared errors (RMSE) of calibration, RMSEC, and prediction,
RMSEP, which are calculated using the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

ci � ĉ ið Þ2=I
vuut (1)

where ci are the reference concentration values, ĉ i are the
estimated values, and I is the number of samples.
Another well-known method is MCR-ALS [3] that assumes a

bilinear model:

X ¼ CSt þ E: (2)

Here, X is the (I× J) matrix that contains spectra of I
samples recorded for J wavelengths. C is the (I×N) matrix of
the concentrations of pure components, and S is the (J×N)
matrix of pure spectra. N is the number of components in the
system. E is the (I× J) matrix, which contains variations not
explained by the model.

There are two preliminary steps that are usually necessary for
MCR-ALS. The first one involves the determination of the number
of pure components N. This can be carried out by means of the
principal component analysis, or applying any other similar
procedure [10]. The second preliminary step includes evaluation
of the initial estimate of S, or C to start the ALS procedure [4].
Afterwards, the matrices C and S are found in order by minimiz-
ing the sum of the squared residuals:

minimize X� CSt
���� 2

(3)

The ALS algorithm consists of the C-type step and the S-type
step, which are repeated until convergence. At the C-type step,
the value of S≡ Shat is fixed, and the C matrix is calculated using
the unconstrained least squares (LS) estimator:

Cin ¼ XShat SthatShat
� ��1

(4)

For the S-type step, the value of C≡Chat is fixed, and matrix S
is found applying a similar formula:

Sin ¼ XtChat Ct
hatChat

� ��1
(5)

To give a physicochemical meaning to the LS estimates,
certain necessary constraints are imposed at each step. For in-
stance, there are natural nonnegativity constraints that force
the concentration and spectra to be equal to or greater than
zero. In calibration problems, additional correlation constraints
[5] are applied. They are based on regressions that relate the
known reference concentration matrix, Cref, with matrix Cin

obtained in the ALS procedure using Eq. (4):

Cref ¼ ACin þ B (6)

Here, A is the (N×N) matrix of slopes, and B is the (N×N)
matrix of intercepts [5]. In a simple case, a univariate regression
cn,ref = ancn,in + bn is developed for each component concentra-
tion vector cn [7]. Then, A=diag(a1,…, an), and B= (b11,.., bn1),
where 1 is the (N× 1) vector of units.

The estimated regression matrices A and B are used to adjust
matrix Chat by the following formula:

Chat ¼ ACin þ B: (7)

2.2. Peak saturation modeling

As discussed earlier, bands with high absorbance produce
saturated spectra. This causes a loss of linearity between the
peak height and concentration. While analyzing the UV–Vis
spectra with saturated peaks, we have noticed that it is often
rather difficult to distinguish between a well-measured peak
and a saturated one. Only an additional experiment that involves
sample dilution may reveal this, as saturated peaks acquired by
instruments do not often have a pronounced flat top (Figure 1,
left panel, curve 2). The shape of flattening depends on many
factors. In diffraction spectrophotometers, it is primarily deter-
mined by the width of the optical slit [8]. In Fourier spectrome-
ters, it depends on the algorithm used for spectrum
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digitalization. That is why, in general, spectrometers produce
saturated peaks with flatter tops than spectrophotometers.

To account for such variations in the shape of saturated peaks,
we introduce an empirical transition function given by the
following formula:

xf gs;p ¼ s tanh
xp

sp

� �� 	1=p
(8)

Here, x is an ideal peak and {x}s,p is its saturated modification.
Function tanh() stands for the hyperbolic tangent, p is the pa-
rameter that changes the peak shape, and s is the saturation
level, that is, the upper value above which an instrument cannot
measure absorbance accurately. Most of the commercially
available instruments have s ≤3 AU. However, some spectrome-
ters have been reported [11] to be stable up to 8 AU.

The right panel of Figure 1 presents transition functions
given by Eq. (8) for different values of parameter p. The left panel
shows corresponding saturated peaks, obtained by these
functions. The saturation level is 3 AU. The transition function
{x}s,p possesses the following evident properties. At small absor-
bance values (x<<s), it is close to the diagonal {x}s,p= x, and at
large absorbance values (x>> s), it assumes a constant value
{x}s,p= s. In the proximity of the transition area (x≈ s), the function
form is defined by parameter p: The larger the parameter, the
sharper the transition.

