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Experimental data description, model construction,
and the prediction of new values, which are referred to
collectively as calibration, are among the oldest but still
urgent problems exploited extensively in analytical
chemistry [1]. The problem of multivariate calibration
is essentially the following. Let there be some experi-
mental data represented by two matrices, a matrix 

 

X

 

 of
analytical signals (such as spectra) and a matrix 

 

Y

 

 of
the corresponding chemical values (such as concentra-
tions). The number of rows in these matrices is equal to
the number of the reference objects under study; the
number of columns in the 

 

X

 

 matrix corresponds to the
number of channels (wavelengths) at which the signal
is recorded; and, finally, the number of columns in the

 

Y

 

 matrix equals the number of the chemical values, or
responses. Based on the set of reference objects {

 

X

 

, 

 

Y

 

},
it is required that a mathematical model 

 

Y

 

 = 

 

X

 

a

 

 be con-
structed, by which new responses 

 

y

 

 can be predicted
using a given new row of analytical signals 

 

x

 

. Evalua-
tion of this model is a complicated ill-posed mathemat-
ical problem [2]. However, the multivariate model gives
a substantial gain in accuracy as compared to simple
calibration by several “characteristic channels” [3].

Since Gauss (1794), the regression approach has
been used for the analysis of experimental data. The
approach is based on the minimization of deviations of
the calculated model values  from their corresponding
experimental values 

 

y

 

, or the least squares method [4].
Extensions of this approach, such as the method of
principal components (1901) [5], method of maximum
likelihood (1912) [6], ridge regression (1963) [2], pro-
jection to latent structures (1975) [7], etc., made it pos-
sible to use it for complicated ill-posed problems, for
example, in spectroscopy, where the number of

ŷ

 

unknown parameters (wavelengths) is much greater
than the number of objects under study [8]. However,
all these methods give the prediction result as a point
estimate, whereas interval estimate taking into account
the uncertainty of prediction is often needed in practice.
The confidence intervals cannot be constructed by con-
ventional statistical methods, because the problem is
too complex [9], and simulation methods can hardly be
used, because calculations take too much time [10].

In 1962, Kantorovich [11] proposed a different
approach to data analysis: instead of minimizing the
sum of squared deviations, simultaneous inequalities
should be used, which can be solved by linear program-
ming methods. In this case, the prediction result is
immediately obtained as an interval; therefore, this
method was referred to as 

 

simple interval calculation

 

.
In its time, this concept did not obtain proper recogni-
tion and development, which was probably because of
insufficient computer speed. In the 1980s and 1990s,
several interesting applied studies [12–19] were per-
formed using this method, including those in the field
of analytical chemistry [18]. These studies have been
summarized in monograph [20], where the main prob-
lem solved by the authors of the above papers has been
considered in detail. This is the problem of interval esti-
mation of the model 

 

parameters

 

 and embedding the
domain of these parameters in a hypercube, parallelepi-
ped, ellipsoid, etc.

This statement of the problem seems unproductive
and showing little promise, which was supported by
practice: no new papers in this field were observed in
the recent decade. At the same time, we believe that the
concept of Kantorovich can give some interesting
results if multivariate calibration is considered as a
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problem of making interval prediction of

 

 response y

 

. In
this case, two equally important practical problems can
be solved. First, one can find the range of uncertainty
[21] for predicting the required response (chemical
value), that is, to evaluate the 

 

accuracy

 

 of the calibra-
tion constructed individually for each object. Second,
using the simple interval calculation approach, one can
construct object 

 

classification

 

 [22], that is, establish
individual peculiarities of each object governed by its
relation both to the model and to other reference
objects. Such concepts as 

 

outlier

 

 (an object notably
standing out of the general regularity) or 

 

extreme object

 

(an object lying in the peripheral region of the model
and having a significant effect on its construction) are
well-known examples of this classification. In spite of
the extensive use of these concepts in various works
[23–31], there are neither generally recognized defini-
tions nor methods for their detection. The simple inter-
val calculation method can fill this gap.

Theoretical aspects of the simple interval calcula-
tion method are published in [22, 32], and the results of
its practical application are discussed in papers [21, 33,
34]. However, this method differs substantially from
the conventional regression approach used for multi-
variate calibration problems. Its philosophy, mathe-
matics, and vocabulary are unusual for analysts.
Hence, we propose an elementary explanation of the
simple interval calculation method based on the prim-
itive uni- and bivariate examples, with which the most
important concepts and results can be explained and
demonstrated.

In the first part of the paper, we will give the reasons
justifying the basic postulate of the simple interval cal-
culation method, namely, error boundedness. We will
give both theoretical and practical arguments support-
ing this postulate. The second part of this paper will be
devoted to the detailed consideration of a primitive
model example, in which all the necessary calculations
can be performed by a pencil-and-paper method. By
this example, basic concepts used in the simple interval
calculation method will be introduced and illustrated,
and it will be shown what conclusions follow from con-
sistent application of the error boundedness principle.
In the third part of this paper, a real example of a clas-
sical multivariate calibration problem will be dis-
cussed, namely, the prediction of gasoline octane num-
ber from IR spectra [35, 36]. The appendix gives a for-
mal and mathematically rigorous description of the
simple interval calculation method.

WHY THE ERRORS ARE BOUNDED

The main assumption of the simple interval calcula-
tion is the boundedness of the measurement error. This
approach to the experimental data interpretation needs
some substantiation. In data analysis, the principle of
normal error distribution is conventionally assumed

either explicitly or implicitly. However, the assumption
of the normal error distribution has been repeatedly
subjected to criticism from different points of view.
Some papers, such as [37, 38], demonstrated that mea-
surement error is usually bounded rather than normally
distributed. It is significant that most analysts do not
associate error unboundedness with the normal distri-
bution principle. When being asked how often a
researcher has to deal with data including values lying
beyond four standard deviations (

 

4

 

σ

 

), as a rule, the
answer is that if these values ever occur, they are uncon-
ditionally removed as early as in the preprocessing
(data reduction) stage. At the same time, the amount of
data analysts deal with at present often exceeds 

 

10

 

+6

 

[39]. Hence, among them one can expect about 20–
30 “normal” values lying beyond this threshold. The
opinion of the authors of [30] is noteworthy. They state,
“Indeed, in real case studies, the chemist is often able
to select, to some degree, the samples, and this will lead
to a more uniform distribution than normal distribu-
tion.”

