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Abstract

Here, the theory of the multi‐class partial least squares discriminant analysis

(PLS‐DA) is presented. A distinct feature of this theory is that it does not uti-

lize PLS scores but is entirely based on the predicted dummy responses. It is

shown that the results of the multi‐class PLS‐DA can be presented in a

straightforward way by projecting the response matrix on the “super‐score”

space by means of principal component analysis. Two approaches to discrim-

ination are considered: the hard and the soft way of allocation. Correspond-

ingly, 2 versions of PLS‐DA are presented: the conventional hard PLS‐DA,

and the newly introduced soft PLS‐DA that seems to be a novel approach

in chemometrics. The quality of classification is assessed using the figures

of merit (sensitivity, specificity, and efficiency). It is shown how these char-

acteristics are used for the selection of the model complexity. A number of

practical problems are investigated, such as unbalanced sizes of classes, com-

parison of the discriminant and the class‐modeling methods and authentica-

tion by the “one against all” strategy. The paper is illustrated by real‐world

and simulated examples.

KEYWORDS

authenticity, multiclass discrimination, partial least squares discriminant analysis, PLS‐DA, soft and

hard classification
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1 | INTRODUCTION

Partial least squares discriminant analysis (PLS‐DA) is an enormously popular method in various scientific areas: geno-
mics,1 proteomics,2 metabolomics,3 as well as in food4 and pharmaceutical5 sciences. A search in Scopus returns approx-
imately 3500 papers for this keyword, which makes it even stranger puzzling to see very few theoretical papers devoted to
this method. We can only mention a handful. The first is a pioneer research6 by Stahle and Wold. A valuable contribu-
tion to the PLS‐DA theory was made by Barker and Rayens in paper.7 At this juncture, we can mark an excellent
research piece8 by Indahl, Martens, and Næs, which is extensively used in our study, and paper9 by Nocairi et al. The
authors of these works have showed that the dummy‐regression based PLS‐DA can serve as a feature extractor from
high‐dimensional X space into low‐dimensional Y space.

Reflecting on the PLS‐DA basics, we can mention 3 major issues that are worthy of discussion and improvement. The
first one does not actually present a problem to solve, but a point, which should be mentioned. The application of the
PLS scores for classification can lead to incorrect results and wrong interpretations. As early as in 2008, Westerhuis
and co‐authors10 noted that “the PLSDA score plot therefore does not give a good representation of class difference
Copyright © 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/cem 1 of 16
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between the groups”. Later, Kjeldahl and Bro repeated this warning in paper.11 In spite of these clear alarms, plenty of
researchers still employ the PLS‐DA scores as the main source for conclusions. So, we are repeating this again—be very
careful in making conclusions regarding classification on the base of the PLS scores alone, without proper validation
with a relevant test set!

The second issue is much more interesting and inspiring for new investigation. It is the fact that most papers are con-
cern with a binary PLS‐DA when only 2 classes are considered. It looks like a multi‐class PLS‐DA never existed, or that it
is too sophisticated for practical implementation. In attempts to avoid the actual multi‐class discrimination, researchers
invent very complex schemes that split a multi‐class task into a set of binary classification problems.12 Nevertheless, the
multi‐class PLS‐DA exists, and we present its theory, which, in fact, is not more complex than the binary version.

The last issue that is presented in this paper is of methodological nature. In Rodionova et al,13 we discuss that PLS‐
DA is an inappropriate method of authentication. In fact, PLS‐DA is a good method when used according to its intended
purpose, which is discrimination. At the same time, PLS‐DA has a serious shortcoming being a hard classification tool.
In general, 2 approaches to classification can be considered: the hard and soft way of allocation. The first method pre-
sumes that each sample is mandatorily attributed to 1 and only 1 class. The second one allows a sample to be allocated
into more than 1 class, or even left unclassified. Based on this concept, we suggest 2 methods of PLS‐DA: the conven-
tional hard PLS‐DA, and the newly introduced soft PLS‐DA that seems to be a novel approach in chemometrics. We
show that in some cases the soft PLS‐DA can be an appropriate tool for authentication.

PLS‐DA provides us with a wide selection of related topics that could be discussed. Many of them have been left out
of scope—some deliberately, others due to the limitation of the paper size. In particular, due to the previously mentioned
reasons, we do not discuss methods based on the PLS scores analysis. We also decided not to touch on the OPLS‐DA
technique,14 because this interesting approach deserves intended separate consideration. One more appealing issue that
is not considered here is application of PLS‐DA for the analysis of the importance of the variables.

The concluding remark is just a technical note—in this paper, we use row‐wise vector notation.
he
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2 | THE DATASETS

The paper is illustrated with the following real‐world datasets.
Dataset Pills consists of the NIR spectra (4000–12 500 cm–1 range with resolution of 8 cm–1) of uncoated tablets of

calcium channel blockers, produced by 7 different manufacturers and denoted as A1, A2, .., A7. All producers make
the tablet with the same quantity (10 mg) of the active pharmaceutical ingredient originated from the same source. Each
manufacturer is represented by a set of batches ranging from 3 to 10. The sizes of classes A1 to A7 are correspondingly:
30, 50, 70, 50, 30, 50, and 100. Overall, there are 380 tablets in the dataset. The detailed description and the class model-
ing results are presented in Rodionova et al.15 Initially, classification models were built and validated using test samples
of the same class. In this study, training sets of various classes are used for building classification and discrimination
models. Data from extraneous classes are used for demonstration models' specificity in various cases.