In our opinion, a specific form of the transition function (Eq.(8)
is an example) is not so important. Any other function that meets
the aforementioned conditions (diagonal at small x, constant at
large x, etc.) will provide a similar result. This is because the
function is used for the interpolation (not extrapolation!)
purposes. Parameters s and p reflect the properties of a specific
instrument. They depend on the measurement layout, instru-
ment setup, tunings, and so on. Thus, ideally, parameters s and
p should be evaluated a priori, using standard samples with
well-established ideal spectra. However, in practice, the parame-
ters can be found by optimization.

2.3. Novel methods

In the MCR-ALS method, the peak saturation primarily manifests
itself through a nonlinear dependence between the Cin and Cref

values. An example is shown in Figure 2, which presents nitric
acid calibration (the second case study, Section 4). The

conventional MCR-ALS calibration produces points set 1, which
should but cannot be fitted by a linear regression. Here, it seems
natural to replace a linear regression given by Eq. (6), with a
nonlinear one, for example, with a polynomial or exponential
regression as shown by curve 1 in Figure 2. This method (labeled
from now as MCR-ALS-NC) is studied in the subsequent sections.
However, the approach is misleading, as the Cref/Cin dependence
has an evident singular point located near the concentration
value that provides peak saturation. Unfortunately, the location
of this point is difficult to predict.
The most prospective approach for analysis of peak saturated

data is based on the following equation:

X ¼ CSt

 �

s;p
þ E (9)

which contains nonlinear element-wise spectra mapping {}s,p
defined by Eq. (8). Clearly, the linear LS method cannot be used
to solve Eq. (9), and we arrive at a nonlinear optimization problem:

minimize
C;S

X� fCSt�s;pk2
�� (10)

which solution can be obtained using the following modified
ALS algorithm.

Figure 1. Peak saturation modeling for saturation level s=3 (4). The left panel (a) shows saturated peaks. Ideal case (1), p=1 (2), and p=12 (3). The
right panel (b) shows corresponding transition functions.

Figure 2. Nitric acid data. Relation between Cin and Cref. Points set 1 is
calculated by multivariate curve resolution alternating least squares
(MCR-ALS); points set 2 is calculated by nonlinear MCR-ALS.
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The C step (compare with Eq. (4)) is now presented by a
problem:

minimize
C

X� fCSt�s;pk2
�� subject to S≡Shat (11)

The S step (Eq.(5)) is performed via optimization:

minimize
S

X� fCSt�s;pk2
�� subject to C≡Chat (12)

The correlation constraint presented by Eq. (6), where Cin is
now a solution of the problem given by Eq.(11), can be used
more effectively. Figure 2 (points set 2) shows that the nonlinear
mapping linearizes correlation between Cref and Cin. Other
constraints (nonnegativity, unimodality, etc.) for concentrations
and spectra are also very important in the nonlinear case. These
constraints may be applied in the same manner as in the
classical procedure or can be included into the nonlinear
optimization procedure.
In some aspects, the proposed method is very similar to the

conventional MCR-ALS. The latter approach estimates matrices
C and S whose product CSt fits matrix X better. The nonlinear
MCR-ALS also seeks for the same matrices C and S, but the aim
is to fit in the saturated product {CSt} with matrix X. Its algorithm
is presented in the APPENDIX.

2.4. Computing

Nonlinear optimization can be a complex task, especially at the S
step, where the size of sought spectra (J) can be very large, for
example, J= 10 000 wavelengths. It may be advantageous to
parameterize vector S using a linear combination of Gaussian
(or other) peaks. Therefore, we consider two versions of
optimization in Eq. (12): global and parameterized. In global
optimization, the dimension of the search space is equal to J.
In the parameterized version, the dimension is M ·G, where M
is the number of peaks, and G is the number of peak parameters.
For the Gaussian shape, G is equal to 3.
As mentioned earlier, the nonlinear optimization in NL-MCR-

ALS can be executed in two different ways. The first option
employs an unconstrained optimization procedure with subse-
quent application of nonnegativity constraints in the same way
as it is carried out in classical MCR-ALS. This approach is utilized
for the second case study using the standard Excel Solver tool
and Chemometrics Add-In [12].