Let us consider a typical example supporting this
point of view. Determining grain quality by NIR (near
infrared) spectra is a classical problem of multivariate
calibration [40]. In the example considered, the mea-
surements were performed using an InfraLUM FT-10
spectrometer at 8000–14000 cm

 

–1

 

, and water content in
grain is the analytical value to be predicted. The spec-
tral data 

 

X

 

 were prepared according to the procedure
involving (1) averaging the spectra over three repeated
measurements, (2) taking the logarithm, (3) smoothing
the spectra according to the second-order three-point
Savitzky–Golay algorithm [41], (4) normalization of
each spectrum along the spectral lines, and (5) center-
ing and normalization of all the spectra over the sam-
ples. Data 

 

y

 

 were also averaged over three repeated
measurements, centered, and normalized. A multivari-
ate calibration model was constructed using 141 sam-
ples at 9000–11000 cm

 

–1

 

 by projection to latent struc-
tures (see Methods). To construct multivariate calibra-
tion, four PLS principal components are sufficient,
which explain 99 and 90% of 

 

X

 

 and 

 

y

 

 variance, respec-
tively.

Figure 1a shows the distribution histogram of
water content in grain, and Fig. 1b shows the PLS
score plot in PC4 vs. PC3 coordinates. Applying con-
ventional statistical analysis to this data, one can
notice that they do not conflict with the hypothesis of
normal distribution of responses. Even three extreme
samples marked in the plots seem “tolerable”; their
occurrence probabilities are 0.03, 0.21, and 0.38.
Nevertheless, acting according to conventional mul-
tivariate calibration procedure, we removed all the
samples marked in Fig. 1b by filled points as the out-
liers and performed a new model calibration. The
results of processing the censored data (124 samples)
are shown in Fig. 2.
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Now, the PLS model explains 99 and 92% of 

 

X

 

 and

 

y

 

 variance, respectively. The score plot (Fig. 2b) exhib-
its no suspicious samples. However, in this case, the
response distribution corresponds to a 

 

truncated

 

 nor-
mal distribution cut off at  

 

±

 

2.5

 

σ

 

 from the center.

The example considered demonstrates that, fol-
lowing conventional procedures for data analysis and
processing, we obtain bounded errors that obey a
truncated normal distribution rather than a normal
one. In the following section, we will see what can be
inferred from the error boundedness considered fur-
ther as a postulate.

EXPLANATION OF THE SIMPLE INTERVAL 
CALCULATION METHOD: 
A UNIVARIATE EXAMPLE

 

Model example.

 

 Let us explain how the simple
interval calculation method works using the simplest
univariate regression:

 

y

 

 = 

 

xa

 

 + 

 

ε

 

. (1)

 

The appendix gives a more rigorous mathematical
description, from which only a few simple formulas
will be used here.
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Fig. 1.

 

 Multivariate calibration of water content in grain from NIR spectra using an initial set of 141 samples. (a) Distribution his-
togram of water content in grain and (b) projection to latent structures scores plotted as PC4 vs. PC3. Filled points denote “suspi-
cious” samples.
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Fig. 2.

 

 Multivariate calibration of water content in grain from NIR spectra using a censored set of 124 samples. (a) Distribution
histogram of water content in grain and (b) projection to latent structures scores plotted as PC4 vs. PC3.
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The postulate of boundedness of the measurement
error 

 

ε

 

 is the main assumption of the simple interval
calculation method. This postulate can be formulated as
follows. No error 

 

ε

 

 can exceed some constant 

 

β

 

 in abso-
lute value, that is,

 

(2)

 

Let us consider the elementary conclusions following
immediately from this postulate. Table 1 (columns 1
and 2) and Fig. 3 show some model data we constructed
for regression (1) for 

 

a

 

 = 1. Errors in the response 

 

y

 

were simulated by a uniform distribution with a width
of 1.4, that is, 

 

β

 

 = 0.7.

In this example, a very short set of data (reference
objects) is used, which is divided into two parts. The
first four objects denoted as C1–C4 make up the train-
ing set used for model construction. They are repre-
sented in Fig. 3 by open circles. The last three objects
denoted as T1–T3 are test objects, for which the predic-
tion is constructed. They are represented in Fig. 3 by
filled squares. In spite of the extra simplicity of this

Prob ε β>( ) 0.=

 

example, it helps us to explain the most important prop-
erties of the simple interval calculation method.

 

Least-squares calibration.

 

 Let us begin with the
conventional least-squares method [6]. Using training
data 

 

(

 

x

 

i

 

, 

 

y

 

i

 

), 

 

i

 

 = l–4 (columns 1 and 2 in Table 1, objects
C1–C4), one can find the least-squares estimate of the
parameter 

 

a

 

,

 

(3)

 

and predict the response 

 

y

 

 at all points 

 

x

 

, both training
and new ones:

 

(4)

 

(column 3 in Table 1 and Fig. 3a, thick line). We can
also estimate the error 

 

ε

 

 by using the well-known for-
mula [4]

â = 
y
x
-- = 1.003,     x = 

1
4
--- xi, y

1

4

∑  = 
1
4
--- yi,

1

4

∑

ŷ âx=

 

Table 1.  