Dataset Olives is composed of the NIR spectra (4000–10 000 cm−1 range, at 4 cm−1 resolution) of olives in brine. Three
classes comprise cultivars: Taggiasca, (T, 111 samples), Leccino (L, 72), and Coquillo (C, 50). Data summary and classi-
fication models are presented in Oliveri et al16 and Rodionova et al.17

Dataset Juices consists of 38 samples of juices of different botanic origin. They are divided into 3 classes: citrus (C, 20
samples), apple (A, 7), and super juices (S, 11). Fifteen variables represent various bio‐chemical (eg, antioxidant assays)
and physicochemical (eg, pH, acidity) properties of the samples. Details can be found in Fidelis et al.18

In addition, 2 simulated datasets are considered in the Section “9”, where all details are given.
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3 | BASICS OF PLS ‐DA

We introduce a general multi‐class PLS‐DA concept, in which I samples are allocated to K groups, which are called the
target classes. It is known that PLS‐DA is a conventional regression approach, where the (I×J) feature matrix X is utilized
as a predictor matrix, and the (I×K) dummy matrix Y is used as a response matrix. The predictor matrix X is composed of
I samples (rows) and J variables (columns). The samples are split into K groups of sizes I1 + I2 + ... + IK = I, with the
index groups ω(1), ω(2),..., ω(K), which indicate belonging of sample i to class k, so that i ∈ ω(k). Without loss of gener-
ality, we can assume that ω(1) = {1, .., I1}, ω(2) = {I1 + 1, .., I1 + I2}, etc.
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The dummy matrix Y composes categorical (dummy) variables {0,1} that describe class memberships. It is con-
structed as follows. Consider a unit matrix of size K that can be presented as a column of row‐vectors e

E ¼

e1
e2
⋯
eK

���������

���������
¼

1 0 ⋯ 0

0 1 ⋯ 0

⋯
0 0 ⋯ 1

���������

���������
(1)

Each vector ek, k = 1,..,K, is a pattern response for class k. Matrix Y can also be represented as a column that com-
prises the row vectors yi, i = 1,.., I

Y ¼

y1
⋯
yi
⋯
yI

������������

������������
; where yi ¼ ek;when i ∈ ω kð Þ (2)

The predictor X and the response Y matrices are related by the PLS2 regression, which is employed to calculate the
predicted responses Ŷ. We are not discussing the PLS method, as it is explained in numerous textbooks, eg, in Martens
and Naes.19 The number of PLS2 components, which are referred to as the latent variables (LV), is selected using a val-
idation approach; it is explained below.

The data pre‐treatments for PLS2 regression are rather common: Xmatrix is always centered (column‐wise) and may
be scaled in dependence on the nature of the variables; Y matrix is only centered.

A discrimination rule is based on the comparison of each row Ŷi of matrix Ŷ with each pattern response vector ek.
Sample i is attributed to that class k, which pattern is closer. To evaluate the distance between a sample and a class pat-
tern, it is natural7,8 to treat matrix Ŷ as the input data set for classification. However, this cannot be done directly,
because this matrix has a rank of K − 1, and the corresponding covariance matrix is singular.
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4 | PLS ‐DA GEOMETRY

The space spanned by Ŷmatrix is evidently unique, but it can be parameterized in different ways. In Indahl et al,8 it was
suggested to “obtain the reduced dummy matrix by elimination of one column from Y”. In our turn, we suggest
employing the principal components analysis (PCA) to reduce matrix Ŷ.20 This approach provides us with several obvi-
ous benefits, such as orthogonality, independence, etc., but the main advantage is a simple geometrical structure of the
PCA space.

The geometry of PCA applied to the PLS responses is illustrated in Figure 1 for the case of 3 classes. The elements of Ŷ
matrix are shown by the colored marks (dots, squares, and triangles), which belong to the 3 classes. All these points are
located on a plane (the gray shaded triangle), which passes through the class pattern points—e1 = (1,0,0), e2 = (0,1,0),
and e3 = (0,0,1)—shown by the crosses. This plane is actually the PCA score space; its PC axes are presented by the
magenta colored arrows. These properties are proven in Theorem 1 in Appendix.

Before application of PCA, matrix Ŷ is centered. PCA gives us the following decomposition:

Ŷ ¼ utm þ TPt (3)

where m = (m1,...,mK), is the (1×K) vector of column‐wise mean values of Y

mk ¼ 1
I
∑
I

i¼1
yik ¼

1
I
∑
I

i¼1
byik ¼ Ik

I
(4)

and u is a vector of units of the appropriate dimensionality. Here, u is the (1×K) vector.
The number of the PCA components is K − 1; that is why Equation 3 is an exact relationship. The (I × (K − 1)) scores

matrix T represents a new data set for which a classification method can be employed.
The PLS‐DA geometry can be explained in another way. Matrix Ŷ has an inherited property– the sum of all elements

in a row is 1. This means that all points Ŷi (i = 1,…, I) belong to a simplex, which rest upon the pattern vectors ek. The



FIGURE 1 Geometry of PLS‐DA
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PCA projection does not change this (K − 1) dimensional simplex space, but only introduces new coordinates there.
Different sizes of the training classes influence on the PCA loadings, and, therefore, on the sample positions, but that
variability has no effect on the simplex space itself.
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5 | HARD PLS ‐DA

In general, there are many ways to classify T using different concepts: deterministic,7 or probabilistic8; various methods:
LDA, quadratic discriminant analysis (QDA), k‐nearest neighbors, tree methods, etc.8 For the didactic reasons, we use
the most straightforward LDA approach based on the total covariance matrix.