The second option involves constrained nonlinear optimiza-
tion. The nonnegativity constraints are used for C and Smatrices.
We test three optimization procedures from the MATLAB
Optimization Toolbox. They are sequential quadratic program-
ming, active set algorithm, and the interior point method
[13,14]. The first two algorithms are designed to solve medium-
scale problems, whereas the latter one is preferable for large-
scale problems. Data processing for the first case was carried
by means of in-house written routines.

3. SIMULATED EXAMPLE

3.1. Data set

The UV absorbance spectra in 240–300 nm range are simulated
with the help of the Gaussian function:

S ¼ C exp �z2
� �

; where z ¼ λ� 270ð Þ=8 (13)

Here, C stands for concentration and varies from 0.1 to 8; λ
denotes the wavelength value. In total, 17 samples are simu-
lated. The number of wavelengths, J, in each spectrum is equal
to 31. The simulated spectra are transformed using the transition
function given in Eq. (8) with p=12 (flat top) and with various
saturation limits s. To simulate instrumental errors, pseudoran-
dom normal noise with standard deviation of 0.2 is added.
Finally, all negative values in the spectra profiles are substituted
by zero values.

This example is used to explore the feasibility of the
proposed method. The whole dataset is divided into the
training subset (C=0.1, 1.0, 2.0, 2.5, 3.0, 3.5, 5.0, 5.5, 6.0) and
the test subset (C= 0.5, 1.5, 4.0, 4.5, 6.5, 7.0, 7.5, 8.0), which
are shown in Figure 3.

3.2. Calibration and prediction

In this example, NL-MCR-ALS is used without parameterization,
as spectrum S is of a small size. The method provides good
recovery of the pure spectrum. This is illustrated in Figure 4(a)
by comparing the ‘true’ (simulated) spectrum, curve 1, and
spectrum, resolved by the new method, curve 2.

Errors in calibration and prediction are also very small (Table I,
last column). It is important to mention that the prediction
versus reference plot (Figure 4(b)) demonstrates linear behavior
for the concentrations predicted by NL-MCR-ALS in the whole

Figure 3. Simulated example, saturation level, s=3. Training set (a) and test set (b).
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concentration range, even for the samples that have concentra-
tions that are higher than those in the calibration set. This fact
indicates the method stability and confirms its applicability for
varying conditions in the PAT implementations.

The application of classical MCR-ALS with linear constraint de-
livers worse results. The recovered pure spectrum (Figure 4(a),
curve 3) has a proper peak position, but the peak’s height is
low. An essential nonlinearity can be seen in the prediction ver-
sus reference plot, and the errors in calibration and prediction
are notably higher than those for NL-MCR-ALS (Table I).

An attempt to take nonlinearity into account by introducing a
nonlinear constraint in MCR-ALS does not help much. We tried
using polynomial correlation constraints of a different order.
The minimum of RMSEP is obtained for the fourth order, which
is selected as optimal, but even in this case, the results are about
three times worse (see column MCR-ALS-NC in Table I) than
those obtained by NL-MCR-ALS.

For comparison, the data is also subjected to the PLS method.
Two PLS models are constructed. The full PLS model uses the en-
tire spectral region. Four PLS components provide the lowest
RMSEP value in an attempt to compensate for data nonlinearity.
Here, the RMSEC is the lowest among all methods (Table I);
however, the prediction error is comparable with classical MCR-
ALS, and an essential nonlinearity is seen in the prediction versus
reference plot in Figure 4(a). At the same time, in this simulated
example, it is easy to select the variable ranges where bilinearity
is not violated. The two-factor short PLS model based on the
composite variable range of 240–263 nm and 279–300 nm pro-
vides prediction results comparable with those of NL-MCR-ALS.

Thus, we can conclude that the prediction ability of the
newly proposed NL-MCR-ALS method is comparable with that

of PLS in case special regions without violation of bilinearity
exist in data. Otherwise, NL-MCR-ALS overperforms the
aforementioned methods.