 

Model data and results of data processing

Objects

 

x y a

 

min

 

a

 

max

 

v

 

–

 

v

 

+

 

h r

 

|

 

r

 

| 

 

+ 

 

h

 

0 1 2 3 4 5 6 7 8 9 10 11 12

C1 1.0 1.28 1.04 0.86 1.23 0.58 1.98 0.92 1.19 0.19 0.31 0.51

C2 2.0 1.68 2.09 1.72 2.46 0.49

 

1.19

 

1.85 2.38 0.38 –0.62 1.00

C3 4.0 4.25 4.18 3.43 4.92 0.89 1.24 3.70 4.76 0.76 0.03 0.79

C4 5.0 5.32 5.22 4.29 6.15

 

0.92

 

1.20 4.62 5.95 0.95 0.05 1.00

T1 3.0 3.35 3.13 2.58 3.69 0.88 1.35 2.77 3.57 0.57 0.26 0.83

T2 4.5 6.19 4.70 3.86 5.53 1.22 1.53 4.16 5.36 0.86 2.05 2.91

T3 5.5 5.40 5.74 4.72 6.76 0.85 1.11 5.08 6.55 1.05 –0.60 1.64

ŷ ŷ– ŷ+
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Fig. 3. Univariate model example. Open circles are training objects; filled squares are test objects. (a) Least-squares method: thick
lines are least-squares predictions; thin lines are boundaries of the confidence intervals. (b) Simple interval calculation method: bars
are error intervals; lines are boundaries of the prediction intervals.
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(5)

and construct confidence intervals for the response

(6)

Here, t3(P) is the inverse Student’s distribution with
three degrees of freedom for the probability P. Confi-
dence limits for P = 0.95 are given in columns 4 and 5,
Table 1, and in Fig. 3a (thin lines).

Calibration by simple interval calculation. Now,
let us consider how these data are interpreted by the
simple interval calculation method. Suppose that we
know that β = 0.7. In most practical applications, the
situation is much more difficult, and β is not known a
priori. Later, we will see how this problem can be
solved.

From the regression equation (Eq. (1)) and the error
boundedness principle (Eq. (2)), it follows that, for
each object from the training set (xi, yi), i = l–4, the fol-
lowing holds:

, (7)

or, equivalently,

(8)

where

(9)

The values (9) are given in the sixth and seventh col-
umns (Table 1). Inequalities (8) should hold simulta-
neously for all the training objects, that is, for i = 1, 2,
3, and 4. It is clear that this can be the case only for the
values of the parameter a lying within the interval

(10)

where

(11)

These values are set in bold type in the corresponding
columns of Table 1.

Interval (10) defines the region of the parameter a,
that is, the values that agree with the experimental data.
It is clear that, when the parameter a varies within the
interval (10), the corresponding response y = ax at an
arbitrary point x is bounded by the values

(12)

where

(13)

These values are given in columns 8 and 9 (Table 1).

s
2 1

3
--- yi ŷi–( )2

1

4

∑ 0.078= =

ŷ± ŷ s
x

2x
------t3 P( ).±=

yi axi– β≤

ai
min

a ai
max

,≤ ≤

ai
min yi β–

xi

------------- ai
min yi β+

xi

-------------.= =

a
min

a a
max

,≤ ≤

a
min

ai
min

, a
max

1 i 4≤ ≤
max ai

max
.

1 i 4≤ ≤
min= =

v
–

y v
+
,≤ ≤

v
–

a
min

x, v
+

a
max

x.= =

Hence, an interval estimate of the parameter a (10)
is constructed. This estimate is analogous to the point
estimate  obtained using the least squares method. In
addition, the prediction intervals (13) for the response y
are also found. These intervals are valid for either train-
ing or any other (new) objects.

Let us consider a graphical interpretation of the sim-
ple interval calculation method. Figure 3b shows the
same data as Fig. 3a, but now each point is accompa-
nied by the error interval (vertical bars) of half-width
β = 0.7. When constructing simple interval estimates,
one should consider all the possible straight lines pass-
ing through the origin so that each of them “touch” all
the error intervals for all the four training objects. One
can see from the plot that the lower boundary is the line
passing through the lower point of the interval for the
object C4. The upper boundary is the straight line pass-
ing through the upper point of the interval for the object
C2. All the lines contained by these boundaries will
obviously meet conditions (7) and, vice versa, any line
lying off this angle will conflict with these conditions.
The boundaries are represented in Fig. 3b by two thick
lines v + and v –.

Let us mention the obvious fact that, in our example,
the construction of the calibration by the simple inter-
val calculation method is based only on two objects, C2
and C4. They govern the boundaries (10) of the region
of the parameter a, so that we can call these objects
boundary. Other training objects C1 and C3 are ines-
sential. We can remove them from the training set, and
the result remains the same. This is a very important
property of the simple interval calculation method; it
finds an application in choosing a representative object
set [22].

Thus, we have shown that all the objects from the
training set in the simple interval calculation method
can be divided into two groups: the most important
boundary objects that form the basis for the model and
inessential insiders that can be removed from the train-
ing set without changing the model.

Object status. What can happen to the simple inter-
val calculation model or, more precisely, to its region of
possible values when a new object is added to the train-
ing set? It is clear that the RPV can only shrink. Thus,
when the object T3 is added, the upper boundary (v +

line) goes below the old one so as to “touch” the upper
boundary of the error interval for T3. In this case, amax

becomes equal to 1.11 instead of 1.16 (Table 1). This
property of the simple interval calculation method,
called consistency (see (24) in the appendix), is impor-
tant from the theoretical point of view. It shows that, as
the number of objects in the training set increases, the
uncertainty of the simple interval estimates decreases.
In this case, if the maximum error is chosen properly,
or, at least, it is no less than β, the true value of the
parameter a is always within the possible values (10).
This property called unbiasedness (see (21) in the

a)
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appendix) is also important for understanding and sub-
stantiation of the simple interval calculation method.

However, not any new object included in the train-
ing set results in the model refining. Thus, the object T1
does not change the simple interval calculation model.
This can be seen from Fig. 3b, where the prediction
interval lies entirely within the corresponding error
interval of T1, as well as from the sixth and seventh col-
umns of Table 1. Another example is the object T2. Its
error interval is disjoint with the prediction interval;
therefore, when T2 is added to the training set, the
model is destroyed, because simultaneous inequali-
ties (7) become inconsistent. This can also be seen
from Table 1: the minimum over column 7 (1.11)
becomes less than the maximum over column 6 (1.22).
Hence, one can classify new objects into three groups
with respect to how they affect the model when added
to the training set, that is, to determine the status (influ-
ence) of each object. First, one can recognize a class of
insiders that do not change the model and a class of out-
siders that do change the model. In addition, in the out-
siders, a group of outliers can be recognized, that is,
objects that cannot be added to the training set (at
given β) because they destroy the model.