In this case, the application of LDA has specific features. Firstly, the pulled covariance matrix is known from PCA; it
is a diagonal matrix.

cov Tð Þ ¼ TtT ¼ Λ ¼ diag λ1;…; λK–1ð Þ (5)

Secondly, the class centers (centroids), ck, k = 1,.., K, are not the means of classes as they are in the conventional
LDA. In our approach, the class centers are known in advance, and they constitute the (K × K − 1) matrix C, which
is the projection of the class pattern matrix E onto the PCA score space

C ¼ E−utm
� �

P ¼
c1
⋯
cK

�������
������� (6)

Here, u is the (1 × K) vector of units.
Therefore, the distance from sample i to target class k is given by a formula

dik ¼ ti–ckð Þ Λ–1 ti–ckð Þt: (7)

The discrimination rule is very simple and says that sample i belongs to the class which is closer by metric given in
Equation 7.

Setting dk = dl in formula (7), we obtain an equation of a hyperplane that separates classes k and l. The quadratic
terms are reduced, and the equation becomes linear

wk−wlð Þtt ¼ vk−vl (8)
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where

wk ¼ ckΛ−1; vk ¼ 0:5ckΛ−1ctk: (9)

An interesting property of this version of PLS‐DA is that all hyperplanes cross at a common point (see Theorem 2 in
Appendix).

t0 ¼ vPΛ: (10)

In Figure 2, we present the results of PLS‐DA (12 LVs, α = 0.05) applied to Juices data set, which has 3 classes: A, C,
and S. The colored marks show the projections of the corresponding Ŷ values onto the PCA score space, and the solid
black lines demonstrate the separation of this space into 3 acceptance areas as given in Equation 8. The large crosses
mark the class centers ck. In this plot, several wrong attributions can be seen: samples A1 and S1 to class C, and sample
C1 to class A.

It is worth to remind that we do not use the PLS scores and loadings. Therefore, to emphasize that PCA scores t are
not the PLS2 scores, we use special notation for the plot axes: sPC1 and sPC2 meaning that those are the “superscores”
obtained according to the following scheme

X;Y ��!PLS2 bY �!PCA T (11)

6 | SOFT PLS ‐DA

In our paper,13 we criticized the PLS‐DA method for wrong interpretation of new objects. The main drawback of this
approach is its inability of proper classification of the samples, which do not belong to any of the predefined classes.
The reason is the absence of soft decisions such as “the sample does not belong to any class at all”.

In an attempt to improve on this weakness, we suggest a soft version of PLS‐DA, which is based on the QDA20

applied to T data set defined in Equation 11. We consider the PCA scores for each class separately and assume that they
form the normally distributed subsets with the known means ck. Using the within‐class covariance matrices

Sk ¼ 1
Ik

∑
i∈ω kð Þ

ti−ckð Þt ti−ckð Þ (12)
FIGURE 2 PLS‐DA applied to the Juices data set. Hard and soft versions of PLS‐DA
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we can calculate new (Mahalanobis) distances between sample i and class k

dik ¼ ti−ckð ÞS−1k ti−ckð Þt: (13)

Assuming that these distances follow the chi‐squared distribution, a new soft discrimination rule can be established.
It says that sample i belongs to class k if the distance given in Equation 13 is less than a threshold

dcrit ¼ χ–2 1–α;K–1ð Þ: (14)

where χ−2 is the quantile of the chi‐squared distribution with K − 1 degrees of freedom. Value α stands for a given type I
error. According to this rule, a sample can simultaneously be attributed to several classes. Moreover, it may be not allo-
cated at all, in case all the distances are greater than the threshold.

The acceptance area for each class can be represented by ellipsoids depicted around the corresponding class centers
ck as it is shown in Figure 2. In this case, we observe the following allocation of the selected samples. Sample A1 is cor-
rectly attributed to class A, but it is simultaneously marked as a member of C. Sample C1 is not classified at all, and C2 is
wrongly attributed to A. Sample S1 is correctly allocated in S.

Discussing the advantage of the hard and soft PLS‐DA, we suggest an example with the Pills dataset (3 LVs, α = 0.01)
shown in Figure 3. In this example, classes A2, A5, and A7 are used for the PLS‐DA modeling (hard and soft), and classes
A4 and A6 are then utilized as new objects. In the frame of the hard PLS‐DA, which is presented by the solid black lines,
the entire class A6 belongs to A5, and class A4 is shared between A7 and A2. Using the soft PLS‐DA, which is shown by
the ellipses outlined by the solid lines, we happily conclude that class A6 consists of alien objects, which do not belong to
any class. Class A4 is partially located (34%) inside class A7, and this is a misclassification.