3.3. Experiments with simulated data

In order to better understand the behavior of the NL-MCR-ALS
method, we performed several experiments that involve varying
the dataset features of the simulated data.

Figure 4. Simulated example. Left panel (a) shows initial (1) and reconstructed spectra: (2) by nonlinear multivariate curve resolution alternating least
squares (NL-MCR-ALS) and (3) by MCR-ALS. Right panel (b) shows predictions by different methods: (1, ♦) full partial least squares (PLS), (2, ■) short PLS,
(3, ▲) MCR-ALS, (4, ●) MCR-ALS-NC, (5, ○) nonlinear MCR-ALS, and (6) calibration area.

Table I. Simulated example (comparison of methods’ performance)

Full PLS (four PC) Short PLS (two PC) MCR-ALS MCR-ALS-NC NL-MCR-ALS

RMSEC 0.008 0.144 0.467 0.281 0.093
RMSEP 1.067 0.360 1.438 1.110 0.388

PLS, partial least squares; MCR-ALS, multivariate curve resolution alternating least squares; MCR-ALS-NC, multivariate curve
resolution alternating least squares with non-linear constraints; NL-MCR-ALS, nonlinear multivariate curve resolution alternating
least squares; RMSEC, root mean squared errors of calibration; RMSEP, root mean squared errors of prediction.

Figure 5. Simulated example. The root mean squared errors (RMSE) of
calibration (1) and RMSE of prediction (2) values obtained by nonlinear
multivariate curve resolution alternating least squares in relation to
saturation level.
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First, we changed the saturation level from 0.5 to 8 AU aiming
to assess the method’s calibration/prediction abilities. It is clear
that the wider the concentration range without peak flattening
is, the more reliable a calibration/prediction will be obtained.
The maximal saturation level of 8 AU corresponds to the case
when all spectra are not saturated. The quality of modeling by
NL-MCR-ALS is shown in Figure 5. From the presented results,
we can conclude that reasonable outcomes (RMSEC= 0.32 and
RMSEP= 1.27) are obtained at the saturation level of 2 AU. This
means that at least one unsaturated spectrum should be
included in the calibration set for successful reconstruction of
the pure spectra. The predictive ability of the model improves

exponentially when the saturation level is increased. This means
that NL-MCR-ALS works well when bilinearity is not violated.
Naturally, if this is the case, less computationally cumbersome
methods are preferable.

The second answer we seek is the speed of different optimiza-
tion procedures. The goal of the experiment is to understand
whether the dimensionality of initial data matrix can be a
barrier for the NL-MCR-ALS application. For this purpose, we
simulated data with increasing spectra resolution in the
range 240–300 nm. The number of wavelengths/variables and
corresponding computing time of all the aforementioned
algorithms (Section 2.4) are presented in Table II.

The first and expected conclusion is that an algorithm
designed for solving large-scale problems such as the interior
point procedure works noticeably quicker than the other two
algorithms. At the same time, we recognize that the search for
the most effective, in terms of speed performance and accuracy,
algorithm should be continued. The main conclusion derived
from this study is that application of the nonlinear optimization
procedure is not a computational obstacle for the implementa-
tion of the NL-MCR-ALS method.

4. NITRIC ACID DETERMINATION

4.1. Data set

Concentrated nitric acid with a density of 1.35 g/ml and
distillated water are used for preparation of 18 samples of
aqueous solution of HNO3 with various concentrations (Table III).
The samples are subjected to the UV–Vis spectroscopy in the
transmittance mode and then converted to the absorbance units.
Data are collected with a wavelength increment of 1 nm among
consecutive measurements over the range of 200–1000nm using
the spectrophotometer UNICO SQ-2800 with the photometric
range of 0.01–3AU. A 10mm path length quartz cuvette is used.
As HNO3 has no absorbance peaks in visual region, only the range
of 200–350nm is considered.

The spectra are shown in Figure 6.

4.2. Calibration and prediction

Nitric acid has two strong absorbance peaks around 247 and
295 nm. The saturation level defined by the instrument is
s=3AU. Among the acquired spectra, only samples with

Figure 6. Nitric acid data. Absorbance spectra of nitric acid; training set (a) and test set (b).