Object status classification based on simple
interval calculation. Studying the object status using
the plot of Y vs. X is inconvenient, and it becomes
impossible in the multivariate case. To perform this
analysis in the general case, two variables reflecting
object properties are introduced: residual of SIC r and
leverage of SIC h (Eqs. (27) and (28) in the appendix).
Having prediction intervals (12), one can easily calcu-
late these values. In our example, r and h are given in
columns 10 and 11 (Table 1) and shown in the object
status plot (OSP) in Fig. 4a in the coordinates (h, r).

In this diagram, training objects are denoted by open
circles, and test objects are denoted by filled squares as

in Fig. 3. The thick line ABCDE bounds the regions
with different object statuses. The shape of this line is
governed by the two fundamental inequalities ((29) and
(31) in the appendix) relating h and r. One can see from
the OSP that all the objects from the training set lie
within the BCD triangle (their status is insider; for them,
|r| + h ≤ 1; see column 12 of Table 1) with the objects C2
and C4 lying on its boundaries (their status is boundary;
for them, |r | + h = 1). The test object T1 also falls in the
insider triangle, because |r | + h = 0.83 < 1. The object
T2 lies below line DE, which indicates that it is an out-
lier. For it, |r | – h = 2.91 > 1 (see inequality (31) in the
appendix). The object T3 is an outsider, and one can see
from the OSP that at no residue r can it fall within the
insider region. For it, h = 1.05 > 1. This indicates that
its variable x contains some new important information
lacking in the calibration model. These objects are
called absolute outsiders.

Hence, it is shown that the simple interval calcula-
tion method makes it possible to introduce a new clas-
sification of all the objects of multivariate calibration
from the training set as well as the test and new objects.
This classification is called object status classification
[22]. It is based on definitions (27) and (28) and on
statements (29)–(32) in the appendix. Practical applica-
tion of the object status classification consists in calcu-
lating r and h, constructing the corresponding plot sta-
tus diagram, and studying the location of objects in this
plot.

One can notice that the triangular shape of the
insider region in the object status plot (Fig. 4a) resem-
bles an ordinary influence plot [7] shown in Fig. 4b. In
this plot, all the objects of the model example are rep-
resented by their least-squares leverage

1
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Fig. 4. Determining object status in the univariate model example. Open circles are training objects; filled squares are test objects.
(a) Object status plot obtained by simple interval calculation. (b) Object influence plot obtained by the least-squares method.
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against their normalized least-squares residual.

The resemblance between the status and influence
plots follows from the well-known statistical relation-
ship [8], which relates the accuracy (root-mean-square
error of calibration, RMSEC), precision (standard devi-
ation of error of calibration, SEC) and bias (systematic
error, BIAS),

RMSEC2 ≈ SEC2 + BIAS2. (14)

For the simple interval calculation method, in which β
is the accuracy, the simple interval calculation leverage
h characterizes the normalized precision, and simple
interval calculation residual r is responsible for the nor-
malized bias, Eq. (14) can be represented as

β2 = β2h2(x) + β2r2(x, y), (15)

which coincides with Eq. (29) of the appendix. On the
other hand, we should acknowledge a substantial differ-
ence between Eqs. (14) and (15). It consists in that the
latter equation holds for each object, whereas Eq. (14)
makes sense only for the entire collection of objects,
that is, on average.

In the end of this section, let us show two plots
(Figs. 5a and 5b) indicating a close relationship
between the object characteristics in the least-squares
and simple interval calculation methods. From Fig. 5a,
one can see a strong correlation (R2 = 0.999) between
the least-squares and simple interval calculation resid-
uals. The relationship between the leverages is more
complex (Fig. 5b), but the correlation between the
square root of the least-squares leverage and the simple

hls xt XtX( )
1–
x xi

2
/ xi

2

i 1=

4

∑= =

rls y ŷ–( )/β.=

interval calculation leverage is also observed here (R2 =
1.000). This relationship obviously follows from the
definitions of these values. The leverage in the simple
interval calculation method is proportional to the pre-
diction interval width (12), whereas the leverage in the
least-squares method is proportional to the prediction
variance [42], which governs the confidence interval
width proportional to the square root of variance. It is
clear that, in more complex problems, the relationship
between the least-squares and simple interval calcula-
tion characteristics is not so simple, but the principal
trend remains the same. The problem of similarity and
difference between the least-squares and simple inter-
val calculation methods and comparison of the simple
interval calculation prediction intervals and confidence
least-squares intervals are considered in detail in [21].

Estimation of b. Constructing the estimate b of
parameter β, or the maximum error, is a rather complex
statistical procedure, which is briefly outlined in the
appendix and considered in detail in [32]. To under-
stand the matter, one should keep in mind only the fact
that, depending on the nature of the distribution of error
ε, the estimate b constructed lies, as a rule, within
2σ−4σ, where σ is the standard deviation of this distri-
bution. It is clear that, for any truncated distribution, β
cannot be less than 2σ. The extreme case is the uniform
distribution, for which β = 1.71σ. For a usual number of
objects in the experiment (say, less than 1000), we can-
not expect extreme values beyond 3σ. Finally, the limit
of 4σ makes sure that new objects will never go beyond
this boundary as well. In the example considered, β =
2.5σ, which is somewhat higher than it should be for
the uniform distribution, which we used for data simu-
lation. This result is completely explainable, because
the estimate of parameter β was calculated using a very
small training set (only four objects).
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Fig. 5. Object characteristics in the univariate model example. Open circles are training objects; filled squares are test objects.
(a) Comparing residues obtained by the least-squares method and by simple interval calculation. (b) Comparing leverages obtained
by the least-squares method and by simple interval calculation.
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It is reasonable to ask how these variations in the
estimate of the maximum error β can affect the results
of the object status classification. Because such object
characteristics as the simple interval calculation resid-
ual r and simple interval calculation leverage h are
defined in the simple interval calculation method as rel-
ative values divided by β (see (27) and (28) in the
appendix), overestimated maximum error β does not
affect the results of the object status classification. The
contrary is the case for the prediction intervals in the
simple interval calculation method. They increase with
the estimate b, and at b = β the intervals, by definition,
cover the true value with a unitary probability. On the
other hand, it was shown in [32] that the prediction
intervals constructed for the estimate bSIC ((37) for P =
0.90) instead of the true β have a probability of cover-
ing no less than 0.9999. This result supports the conclu-
sion that not only the proposed object status classifica-
tion but the entire simple interval calculation method as
well can be used in practice.