An additional benefit of the soft approach can be obtained in case we utilize the outlier thresholds that are shown by
the dashed ellipses in Figure 3. These thresholds are established introducing the outlier significance level, γ, by a formula

dout ¼ χ−2 1−γð Þ1=Ik ;K−1
� �

: (15)

We can see that, for γ = 0.05, sample A5_8 is an outlier that should be removed.
To assess the performance of the hard and soft methods of PLS‐DA, we should compare their figures of merit, which

are explained in the next section. The actual values for this example are given in Table 1. Now we can only mention that,
at the training stage, the total efficiencies of the soft and hard approaches are almost equal to 99% and 100%, respectively.
However, at the prediction stage, the total efficiency of the soft version outperforms the hard one as 83% to 0%.
FIGURE 3 PLS‐DA applied to the Pills data set
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TABLE 1 Pills data set. Figures of merit for the hard and soft PLS‐DA

Hard PLS‐DA Soft PLS‐DA

Training

A2 A5 A7 A2 A5 A7

A2 50 0 0 A2 50 0 0

A5 0 30 0 A5 0 29 0

A7 0 0 100 A7 0 0 96

CSNS 100% 100% 100% CSNS 100% 97% 96%

CSPS 100% 100% 100% CSPS 100% 100% 100%

CEFF 100% 100% 100% CEFF 100% 98% 98%

TSNS 100% TSNS 97%

TSPS 100% TSPS 100%

TEFF 100% TEFF 98%

Prediction of extraneous objects

A2 A5 A7 A2 A5 A7

A4 5 0 45 A4 0 0 17

A6 0 50 0 A6 0 0 0

CSPS 95% 50% 55% CSPS 100% 100% 83%

TSPS 0% TSPS 83%

POMERANTSEV AND RODIONOVA 7 of 16
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7 | FIGURES OF MERIT

Many figures of merit (FoM) exist to assess the quality of classification. These characteristics are calculated for samples,
which class membership is known a priori. In PLS‐DA, we prefer using 3 FoMs: sensitivity, specificity, and efficiency.17

These values are introduced using the confusion matrix N, which elements, nkl represent the number of samples from
class k, predicted as members of the target class l. Speaking of “the number of samples from class k” we mean the sam-
ples in a specific (training, or test, or validation) set for which FoMs are calculated. Introducing the FoMs values, we
always indicate what data set is used for their calculation. The examples of the confusion matrix are given in Table 1
in the previous section.

In case of the hard PLS‐DA, the following relation is hold

∑
K

l¼1
nkl ¼ Ik (16)

where Ik is the number of objects in class k. In case of the soft PLS‐DA, Equation 16 is not satisfied because in this
method an object could be simultaneously attributed to several classes (+1 to each of those classes), or not classified
at all (+0 to all classes).

The FoM values can be considered in relation to a particular target class k, or they can be calculated for the entire
model. The following definitions are given for the training set, while the features of the FoM calculation for the test
and validation (new) sets are presented below.

Class sensitivity, CSNS(k), is defined for each target class k as the percentage of samples of this class, which are cor-
rectly recognized as the members of this class. It can also be defined as the rate of true positives, and, therefore, in soft
PLS‐DA it is complementary to the type I error α.

CSNS kð Þ ¼ nkk=Ik: (17)

Class specificity, CSPS(k), is defined for each target class k as the percentage of samples from other classes (not k), which
are correctly attributed as inconsistent with the target class. This value is complementary to the rate of false positives.
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CSPS kð Þ ¼ 1−∑
l≠k

nkl=∑
l≠k

Il (18)

To characterize an overall quality of classification with respect to class k, the class efficiency, CEFF(k), is usually intro-
duced21 as the geometric mean of sensitivity and specificity,

CEFF kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CSNS kð Þ⋅CSPS kð Þ

p
(19)

The FoMs that characterize the performance of the entire PLS‐DA model are defined as follows. The total sensitivity,
TSNS, is given by a formula

TSNS ¼ 1
I
∑
K

k¼1
nkk (20)

The total specificity, TSPS, is defined by a formula

TSPS ¼ 1−
1
I
∑
K

k≠l
nkl: (21)

The total efficiency, TEFF, is defined similar to Equation 19

TEFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSNS⋅TSPS

p
: (22)

In case FoMs are calculated for the test set, or for the validation set, the formulae given in Equations 17 to 22 should
be modified. Firstly, the class sizes, I1 + I2 + … + IK = I, should be replaced with the numbers, which represent the actual
number of samples in the corresponding sets. Secondly, if a new set consists of extraneous (non‐target objects), only spec-
ificity can be calculated; therefore, CSPS(k) = CEFF(k).

Table 1 contains the FoM values obtained in the example with Pills data set presented in the previous section. At the
training stage, the first 3 rows show the confusion matrices, and the subsequent rows demonstrate the obtained FoM
values. The hard PLS‐DA has ideal results. The samples are properly attributed to their own classes, and all FoMs are
equal to 100%. In the soft case, classification for A2 is perfect, and CSNS(A2) = 50/50 = 100%. One sample of A5 is
not accepted (outlier), so, in line with Equation 18, CSNS(A5) = 29/30 ≈ 97%. In class A7, 4 samples out of 100 are
located outside the ellipse, so CSNS(A7) = 96/100 = 96%. We have no wrongly accepted samples (false positives) in train-
ing; thus, all specificity values (CSPS) are equal to 100%. The class efficiencies are calculated in line with Equation 19 as
follows: CEFF(A2) = (100 × 100)½ = 100%, CEFF(A5) = (97 × 100)½ ≈ 98%, CEFF(A7) = (96 × 100)½ ≈ 98%. In the soft
version, total sensitivity TSNS = (50 + 29 + 95)/(50 + 30 + 100) ≈ 97%. Total efficiency TEFF = (97 × 100)½ ≈ 98%.