Table II. Simulated example (nonlinear optimization
algorithms’ performance)

Number of
wavelengths

Time (s)

Interior point SQP Active set

31 <3 <5 <2
61 <3 <5 <2
121 <3 <5 2
301 <3 5 16
601 3 22 92
1201 5 193 432
2401 12 2164 >3000

SQP, sequential quadratic programming.

Table III. Nitric acid data (samples used for analysis)

Samples HNO3

concentration
mol/l (=M)Training Test

1 0 0
1 1 0.1
1 1 0.4
7 1 0.7
1 1 1.8
0 1 3.0
0 1 4.0
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concentration of 0.1M have spectra without flattening effect for
both peaks.

The spectra are parameterized using two Gaussian peaks. The
transition function given by Eq.(8) with p= 1 is applied. The
‘mechanism’ of application of the transition function is shown
in Figure 7(a). Figure 7(b) shows that the resolved spectra
perfectly describe both saturated and unsaturated spectral
peaks. An accurate prediction is obtained not only for test

samples with concentrations inside the calibration range but
also for samples with higher concentrations. Thus, NL-MCR-ALS
provides an accurate and stable model.
To assess the quantification performance of the new

procedure, we compare it with the full range PLS, the short range
(200–226, 321–350 nm) PLS, a conventional MCR-ALS, and MCR-
ALS-NC. The results are presented in Table IV and Figure 8.
The prediction results for PLS established for the full spectral

range and by conventional MCR-ALS are unsatisfactory. The loss
of linearity can be clearly seen in Figures 2 and 8. Variable
selection helps to establish a satisfactory short PLS model, as
the composite range 200–226 nm together with 321–350 nm
does not include flattened peaks, and at the same time carries
useful information about analyte concentrations. MCR-ALS-NC
is used with exponential (Figure 2) correlation constraint
Cref = exp(aCin + b). It is obvious that such a constraint does
not help much to manage the nonlinearity in prediction.
The RMSEP value provided by the NL-MCR-ALS is 50% lower

than RMSEP obtained by the short PLS method. Figure 8 shows
that these methods can manage the nonlinearity. The latter
model is able to avoid nonlinearity by means of variables’
selection, whereas NL-MCR-ALS does this with the help of
saturated spectra modeling. It is important to emphasize that
not only NL-MCR-ALS predicts the response but also reconstructs
the pure component spectrum.

5. CONCLUSIONS

In this paper, we propose a novel method for nonlinear MCR
based on a modified ALS algorithm (NL-MCR-ALS) and intended

Figure 7. Nonlinear multivariate curve resolution alternating least squares for nitric acid data. Left panel (a): ideal (1) and saturated spectra (3) of
HNO3 at concentration 0.7M. Saturation level (2). Right panel (b): measured (1d, 2d) and modeled (1m, 2m) spectra for HNO3 concentrations: 1.8M
(1d, 1m) and 0.1 M(2d, 2m).

Table IV. Comparison of methods’ performance in determination of HNO3 concentrations

Full PLS (five PC) Short PLS (three PC) MCR-ALS MCR-ALS-NC NL-MCR-ALS

RMSEC 0.01 0.03 0.27 0.14 0.04
RMSEP 0.52 0.13 1.47 1.10 0.09

PLS, partial least squares; MCR-ALS, multivariate curve resolution alternating least squares; MCR-ALS-NC, multivariate curve
resolution alternating least squares with non-linear constraints; NL-MCR-ALS, nonlinear multivariate curve resolution alternating
least squares; RMSEC, root mean squared errors of calibration; RMSEP, root mean squared errors of prediction.