To illustrate this statement, let us compare the least
squares and simple interval estimates for our example.
When comparing the plots in Figs. 3a and 3b, one can
see that the confidence interval (P = 0.95) for the least-
squares prediction is wider than the prediction range of
the simple interval calculation method. If one calcu-
lates the covering probability of SIC interval using for-
mula (6), it is equal to 0.91. Note that we have taken
rather high β = 2.5σ, which corresponds to the normal
probability Prob[–2.5, +2.5] = 0.99.

Hence, the considered primitive model example
shows two important facts. First, the use of the
unbounded (normal) distribution for constructing con-

fidence estimates results in unnecessarily wide inter-
vals. Second, even for a small amount of data, the sim-
ple interval calculation method gives reasonably wide
intervals that represent the facts well. To support the
last statement, we have repeated the simulation of our
example 100000 times. Never was the true y = x beyond
the predicted intervals obtained by the simple interval
calculation.

A REAL EXAMPLE: A MULTIVARIATE MODEL

Data. We used the well-known didactic example of
predicting the octane number of gasoline [35, 36] to
demonstrate that the simple interval calculation method
can successfully be applied to real problems of multi-
variate calibration, including situations in multicol-
linearity conditions. In this example, the matrix X con-
sists of NIR absorbance spectra obtained for 226 wave-
lengths at 1100–1550 nm. They are shown in Fig. 6.

Components of the vector y are the results of the
corresponding laboratory measurements of octane
numbers [46]. The data are divided into two sets; in
each, the octane number varies within 87–93. The first
training set consists of 24 samples of commercial gaso-
lines (nos. 1–24); it is used for constructing the multi-
variate calibration. The second set includes 13 samples
that serve for validating the predictive properties of the
model. It is important that this test set contains four
samples (nos. 10–13) that represent ethylated gasolines
lacking in the training set. Let us call the test sets with
these samples (nos. 1–13) and without them (nos. 1–9)
long and short test sets, respectively.

0.1

0
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0.6

1200 1300 1400 1500 nm

0.5

0.4

0.3

0.2

Fig. 6. Absorption spectra of gasolines. Arrows denote ethylated samples.
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Methods. When constructing the multivariate cali-
bration, the most important mathematical problem con-
sists in inverting the matrix X tX, which, in our case, has
the dimensions 226 × 226. If this matrix were nonde-
generate (had full rank [6]), one might invert this matrix
and find the estimates of the unknown model parame-
ters  = (X tX)–1X ty for the calibration by the least
squares method. However, in our example, as with most
practical problems, this matrix is degenerate. There-
fore, according to property (22) in the appendix, the
simple interval calculation method cannot be used. To
overcome this difficulty, various data regularization
methods are used, such as the principal component
method, ridge regression, and so on. We used the pro-
jection to latent structures method [35]. The method
consists in simultaneous decomposition of the matrix X
and the vector y in the form

X = TP t + E; y = Tq + f, (16)

where T is the matrix of scores, P and q are the matrix
and vector of loadings, and E and f are the matrix and
vector of residuals. To construct this decomposition,
three rules are used. First, columns ti of the matrix T are
linear combinations of columns x of the matrix X; that
is, ti = Xwi. Second, coefficients w are chosen so as to
maximize the correlation between the response y and
vector ti. Third, the number of columns in the matrix of
scores T and the matrix of loadings P equals the effec-
tive (chemical) rank of the matrix X. This value k is
called the number of principal components (PCs). Of
course, it is less than the number of columns in the
matrix X. The possibility of visual interpretation of data
in the score plots is an important advantage of the PLS
method, which was used in Section 1 (see Figs. 1
and 2). When predicting a new (test) object x, it is pro-
jected to the vector of scores t, which is later subjected
to regression (16).

Conventionally, a multivariate calibration problem
is set in the homogeneous form y = Xa, so that y = 0 at
x = 0. To match the raw data (Xraw, yraw) with this model,
they are centered:

Here, m0 is the average of the vector of responses y and
mi is the average calculated for all the columns of the
matrix Xraw. In addition, it is often necessary to normal-
ize data as well. This is done to average the contribu-
tions from different variables. If the data are not nor-
malized, the result can depend on some variables that
exhibit large variance but small regression significance.
To normalize data (Xraw, yraw) is to multiply them by the
diagonal matrices X = XrawSX and y = yrawSy. Diagonal
elements of matrices S are usually chosen equal to
inverse standard deviations sii calculated for the corre-
sponding columns Xraw and yraw, that is, Sii = (sii)–1.

â

y yraw m01, X– Xraw m11 m21 … mp1, , ,( ).–= =

One can learn more about the method of projection
to latent structures from numerous monographs, such
as [7, 8], which are, unfortunately, hardly available in
Russia. Recently, this method was presented correctly
but briefly in manual [1]. In Russian, detailed presenta-
tions of projection to latent structures as well as other
methods of multivariate data analysis are given in book
[35].

Using the s method of projection to latent structures
in our example, one can project the initial multivariate
calibration problem onto a two-dimensional subspace,
where the new problem is nondegenerate:

y = m01 + Ta + e.

Here, m0 is the average y and T is the n × 2-dimensional
matrix of scores. This number of principal components
(k = 2) explains 97% of X variance and 98% of y vari-
ance.

Calibration. To use the simple interval calculation
method, one should determine the maximum error β as
described in the appendix. Here, one should take into
account that projection methods necessarily increase
the overall error due to inaccuracy of modeling. This is
because bilinear models (such as projection to latent
structures and PCR)1 are only approximations of com-
plex systems. Therefore, the maximum error β is
always greater than any individual measurement error
of a response.

Using formula (35) from the appendix, we obtain
bmin = 0.484. This means that the simple interval calcu-
lation method with b < 0.484 cannot be used for the
data under consideration, because the region of possi-
ble values becomes empty. The value of bmin gives a
lower boundary of the maximum error β, but we need a
corresponding upper estimate as well. Using Eq. (37)
from the appendix at P = 0.90, we obtain the estimate
bSIC = 0.880. This b is used as an estimate of the maxi-
mum error β in all the calculations from here on. Hav-
ing estimated the root-mean-square error of calibration
(RMSEC) 

one can compare the accuracy of modeling by the PLS
and SIC methods: bmin/scal = 1.81 and bSIC/scal = 3.28.