The second part of Table 1 contains the results obtained in prediction. Again, 2 first rows represent the confusion
matrix, and the following rows show the FoM values. Because A4 and A5 (50 and 50 samples) are extraneous classes,
the sensitivity values cannot be calculated. For the hard PLS‐DA, we have the following results. Five samples from
A4, and no samples from A6 are wrongly attributed to class A2; therefore, the class specificity is CSPS(A2) = 1–
(5 + 0)/(50 + 50) = 95%. No samples from A4 and 50 samples from A6 are false positives with respect to class A5,
CSPS(A5) = (0 + 50)/100 = 50%. Similarly, CSPS(A7) = 1–(45 + 0)/100 = 55%. In the soft case, classes A2 and A5 are
free from aliens, so CSPS(A2) = CSPS(A5) = 100%, while 17 samples from A4 are wrongly accepted as the members
of class A7, therefore CSPS(A7) = 1–(0 + 17)/100 = 83%. Total specificities are obtained in the following way. In the hard
case, TSPS = 1–(5 + 50 + 45)/100 = 0%. In the soft version, TSPS = 1–17/100 = 83%.
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8 | PLS ‐DA COMPLEXITY

The FoMs are of great importance for validation of the PLS‐DA model. Typically, they are considered with respect to 2
data sets: the training and the test sets. The latter one could be a real, external set, or it can be simulated in the course of
cross‐validation procedure.10 In any case, to assess the model quality, the FoM values should be calculated both for the
training and test sets, and then considered in parallel.

In particular, FoMs can be used for the selection of the model complexity, which, in case of PLS‐DA, is the number of
the latent variables (PLS components). To illustrate this procedure, we employ the Olives data with 3 classes, which are
arbitrarily split into the training and test sets: (T) 83 + 28 = 111, (L) 59 + 13 = 72, and (C) 45 + 5 = 50. Both the hard and
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soft (α = 0.01) PLS‐DAmodels are developed using a different number of LVs ranging from 3 to 20. In each case, the total
efficiency values given in Equation 22 are calculated for the training and test sets. The results are shown in Figure 4.

In case of hard PLS‐DA, the appropriate number of LVs equals 9, because at this point, we observe the convergence of
2 curves. In case of soft PLS‐DA, the optimal number of LVs is 13, as at this point both curves are close to the projected
efficiency that is 100(1 − α) = 99%.

The selected number of LVs seems to be too high in comparison with the “common” number in a regular PLS cali-
bration, which takes value between 3 and 5, and very seldom 7. In our opinion, the high values of LVs in PLS‐DA cannot
be considered as overfitting, as this problem is more complex than an ordinary calibration. In PLS‐DA, each class takes
approximately 2 to 3 LVs for the internal modeling, plus 1 to 2 LVs are necessary to describe the external links between
classes. In the 3‐class discrimination, this means, at least, 3 × 2 + 3 = 9 LVs, which is the number we obtained in the
hard version. Analyzing the rate of the Y‐variance explained by PLS in this example, we can notice that it grows slowly
with LV: 5 LVs—0.81, 10 LVs—0.92, 15 LVs—0.96, and 20 LVs—0.99. Thus, we can conclude that a high number of LVs
in PLS‐DA is reasonable.
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9 | TWO CLASS PLS ‐DA

The binary classification is the most popular approach within PLS‐DA. As we mentioned earlier, the majority of publi-
cations regard this approach as a sole version of PLS‐DA. Certainly, the case of K = 2 can be easily implemented in the
frame of both soft and hard methods presented previously. However, there is another interesting option that relates to a
different way of coding of the dummy matrix. Instead of the 2‐column Y matrix, given in Equation 2, a 1 column matrix
(vector y) is conventionally employed in the 2‐class PLS‐DA. It is defined as follows

yi ¼
þ1; i∈ω 1ð Þ
−1; i∈ω 2ð Þ

	
; i ¼ 1;…; I: (23)

Obviously, with the 1‐column coding, PLS regression, not PLS2, should be applied. The predicted response vector, Ŷ,
can be directly used for classification with a hard threshold equal to 0. In case of the soft PLS‐DA, the acceptance areas are
built as the confidence intervals around the class centers y

_
k with standard deviations sk, which are calculated by formulae

yk ¼
1
Ik

∑
i∈ω kð Þ

byi; s2k ¼
1
Ik

∑
i∈ω kð Þ

byi−ykð Þ2; k ¼ 1; 2 (24)

Barker and Rayens7 claimed, “in fact, our experiences have been that the classification results for different coding are
almost identical”. In our turn, we can only agree with this conclusion—the coding methods given in Equation 2 and
Equation 23 lead to very similar results.