Figure 8. Prediction of HNO3 concentration by different methods: (1, ♦)
full partial least squares (PLS), (2, ■) short PLS, (3,▲) multivariate curve res-
olution alternating least squares (MCR-ALS), (4, ●) MCR-ALS with non-linear
constraints MCR-ALS-NC, (5, ○) nonlinear MCR-ALS, and (6) calibration area.
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for data analysis when the bilinearity principle does not hold.
The presented examples allow us to claim that the NL-MCR-ALS
approach has evident advantages over the conventional
methods, providing a better prediction accuracy for distorted
data, which do not obey the Lambert–Beer law because of ‘peak
flattening’. With respect to other nonlinear effects (scattering,
Lorenz factor, etc.), it seems possible to use a similar approach:

Real spectrum ¼ Transition function Ideal spectrumð Þ;
for data modeling. Certainly, transition functions should be
developed to account for a specific nonlinearity. This is just a
suggestion that needs a more detailed elaboration.
A surprising result is that PLS method with a proper variable

selection procedure is the only worthy adversary. This can be
explained by the fact that in such simple cases, some traces
of linearity are still preserved at the edges of the spectral
range. In more complex cases, which are now ready for publi-
cation, PLS fails to manage the nonlinearity regardless of the
range selected.
The main disadvantage of the advocated approach is that it

requires a more complicated computing procedure that
includes nonlinear optimization steps. We investigated several
algorithms and discovered that the computation time is still
reasonable, even for a large data set that includes thousands
of variables. However, the question is still open, and the search
for the most suitable optimization method goes on. By and
large, the NL-MCR-ALS method is not yet fully investigated,
and many more efforts should be undertaken to better under-
stand its pros and cons. In the succeeding texts are a few
examples of the forthcoming tasks. As we deal with nonlinear
problems, it should be interesting to compare the results yielded
by NL-MCR-ALS with those provided by other nonlinear ap-
proaches, for example, kernel methods [15]. It is important to
evaluate the NL-MCR-ALS capabilities in quantification of com-
plex mixtures, as well as analyze the method’s performance when
other sources of nonlinearity are present in the system. From a
calculation point of view, it is interesting to investigate the
influence of various types of spectra parameterization on the
speed of convergence and on the accuracy of final results. We
should keep in mind that parameterization of the concentration
profiles is also possible in the frame of NL-MCR-ALS. Such an ap-
proach can link the proposed procedure to kinetic modeling [16].
It should be emphasized that the anticipated approach helps

to extend the capabilities of spectroscopic instruments by tuning
a spectrometer for analysis of specific manufacturing processes
and to broaden the PAT solutions.
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APPENDIX. NL-MCR-ALS ALGORITHM

The algorithm consists of two parts: calibration stage and
prediction stage. The first part is executed iteratively, the second
part takes one step. For better understanding of the algorithm,
one should refer the definition of {}s,p given by Eq. (8). Matrix
operation X=max(Y,Z) means the element-wise selection, that
is, xij=max(yij, zij).

Calibration stage

Given:
Xc is the calibration (I× J) data matrix.
N is the number of components of the analyzed mixture.
s is the saturation level defined by a specific instrument.
p is the parameter that defines the form of the transition
function constraints defined by the specific problem.

Initialization step

Shat is the initial pure spectra matrix (J×N).
Chat is the initial concentration matrix (I×N).

(1) S step calculation
Find Sin such that minimizes ||Xc–{CS

t}s,p||
2, subject to C≡Chat.

(2) Adjustment of S
Transform Sin into Shat to incorporate the constraints, for
example, Shat =max(0, Sin).

(3) C step calculation
Find Cin such that minimizes ||Xc–{CS

t}s,p||
2, subject to S≡ Shat.

(4) Correlation constraint
Estimate matrices A and B in the regression Cref =ACin +B.

(5) Adjustment of C
Transform Cin into Chat to incorporate the constraint, for
example, Chat =max(0, ACin +B).

(6) Return to step 1 until convergence.

Nonlinear multivariate curve resolution alternating least squares
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Prediction stage

Given:
Xt is the (It × J) data matrix of new or test samples.

Obtained (from the calibration stage):

Shat is the pure spectra (J×N) matrix.
A and B are the correlation parameters.
s is the saturation level.
p is the form parameter.

(1) C step calculation
Find Cin such that minimizes ||Xt–{CS

t}s,p||
2, subject to S≡ Shat.

(2) Adjustment of C
Transform Cin into Chat to incorporate the constrains, for
example, Chat =max(0, ACin +B).

Result:

Chat is the (It ×N) matrix of concentrations of new/test
samples.
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