To apply the simple interval calculation method, one
does not need to construct the admitted region explic-
itly, especially because this is a very complicated prob-
lem for more than two variables [20]. However, in the
example considered, p = k = 2; therefore, to illustrate
and explain the simple interval calculation technique,
we show the RPV in Fig. 7a.

Just as in the univariate example, the admitted
region is generated only by the boundary samples
rather than by all 24 samples from the training set. In

1 PCR is principal component regression.

scal
1

ncal
------- ycal ŷcal–( )2

0.268,= =
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our case, there are six boundary samples (nos. 7, 9, 13,
14, 18, 23). They are denoted by filled points in the sta-
tus plot of the training samples (Fig. 7b). All the bound-
ary samples lie on the boundary triangle, because | |r | +
h = 1 for them. These samples generate the RPV as
shown in Fig. 7a, where each line corresponds to either

the equation  = yi – m0 + b (denoted by “+”), or the

equation  = yi – m0 – b (denoted by “–”). Numbers
near the lines correspond to the numbers of the bound-
ary samples, and the RPV is outlined by the thick bro-
ken line.

Hence, the calibration by simple interval calculation
results in the estimate b of the maximum error β and a
set of boundary samples constituting the admitted
region.

Prediction. Let us calculate the prediction intervals
by the SIC method. To do this, v – and v + values should
be calculated for each test object (Eq. (26) in the appen-
dix). These values govern the boundaries of individual
prediction intervals. This optimization problem is
solved using the linear programming technique, which
makes it possible to obtain the solution in the general
case without explicitly presenting the region of possible
values.

The linear programming [43] problem consists in
maximization or minimization of a linear function
under linear constraints. In the general case, this prob-
lem can be presented in so-called canonical form as

where a ∈ Rp is a vector of unknown parameters and
c ∈ Rp are coefficients of the target function. The matrix
T ∈ Rn × p is called the constraint matrix, and the vector
d ∈ Rn is called the constraint vector. Any system of lin-
ear inequalities can be transformed into the canonical

ti
ta

ti
ta

cta  a provided that Ta = d and a 0≥{ }
a

min ,

form by introducing additional variables. Slack vari-
ables are added to the system to exclude “less than”-
type constraints, and surplus variables are added to
exclude “greater than”-type conditions. In addition, any
maximization problem can be transformed into the
minimization problem by changing the signs of the
coefficients of the target function [45].

The canonical problem of linear programming can
be solved by a simplex method, which consists in the
linear search for the vertex points in such a way that the
value of the target function c ta decreases from iteration
to iteration. As a result, the solution, point a that is
simultaneously admissible (meeting all the constraints)
and optimal (giving minimum value), is found. The
simplex method [43–45] is a well-known algorithm
included into many software packages, such as [46]. It
calculates the admissible vertices algebraically by
using corresponding simultaneous linear equations
rather than explicitly constructing the polyhedron.

In our example, the region of possible values gener-
ated by the linear constraints is a polygon with six ver-
tices, numbered for clarity’s sake (see Fig. 7a). To illus-
trate the essence of the simplex method, let us find the
prediction interval for the first sample from the test set.
We denote it by the index test. Using the conventional
PLS algorithm, one can find the projection of this 226-
dimensional vector xtest on the principal component
plane, that is, calculate the score vector ttest = (–0.0689,
0.0343). To determine the boundary of the prediction
interval [v –, v +], one should solve two linear program-
ming problems:

where the vector of parameters a meets the constraints

v
– ttest

t a, v
+

a
min ttest

t a,
a

max= =

yi m0– β– ti
ta yi m0– β, i+≤ ≤ 1 2 … 24,, , ,=
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Fig. 7. Prediction of octane number. Projection to latent structures model with two principal components. Training set. (a) Admitted
region: lines are boundaries; open circles are vertices. (b) Status plot of the training samples: open circles are insiders; filled circles
are boundary objects.
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that is, a lies within the RPV shown in Fig. 7b. After
solving these problems, one obtains the interval predic-

tion for the desired response ytest = m0 + ,

Table 2 gives the coordinates of all the six vertices
of the RPV (a1 and a2) and the corresponding
responses. One can find from this table the prediction
interval 88.30 < ytest < 89.01 corresponding to verti-
ces 5 (minimum) and 3 (maximum). In fact, while solv-
ing the complex problem, one does not need to act in
such an inefficient way and check each vertex individ-
ually. It will suffice to use the conventional simplex
algorithm. The first admissible vertex found by the sim-
plex algorithm is vertex 1. To find the minimum (v –),
the algorithm travels 1  6  5, and to find maxi-
mum (v +), 1  2  3 (Fig. 7a).

Results. Let us compare the prediction intervals for
the test samples found by the simple interval calcula-
tion method with the estimates of  obtained by pro-
jection to latent structures method. To do this, we will
use a conventional estimate of the prediction accuracy

ttest
t a

v
–

m0 ytest v
+

m0.+≤ ≤+

ŷtest

for the PLS, namely, the root-mean-square error of pre-
diction (RMSEP)

The value of stest found by a leave-one-out cross valida-
tion technique (LOO) [7] equals 0.322. If new samples
belong to the same type (both qualitatively and quanti-
tatively) as the training samples, one may expect
approximately the same accuracy prediction for them.
In the example considered, this is the case for the short
test set. The corresponding uncertainty intervals [  ±
2stest] are shown in Fig. 8a by black rectangles, and the
intervals obtained by simple interval calculation are
denoted by gray rectangles. Obviously, using this
approach for outlying test samples (nos. 10–13) would
be incorrect.