To illustrate the explained binary PLS‐DA method, we present an interesting case study, which additionally aims at
the clarification of the assertion22 that unequal sizes of classes always lead to an inappropriate discrimination. In
Krakowska et al,23 the authors artificially reduce one of the classes in order to use classes with an equal number of sam-
ples for the PLS‐DA modeling. We consider 2 classes from Olives dataset, C and T, which include 50 and 100 samples,
FIGURE 4 Selection of the number of

LVs in Olives dataset. Curves show the

total efficiencies: (1) training set, (2) test

set. Plot (A): Hard PLS‐DA, plot (B): Soft

PLS‐DA
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correspondingly. Our plan is to reduce the size of T class systematically observing the effect of this diminution on the
separation of classes.

The results (4 LVs), are shown in Figure 5, where the size of class T is varied as 100, 50, and 25 samples. The hard
discrimination is marked by the solid line drawn at Ŷ = 0 (threshold), and the soft method (α = 0.01) is presented by the
rectangles outlined with the thin lines. This plot demonstrates that, in fact, the size of class T has a minor influence on
the discrimination outcomes. The FoM values given in Table 2 confirm this conclusion.

From this table, we see that the class and total efficiencies vary insignificantly with the size of class T. In fact, this is
an obvious conclusion because PLS‐DA utilizes a regression approach, the efficiency of which mostly depends on the
design of experiment, rather than on the size of the data. Reducing the T size in this example, we always selected a rep-
resentative subset, and this approach gave us the presented result.
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10 | PLS ‐DA AND SIMCA

This is a very popular opinion that PLS‐DA better separates classes than SIMCA does. Various explanations of this con-
sideration can be found in numerous publications. Contributing to this discussion, we have to make an important
remark that, in general, this is not a fair comparison, because SIMCA and PLS‐DA have absolutely different goals and
ways of modeling.13 SIMCA is a one‐class classifier21,24-26 that produces a description of a target class of objects and then
detects whether a new object resembles this class or not. The rigorous version of SIMCA17 does not utilize any informa-
tion about the non‐target (extraneous) classes even when the data regarding such extraneous classes are available. On
the contrary, PLS‐DA makes a description of several sets of objects that represent the predefined classes and then deter-
mines the membership of an object in one of these classes. Therefore, in our opinion, it is not consistent to compare the
methods that have different objectives and employ various amounts of the modeling information. Nevertheless, we will
-2 -1 0 1 2

50 25

50 50

50 100

C T

FIGURE 5 Two classes from olives dataset. The influence of the unbalanced class sizes on the PLS‐DA

TABLE 2 The class and total efficiencies of PLS‐DA for the different sizes of class T

Class sizes Hard PLS‐DA Soft PLS‐DA

(T/C) T C Total T C Total

100/50 92% 92% 94% 92% 86% 88%

50/50 91% 91% 91% 75% 81% 78%

25/50 91% 91% 93% 91% 89% 90%
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make this comparison using the PLS‐DA rules of play: an exhaustive list of classes, and a compliant usage of the data
sets. For this purpose, we present 2 didactic examples, in which data are organized in the simplest way: 2 variables, 2
classes, and normally distributed samples.

In the first example, we independently simulate 2 normal variables, x1 and x2, with zero mean and unit variance.
Class 1 comprises 100 samples for which x1

2 + x2
2 < 1, and class 2 holds another 100 samples for which x1

2 + x2
2 ≥ 1.

In the result, we obtain a Russian pastry “vatrushka” (or “danish”) shaped data, where class 1 is located in the middle,
while class 2 occupies the periphery area. The results of the PLS‐DA and SIMCA modeling (class 1 is used as the target
class) at α = 0.05 are shown in Figure 6.

Numerical outcomes are presented in Table 3. The SIMCA method is presented in 2 instances regarding the choice of
the target class: Class 1 and Class 2.

We can conclude that, in this example, SIMCA is more efficient than PLS‐DA. This is not a surprise because the
“vartushka” data represent a nonlinear case, so the linear PLS‐DA method fails to discriminate them. On the contrary,
SIMCA is a quadratic approach, which perfectly models this specific data layout. In a real‐world case, such type of data
may occur in the following situation. One class is rather tight, eg, it comprises healthy biological tissues, and the other
class is very broad, and, in fact, does not form a specific class at all, eg, it contains tissues damaged in various ways.

In our second example, the independent variables, x1 and x2, are also distributed normally. In both classes, we have
100 samples with the following parameters of N(m, σ) distributions. In class 1: m1 = 0, σ1 = 1, m2 = +0.1, σ2 = 0.01. In
class 2: m1 = 0, σ1 = 1, m2 = –0.1, σ2 = 0.01. In the result, we have data shaped as a Dutch “stroopwafel” (or French
“macaron”), where 2 similar classes (wide but flat) are slightly shifted one against the other. The results of the PLS‐
DA and SIMCA modeling are shown in Figure 7.