The SIC intervals for the four outlying samples are
very large. In the conventional projection approach,
they are considered as outliers [35]. These samples can
also be easily identified in the object status plot
(Fig. 8b). In using the object status diagram, samples
nos. 10–13 are characterized as absolute outsiders, that
is, the samples that bear absolutely no resemblance to
the samples from the training set. Examining the plot in
Fig. 8a, one can notice that the test values (open points)
as well as the values predicted by the PLS (filled points)
lie within the intervals obtained by SIC (gray rectan-
gles) and that the uncertainty intervals found by the
projection to latent structures (black intervals) agree
with the intervals obtained by simple interval calcula-
tion for the short test set of samples (nos. 1–9). At the
same time, the length of the interval obtained by simple
interval calculation is individual for each new sample
and, therefore, is more informative than the average

stest
1

ntest
-------- ytest ŷtest–( )2

.=

ŷtest

Table 2.  Constructing the prediction interval by simple in-
terval calculation method

Vertex a1 a2 ytest

1 13.91 16.36 –0.398 88.85
2 14.22 18.36 –0.351 88.90
3 16.79 26.66 –0.244 89.01
4 19.91 26.61 –0.461 88.79
5 20.41 13.16 –0.956 88.30
6 17.43 13.51 –0.739 88.52
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Fig. 8. Prediction of octane number. Projection to latent structures model with two principal components. Test data. (a) Filled circles
are test values, gray area is the interval obtained by simple interval calculation, open circles are projection to latent structures esti-
mates, and black area is the uncertainty interval. (b) Status plot of the test samples: filled squares are nos. 1–9; open circles are
nos. 10–13.
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uncertainty calculated by the projection to latent struc-
tures. As for the outlying samples (nos. 10–13), the
intervals obtained by simple interval calculation imme-
diately indicate their deviance. Note also that, for “nor-
mal” samples, the intervals obtained by simple interval
calculation are less than the corresponding uncertainty
intervals obtained by the projection to latent structures.

This example demonstrates how the simple interval
calculation method can answer questions important for
analysts.

1. Estimate of the maximum error β governs the
accuracy of calibration and sets the boundary of preci-
sion for all objects that are similar to objects from the
training set.

2. Prediction intervals obtained by simple interval
calculation determine an individual prediction uncer-
tainty of response for each new object.

3. The position of each object in the status plot
makes it possible to determine whether this subject is
similar to the objects from the training set and thus sets
reasonable limits of applicability of the constructed cal-
ibration.

As applied to the considered example of the calibra-
tion of octane number from NIR spectra, it would be
reasonable to state that, in everyday practice, this tech-
nique can be applied only to the new samples that are
insiders with respect to the constructed multivariate
calibration. Only in this case is the prediction accuracy
surely no worse than the accuracy of calibration, which
approximately equals the accuracy of the conventional
laboratory technique for fuel rating. On the other hand,
if this technique were intended for research purposes, it
would be enough to say that it cannot be applied to
absolute outsiders, because the structure of their pre-
dictors differs substantially from the standard training
samples.

We believe that the proposed simple interval calcu-
lation method can be of practical use for multivariate
data analysis. The simple interval calculation method
has some advantages as compared to the conventional
regression approach.

First, it does not use any assumptions concerning
the error form but for its boundedness. Hence, the
method can be considered as distribution-free.

Second, it gives the result in the convenient interval
form taking into account the prediction uncertainty of
the response.

Third, it naturally outlines the limits within which
the constructed model can be used. This is achieved by
the object status classification discriminating reliable
“insiders,” significant “boundary objects,” suspicious
“outsiders,” outlying “absolute outsiders,” and destruc-
tive “outliers.”

In our view, the most important (and the only)
assumption of the error boundedness is an advantage
rather than a drawback of the method because, practi-
cally, it seems more sound than the conventional
hypothesis of error normality.

The computational procedure of the method is based
on known linear programming algorithms and can be
easily implemented. Application of the simple interval
calculation method to real problems gave results that
agree well with the practical experience.

Software. For modeling by the projection to latent
structures, we used “The Unscrambler” software pack-
age [52]. Simple interval calculation was performed
using the software implemented as an add-in for
Microsoft Excel. We used the NIPALS algorithm [35]
for bilinear modeling, standard SIMPLEX algorithm
[43] for optimization, and all the necessary set of spe-
cial procedures for the preprocessing (data reduction),
transformations, and so on. This program is being beta-
tested at present.

APPENDIX

RIGOROUS DESCRIPTION OF THE SIMPLE 
INTERVAL CALCULATION METHOD

Region of possible values. Let us consider a linear
multivariate calibration model

y = Xa + e, (17)

where y is an n-dimensional vector of responses, a is a
p-dimensional vector of parameters, X is a (n × p)-
dimensional matrix of predictors (independent vari-
ables), and e is a vector of errors. Let us take error ε as
bounded; that is, there is some β > 0, called maximum
error, so that

(18)

where Prob{·} denotes the probability of an event. The
symmetry and homoscedasticity of error ε as well as the
assumption of the absence of errors in the matrix X are
not important and can be rejected hereinafter. First,
assume that β is known.

Let us call a pair (xi, yi), (i = 1, …, n) a training

object. Here, vector  is the ith row of the matrix X
corresponding to the response yi in Eq. (17). According
to the condition (18), for each i = 1, …, n, the following
inequalities hold:

(19)

It is reasonable that the true vector of parameters
denoted below as a is unknown. However, one can con-
sider all vectors a that meet these inequalities. The val-
ues a that meet the condition (19) for a given object i
form a strip S(xi, yi) in the parameter space Rp. The
position and width of this strip is governed by the val-

Prob ε β>{ } 0,=

and that for any  0 b β Prob ε b>{ } 0,>< <

xi
t

yi
– xi

ta yi
+
, yi

–≤ ≤ yi β, yi
+

– yi β.+= =
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ues (xi, yi). Let us consider all the objects from the train-
ing set and their corresponding strips. It is clear that the
vector of parameters a meets all inequalities (19) simul-
taneously if and only if it belongs to all the strips.

The region of possible values A for parameters a of
the system (17) is a set in the parameter space generated
as a result of the intersection of all the strips:

(20)

Region A is a closed convex polyhedron [48, 49] gener-
ated by the boundaries of the intersecting strips. A is a
random set, because it is constructed using random val-
ues y.

Properties of the region of possible values. The
region of possible values A exhibits the following prop-
erties for any model defined by Eq. (17).

Region A is an unbiased estimate of parameter a. It
follows immediately from the RPV definition that the
true value of a always belongs to A:

(21)

Region A is bounded if and only if [48, 49] the
matrix X has full rank:

rankX = p. (22)

It follows therefore that, if system (17) is multicol-
linear, some regularization procedure should be applied
before using the simple interval calculation method.
Thus, one can use the conventional approach [7, 32]
and project the raw data onto a subspace of smaller
dimension

y = TP ta + f = Tq + f, (23)

where the matrix of scores T has full rank k < p, and,
next, apply the simple interval calculation method to
this system.

Region A is a consistent estimate of parameter a,
that is,

(24)

under the same weak conditions [50]:

λp  ∞ at n  ∞,

as in the least squares method. This property means
that, as the number of the training objects increases, A
collapses to the true a.

Region A consists of only certain training objects,
called boundary, rather than all of them. Therefore, all
the objects except for the boundary ones can be
removed from the training set without changing the
region of possible values.

Prediction of response. Let us consider the prob-
lem of predicting the response y for a given new vector
x from the model (17). If the parameter a varies within
the RPV A, it is clear that the value y = x ta to be pre-
dicted belongs to the interval

A S xi yi,( ).
i 1=

n

∩=

Prob a A∈{ } 1.=

Prob A a∩{ } 1 at n ∞=

(25)

where

(26)

Interval V is the result of predicting by simple interval
calculation. To obtain it, one does not need to construct
region A explicitly, because problem (26) can be solved
using standard linear programming methods [43, 44].

Object status classification. To characterize the
quality of prediction by simple interval calculation
numerically, the following values are introduced.

Value

(27)

is called the residual of simple interval calculation.
Value r is the difference between the center of the pre-
diction interval and value y (normalized to β); there-
fore, r characterizes bias.

Value

(28)

is called leverage of simple interval calculation. Value
h is calculated as a half-width of the prediction interval
divided by the maximum error; therefore, h character-
izes β normalized precision.

It is clear that when some new object (x, y) is added
to the training set, the admitted region A can undergo
one of the following events: (1) the RPV does not
change; that is, An + 1 = An; (2) the RPV shrinks; that is,
An + 1 ⊂ An; (3) the RPV disappears; that is, An + 1 = ∅.
Here, An denotes the RPV constructed using the train-
ing set of n objects. The first case corresponds to an
object that is called an insider. These objects com-
pletely agree with the model; therefore, one can fully
rely on them in prediction. The second case means that
the object lies outside the model available; therefore, it
may be called an outsider. Outsiders do not conflict
with the model and improve the accuracy of modeling
when added to the training set. However, until these
objects are included in the training set, they are unreli-
able for prediction. This can arise from two factors.
First, the width of the prediction interval, that is, the
leverage of simple interval calculation, can be greater
than the accuracy of calibration. Alternatively, there is
a systematic error, which is characterized by the resid-
ual of simple interval calculation. Finally, a third event
occurs when the new object is completely contrary to
the model constructed. These objects, obviously, are
outliers in all senses and cannot be used for prediction.
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It is shown [22, 32] that this classification can easily
be performed without explicitly constructing the RPV.
Instead, it is performed on the basis of the following
statements relating the values of r and h.

Object (x, y) is an insider if and only if

(29)

Training object (xi, yi) is boundary if and only if

|r(xi, yi)| = 1 – h(xi). (30)

Object (x, y) is an outlier if and only if

(31)

Object (x, y) is an absolute outsider, if and only if
h(x) > 1. (32)

Using definitions (27), (28) and statements (29)–(32),
one can construct an object status plot, a prototype of
which is shown in Fig. 9. For any dimension of input
data (X, y) and any number of parameters, the object
status plot is a two-dimensional plot. This makes it a
very powerful tool for multivariate calibration. State-
ments (29)–(32) divide the plane of SIC residuals vs.
simple interval calculation leverages into three regions;
each of them corresponding to one of three categories
of objects: insiders (region (i) in Fig. 9), outsiders
(region (ii)), and outliers (region (iii)).

Usually, when a multivariate calibration model is
applied to new objects, the corresponding y values are
unknown. Therefore, one cannot calculate simple inter-
val calculation residue r (27), but one can always deter-
mine simple interval calculation leverage h (28). One
can easily see that, if the leverage of the new object is
greater than unity (h > 1), region (ii)), this object can be
classified as insider at no y. These objects form a special
class called absolute outsiders (statement (32)).

Estimation of b. To apply the simple interval calcu-
lation method, one should know the maximum error β.
It is usually unknown, and some estimate b is used
instead of β. It is clear that in this case the admitted
region (A) depends on b and that A(b) monotonically
expands as b increases:

(33)

It can be shown that, when there is a sequence of esti-
mates b1 > b2 > … ≥ β converging to β, properties (21)–
(24) hold for A(bn) as well. In addition, it is clear that

(34)

It follows from (33)–(34) that a minimum value b exists
for which A(b) ≠ ∅. This value can be taken as the esti-
mate of β

(35)

The estimate (35) is consistent but biased because
bmin ≤ β. It gives the lower boundary of the possible β
values. This is undoubtedly a useful characteristic of
the training set and the model, but, in addition to bmin,

r x y,( ) 1 h x( ).–≤

r x y,( ) 1 h x( ).+>

b1 b2 A b1( ) A b2( ).⊃⇒>

A 0( ) ∅, A ∞( ) ∅.≠=

bmin min b A b( ) ∅≠,{ }.=

one should estimate the upper boundary of the maxi-
mum error as well.

It is clear that any consistent estimate b should
depend on two factors:

(1) The number of objects in the training set. The
more the objects, the closer b to β.

(2) The heariness of the tail areas of the error distri-
bution. The lighter the tail areas, the worse is this esti-
mate.

Using a conventional statistical approach [51], one
can construct an estimate b such that Prob{b > β} > P
and the estimate b is as close to β as possible. Let us
consider some point (regression) estimate  of the vec-
tor y, residuals e = y – , and a statistics

breg = max(|e1|, …, |en |). (36)

Statistical modeling performed for different numbers of
objects in the training set using various bounded error
distributions shows that the estimate

bSIC = bregC(n, s2, P) (37)

is the desired upper boundary β with the probability P.
The empirical function C [32] depends on the number
of objects in the training set n and on the variance of
residuals s2, which characterizes the heariness of the
error distribution tail areas.
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