Numerical outcomes are presented in Table 4, where 2 SIMCA models, regarding each target class, are built.
The results of the second example show that in this case SIMCA is worse than the hard PLS‐DA. The former dem-

onstrates a high sensitivity (96%) but low specificity (44%), while the latter has them balanced at 84% and 84% in the hard
version. This can be explained by the different approaches to the data interpretation in the 2 methods. SIMCA looks for
1

2

-0.3 0 0.3

(A)

1
2

0

1

2

3

4

0 1 2 3 4

ln(1+h /h0)

(B)ln(1+v/v0)

FIGURE 6 The “vatrushka” data classification. Plot (A): PLS‐DA, plot (B): SIMCA, class 1 is used as the target class

TABLE 3 Figures of merit for the first didactic example (vatrushka)

Figures of
merit

SIMCA Hard PLS‐DA Soft PLS‐DA

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Class sensitivity 100% 93% 51% 54% 99% 96%

Class specificity 86% 52% 54% 51% 55% 0%

Class efficiency 93% 70% 52% 52% 74% 0%

Total sensitivity 97% 53% 98%

Total specificity 73% 53% 28%

Total efficiency 84% 53% 52%
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TABLE 4 Figures of merit for the second didactic example, “stroopwafel”

Figures of
merit

SIMCA Hard PLS‐DA Soft PLS‐DA

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Class sensitivity 96% 96% 76% 91% 97% 96%

Class specificity 39% 49% 91% 76% 48% 60%

Class efficiency 61% 69% 83% 83% 68% 76%

Total sensitivity 96% 84% 97%

Total specificity 44% 84% 54%

Total efficiency 65% 84% 72%

1

2

-2.5 0 2.5

(A)

1

2

0

1
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3

0 1 2

ln(1+h /h0)

(B)ln(1+v/v0)

FIGURE 7 The “stroopwafel” data classification. Plot (A): PLS‐DA, plot (B): SIMCA, class 1 is used as the target class
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features that better explain class unity, so it is mostly focused on the wide spread of variable x1. On the contrary, PLS‐DA
concerns with the variables that better explain the diversity of the class, so it mostly cares about variable x2. In a real‐
world case, such data may be obtained, eg, when we try to separate 2 mixtures, which have the same major components
but different impurities.

A great advantage of PLS‐DA is that it provides the loadings and scores, which give insight into the variables and
samples, and this is really what makes the method special. A similar approach in SIMCA is possible, but it has not been
developed so far.

It is interesting that the soft PLS‐DA stands in between being slightly better than SIMCA, but worse than the hard
PLS‐DA. This effect will be explained in the following section, in which we show that the soft PLS‐DA has features that
make it similar to SIMCA.
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11 | ONE AGAINST “ALL”

This is a very popular PLS‐DA strategy, when 1 target class (genuine) is discriminated against a collection of all available
alternative classes (aliens). It is believed that such an approach could solve the authenticity problem better than a one‐
class classifier. We will investigate this method using Pills dataset, in which class A4 is considered as the target, whereas
other classes, A1 to A3 plus A5 to A6, are used together as the second “all” class. Class A7 is kept separately and is
employed as a new class that should be predicted using the established “one vs. all” model. Plot (A) in Figure 8 shows
the graphical results of PLS‐DA modeling with 5 LVs. In the soft version α = 0.05.

Numerical values are presented in Table 5.
It can be seen that the hard method perfectly discriminates the “one” class A4 from the “all” class, but it wrongly

attributes a new class A7 as a member of class A4. The soft PLS‐DA looks much better. At the training stage, it develops
an appropriate model with an efficiency of 97% that fits into the given α value, because 0.97 ≈ 1 – 0.05. At the prediction



TABLE 5 Figures of merit for the “one against all” example

Figures of
merit

Hard PLS‐DA Soft PLS‐DA SIMCA
A4 All A4 All A4
Training of A4 vs. all Training of A4

Class sensitivity 100% 100% 93% 94% 100%

Class specificity 100% 100% 100% 100% 100%

Class efficiency 100% 100% 97% 97% 100%

Total sensitivity 100% 94% 100%

Total specificity 100% 100% 100%

Total efficiency 100% 97% 100%

Prediction of A7‐ an extraneous class

Class specificity 0% 100% 100% 100% 100%

Total specificity 0% 98% 100%

FIGURE 8 The “one against all”

classification. Plot (A): PLS‐DA, plot (B):

SIMCA, 3 PCs
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stage, the soft PLS‐DA correctly classifies 98% of objects in class A7 as aliens, rejecting them both from the “one” class,
and from the “all” class. Therefore, we can conclude that, in this case, the soft PLS‐DA is able to solve the authenticity
problem, but the hard version cannot do this.

The last issue we have to explore is the superiority of (soft) PLS‐DA over SIMCA in authentication. Plot (B) in Figure 8
presents the graphical results of the SIMCA‐based authentication. In this model, only classA4 is used at the training stage;
the class A7 data are utilized at the prediction stage and the “all” class data are not involved at all. The SIMCA model is
developed for the following parameters: the number of PCA PCs = 3, type I error α= 0.0001. Note the extremely low value
of α, which ensures the correspondingly high level of sensitivity, as large as 99.99%. At the same time, the theoretically cal-
culated27 value of the type II error, β, for set A7 equals 0.004, which corresponds to specificity of 99.6%.

Summarizing, we conclude that PLS‐DA strategy of “one against all”may be a reasonable method for authentication
when the soft version is applied, but not in the case of the hard one. Even though, SIMCA remains a better approach for
solving the authenticity problems.
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12 | SOFTWARE

So far, the proposed PLS‐DA methods are not implemented as the Matlab programs—this is work in progress.28 Mean-
while, those readers who practice Chemometric Add‐In for Excel20 are kindly directed to web page29 where all relevant
information (templates, supplementary Excel add‐in, instructions) is presented.
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13 | CONCLUSIONS

1. We propose the multi‐class version of PLS‐DA, which, in fact, is not more complex than the conventional binary (2‐
class) PLS‐DA. The method does not utilize the PLS scores but is entirely based on the predicted dummy responses.
To get around the degeneracy of this matrix, we suggest using PCA that converts the response matrix Ŷ into the score
matrix T. These scores can be employed for classification by any appropriated method. Therefore, PLS‐DA should be
considered as a method of feature extraction from high‐dimensional X space into low‐dimensional T space than a
method of discrimination.

2. As examples, we introduce 2 discrimination method based on the T data. The first is a conventional hard PLS‐DA
approach based on LDA. We also propose the novel soft version of the PLS‐DA method, which is based on QDA
applied to the T data. In this version, discrimination rule employs the Mahalanobis distances and a threshold, which
is calculated for a given type I error. According to this rule, a sample can be simultaneously attributed to several clas-
ses, or it may be not allocated at all. It was demonstrated that the soft PLS‐DA is able to avoid misclassification, in
case a new object is not a member of any target class.

3. The principal measures of classification quality (sensitivity, specificity, and efficiency) are defined for the multi‐class
PLS‐DA. It is also shown how these characteristics are used for the selection of the complexity of the model, which,
in case of PLS‐DA, is the number of the PLS latent variables.

4. A popular opinion that an equal number of objects in the training classes is preferred for a good PLS‐DA model is
analyzed and found to be wrong. In fact, PLS‐DA utilizes a regression approach, the efficiency of which depends pri-
marily on the design of the experiment, rather than on the size of data.

5. The comparison of the discriminant (PLS‐DA) and the class‐modeling (SIMCA) methods is conducted using the sim-
ulated and real‐world examples. In particular, it is shown that SIMCA is better when 1 class is tight, eg, it comprises
healthy biological tissues, and the other class is broad, and, in fact, does not form a class at all, eg, it contains tissues
damaged in various ways. On the contrary, PLS‐DA is preferable in cases when we separate 2 classes with the same
major components but different impurities.

6. We considered a very popular PLS‐DA strategy, when 1 target class is discriminated against a collection of all avail-
able alternative classes. It is demonstrated that this approach may be a reasonable method for authentication when
the soft PLS‐DA is applied, but not in the case of the hard one. Nevertheless, SIMCA remains a better approach for
solving the authentication problems.

Finally, we can repeat our notion presented in Rodionova et al.13 “The “best” classification method does not exist.
Every task at hand requires an application of a pertinent chemometric method best suited to answer the posed question.”
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APPENDIX

PROVING OF STATEMENTS
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Notations

Row‐wise vector notation is used in the appendix in the same manner as in the main text. Matrix U and vector u consist
of units, matrix E is the identity matrix. Matrix M = utm, where m is the vector of mean values of Y. Dimensionality of
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these objects depends on the context. The (I × K) matrix Ŷ contains the PLS2 regression dummy responses predicted at
the training stage. Matrix Z = Ŷ – M. The (I × K − 1) matrix T and the (K × K − 1) matrix P represent the PCA decom-
position Z = TPt. Λ = TtT is the (K – 1 × K − 1) diagonal matrix. The (I × K − 1) matrix C = (E − M)P is the projection
of matrix E onto the PCA space. The (K × K − 1) matrix

W ¼
w1

⋯
wK

�������
�������

consists of vectors wk, the (1 × K) vector v = (v1,..,vK)
t consists of values vk. They are defined in Equation 9. The (1 × K)

vector t0 is an intersection of all hyper planes defined in Equation 8.

Properties of Z

ZU = 0 and rank(Z) = K − 1. Dimension of the null space of Z, null(Z), is 1, and vector u forms its basis, Zu = 0.

Properties of P

UP ¼ 0 and PtP ¼ E
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Lemma PP = E – qU, where q = 1/K.

Proof Π = PPt is a projection matrix because Π2 = Π and Πt = Π. Because Z – TPt = 0, then Z(E − Π) = 0,
and E − Π = utq, where q = (q1, q2,...,qK). Because Π is symmetric, then q1 = q2 = ... = qK = q. Therefore,
Π = E – qU. Because tr(Π) = rank(Π) = K – 1, then q = 1/K.

Theorem 1. Matrix C belongs to the PCA space.

Proof We should prove that M + CPt = E. Using Lemma we obtain
M + CPt = M + (E − M)PPt = M + (E − M) × (E − qU) = M + (E − M) − q (E − M)U = E − q

(U − U) = E.

Theorem 2. t0 = vPΛ.

Proof The system of Equation 8
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wk − wlð Þtt ¼ vk − vl; k ¼ 1;…;K − 1; l>k

can be represented using a matrix notation.

DWtt ¼ Dvt (A1)

The (L × K) matrixD (L= K(K − 1) / 2) has a special structure. Each row of matrixD contains zeros except 2 columns:
k that contains +1, and l that contains −1; k = 1,..., K − 1; l = k + 1,.., K. It can be shown that

D E − Mð Þ ¼ D; DtD ¼ KE − U (A2)

Considering that W = (E − M)PΛ–1 we get

DW ¼ D E − Mð ÞPΛ–1 ¼ DPΛ–1

Multiplying Equation A1 by PtDt and accounting for Equation A2, we obtain

Pt KE − Uð ÞPΛ–1tt ¼ Pt KE − Uð Þvt

Because UP = 0 and PtP = E,

t ¼ vPΛ:




