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ABSTRACT: This study was devoted to the prediction of
polymer material aging. The prediction of the shelf time of
tire rubber is used as an example in this article. The main
steps of the whole procedure are described. They are the
design of the experiment, accelerated aging testing, the con-
struction of a multiresponse mathematical model and pa-
rameter estimation, and the extrapolation of the model in
real-life settings. The main pitfalls were deduced, and tech-

niques to overcome these pitfalls are described. Novel meth-
ods of data modeling, such as evolutionary design of exper-
iment and successive Bayesian estimation, were used. © 2005
Wiley Periodicals, Inc. J Appl Polym Sci 95: 1275–1284, 2005
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INTRODUCTION

The prediction of the operation and the shelf stability
of polymer materials is one of the most difficult mod-
eling problems. Very often, the shelf (operation) time
of these materials is greater than 10 years, and statis-
tics of failures for this period are absent. Ordinary
accelerated aging testing (AT) is used for prediction
purposes. During these tests, samples are exposed to
conditions (aging factors) that are more severe than in
real life, and these factors lead to accelerated aging.
The AT results are used for mathematical modeling
that describes changes in the material properties (y;
responses) in time t regarding aging factors (X values):

y � f�t, X, a�

The model depends on unknown parameters (a val-
ues), which are estimated with the help of a data set
obtained in the course of AT. As a rule, the least
squares method (or the maximum likelihood method)
is used, and parameter estimates for a are determined
as values that minimize the objective function, Q

Q�a� � � �f�ti, Xi, a� � yi�
2

With the values of these estimated parameters, one
can extrapolate the material properties on shelf (oper-
ation) conditions. For known critical levels of investi-
gated properties, it is possible to calculate the time

when these levels are attained. This is the main
scheme of the prediction procedure, but there are
several difficult issues that merit special attention.

Multidimensional response

Aging is characterized by simultaneous changes in
various properties, and several characteristics are con-
trolled in the course of AT. Each of them is described
by its own model. So, in modeling procedures, one
deals with not one but several objective functions.
However, the same aging process affords the basis of
these changes. Therefore, common parameters are
used in the mathematical descriptions of various
properties. Such parameters as activation energy and
the pre-exponential factor of the reaction rate con-
stants of chemical and physical processes should be
common and belong simultaneously to different mod-
els. Thus, one cannot estimate unknown parameters
by minimizing each objective function separately, and
one encounters an interesting mathematical problem
when one searches for parameter estimates on dissim-
ilar data sets. The classical approach offers to build
common multiresponse regression for simultaneous
analysis of the whole array of experimental data and
to use each model with a specified weight value be-
cause different responses are measured with different
errors. As a rule, one does not know the measurement
error variances, and elaboration of the common model
leads to a complicated iteration procedure.

To overcome this problem, successive Bayesian es-
timation (SBE) was developed;1 it allows the data to be
processed successively for every response. The SBE
method is widely used for experimental data process-
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ing.2–6 In this study, the SBE method was used for
rubber shelf-time prediction.

Multicollinearity

In practice, very often it is difficult to determine the
minimum of the objective function. From a geometri-
cal point of view, it can be explained as a degradation
of the surface when it looks like a ravine without an
explicit minimum point. Such a situation is called
multicollinearity. To understand the reasons, we have
to distinguish two different cases: strict multicollinear-
ity, or the nonidentification case, and nonstrict multi-
collinearity, or the ill-posed case.7 In the first variant,
there are some intrinsic dependences (maybe implicit)
between the parameters in the model that forbid the
estimation of all of the parameters. The simplest ex-
ample is

y � a1a2t

It is obvious that for any experimental plan, one can-
not estimate parameters a1 and a2. In the second vari-
ant, multicollinearity is caused by the poor design of
the experiment and may be overpassed by another
experimental data set. The simplest example is

y � a1�1 � e�a2t� � a1a2t when a2t��1

For small t values, the model becomes singular. How-
ever, with a good plan, there is no problem for param-
eter estimation. Unfortunately, there is no strict defi-
nition for a good experimental design. This depends
on measurement errors and computational accuracy
and may be improved by data scaling and model
modification.

Strict multicollinearity is often found in the hard
modeling of the kinetics of chemical reactions, and the
second variant ordinarily occurs in soft modeling. The
prediction of the operation and the shelf stability of
polymer materials and products is just this case, and
later, we show scaling techniques applied to the Ar-
rhenius equation.

Extrapolation

All of the aforementioned difficulties are nothing in
comparison with the prediction problem; that is, ex-
trapolation of the model at settings that are far from
the observed area. How can one guarantee that the
results are reasonable? How can one confirm that he
or she used a good model for a formal description of
the aging process? Standard validation methods, such
as test validation or cross-validation, do not work here
because they are suitable only for interpolation prob-
lems. Strictly speaking, there are no mathematical
methods that can answer the posed questions. How-

ever, hard physicochemical modeling that uses com-
plicated kinetic schemes to describe the degradation
process cannot guarantee the results either. Any com-
plication of the model in the framework of the exper-
iment that is limited in time and content leads not only
to unreliability of the forecast but also to overestima-
tion of the model and, as a result, to strict multicol-
linearity of the whole problem.8 Polymer aging is a
complex physicochemical process that is characterized
by numerous parameters. However, we can arrange
them in the degree of each parameter’s impact on the
aging process. In very many practical cases, aging is
determined by one or two, rarely by three, main pa-
rameters. To make the right choice, it is necessary to
fulfill two main conditions:

• Parameters under consideration should be com-
mon for all individual models.

• In the course of AT, one should observe and iden-
tify the influence of these parameters on the aging
process; that is, the AT settings should not be far
from real life.

Here, we can draw an analogy with projection meth-
ods, which are used for multivariate linear modeling,
that is, the choice of principal components.8 The main
difference between these two approaches is in the
validation method. In our case, validation was real-
ized by consistent model construction. Next, we illus-
trate it.

Software

All of the procedures described in this article de-
manded mathematically complicated data and model
processing. For this purposes, we used a special soft-
ware called FITTER,3,9 an add-in for the popular Mi-
crosoft Excel program. All of the necessary data were
placed on a worksheet of a standard workbook and
then registered by wizards. FITTER is used for param-
eter estimation of complicated mathematical models.
These models may be in the form of explicit or implicit
functions or differential equations, and they are ac-
cepted by the program when written in ordinary al-
gebraic notation. In addition to experimental data, a
priori parameter information also may be input into
the program. FITTER provides vast statistical informa-
tion regarding the input data and fitting results.

EXPERIMENTAL

Samples and data set

We demonstrated the capabilities of the advocate ap-
proach on the forecasting of the thermooxidation ag-
ing of tire rubber. All of the rubber samples were
rectangular plaques 200 � 200 � 2 mm in size, which
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were produced especially for this experiment. The
material characteristics were as follows: the tread tire
rubber was formulated from natural rubber, buta-
diene–styrene rubber, and sulfur; the curing temper-
ature (Tcur) was 160°C; and the curing time (tcur) was
16 min. Five standard specimens (ASTM D 412-87)
were prepared from each plaque for one test. The
properties were measured in the course of testing
(Table I).

An Instron tensile testing machine was used for the
measurements. Time was measured in hours, and
temperature was measured in degrees centigrade.

AT design

In our case, AT meant artificial material aging at sev-
eral (three) constant temperatures. Testing design is
essential for obtaining a reliable forecast. It was also
important to solve two main problems. First, we had
to achieve the necessary aging depth in a short time.
Obviously, the change in a property should not have
been less than its critical level value that characterized
the failure of the material. This results in an increase in
the testing temperature. Second, we wanted to simu-
late the mechanisms of natural aging, and this forced
us to decrease the testing temperature. Therefore, this
AT required much time, and correct planning was
very important. We considered elongation at break
[ELB; �(t)] to be the most sensitive property among
those that are usually controlled during the AT of
rubbers. This parameter first reflects changes in the
structural homogeneity and defectiveness of the ma-
terial. Therefore, we used this characteristic as the
basic parameter in the special procedure for the evo-
lutionary design of experiment (EDOE).10 EDOE helps
the researcher avoid the extra expenditure of time and
labor and obtain reliable data in reasonable terms. The
idea of the EDOE procedure is as follows. First, we
conducted preliminary testing at the highest possible
temperature (Tmax) during two minimal time periods.
With the help of these preliminary results, we calcu-
lated the time that is necessary for achievement the
predefined aging depth for any given temperature,
that is, the whole plan of AT. EDOE consists of three
stages: preliminary design, a correction step (or steps),
and final design. For a detailed description, see Ap-
pendix A.

Table II shows the results of EDOE and the testing
conditions used in the experiments for the investi-
gated material (Samples and Data Set section). The
experimental data are shown in Figure 1. Some com-
ments are necessary here:

1. The EDOE procedure is based on half-empirical
models, and the AT design is, of course, rather
approximate. The investigator should consider
the results assistance but not as strict instruc-
tion.

2. The aging terms calculated by EDOE turned out
less than we planed before the experiment, so
we decided to keep our original plan of the
experiment. The EDOE results confirmed that
we reached the predefined aging depth.

3. The results of AT (see Fig. 1) show that the
EDOE procedure worked well, at least in this
case.

Deformation curves

Apparently, the deformation curve, that is a diagram
of strain (STR) versus elongation (ELN), obtained for
each specimen is the best data set for forecasting the
mechanical properties of rubbers. The advantages of
this approach are evident as we reconstructed the
aging trajectory that reflects the dependence between
changes in different properties in the course of aging
in the uniform compact form.5 The existence of a
uniform trajectory that does not depend on testing
temperature revealed that all of the changes are
caused by the total aging process.

At first, we constructed a model for the deformation
curve [STR(ELN, f, T)] that was correct for any ELN,
time t, and temperature T. After that, we derived a
model for every modulus (MOD), for example

MOD�1, t, T� � STR�1, t, T� (1)

When we constructed a model for elongation at break
[ELB(t, T)], we could derive a model for tensile
strength (TEN) from two models as

TEN�t, T� � STR�ELB�t, T�, t, T� (2)

TABLE I
Measurements Characteristics at Accelerated Aging

No. Property Notation Unit

1–5 MOD at ELN � 1, 2, 3, 4, and 5 MOD(ELN, t, T) KPa
6 TEN TEN(t, T) KPa
7 ELB ELB(t, T) 1

TABLE II
Design of the AT

T (°C) Times (h)

EDOE 140 0.9 1.7 2.8 3.9
125 2.1 4.1 7.7 12.0
110 5.5 11.0 27.0 42.0

Experiment 140 2.0 4.0 6.0 9.0
125 3.0 6.0 14.0 23.0
110 8.0 16.0 38.0 60.0
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Moreover, with deformation curves for each speci-
men, we could have determined the differences be-
tween specimens and, as a result, separated the mea-
surement error and the sample heterogeneity.11 How-
ever, such measurements were not conducted, and we
had to reconstruct deformation curves with the exper-
imental data set.

MODELING

Models

To describe the AT data, the following base models
were used. For the deformation curve

STR�ELN, t, T�

� �b0 � b1e�K1t � b2e�K2t�ELN

� b3�1 � e�ELNb4� (3)

For ELB

ELB�t, T� � a0 � a1e�K1t � a2e�K2t (4)

Auxiliary models [eqs. (l) and (2)] were derived from
the base models as it described previously. For TEN

TEN�t, T� � �b0 � b1e�K1t � b2e�K2t�ELB�t, T�

� b3�1 � e�ELB�t,T�b4� (5)

For MOD

MOD�ELN, t, T� � �b0 � b1e�K1t � b2e�K2t�ELN

� b3�1 � e�ELNb4� (6)

The models in eqs.(3)–(6) depend on two common
(kinetic) parameters, K1 and K2, and several partial
(formal) parameters a0, a1, b0, b1, b2. The common
parameters depend on temperature by the Arrhenius
law, which we write as follows:

Ki � e�ki�EiX where i � 1, 2

where

X �
1000

T � 273 � X0, X0 �
1
3 �

i�1

3 � 1000
Ti � 273� ,

T1 � 140, T2 � 125, T3 � 110

This form is very convenient from a computational
point of view in comparison with a traditional one:

K � g exp��
F

R�T � 273��, F � 1000RE, g � e�k	EX0

Figure 1 AT data and results of the extrapolation to T � 20°C: (a) deformation curve, (b) ELB, (c) TEN, and (d) MOD. (1,
F) T � 140°C, (2, ■) T � 125°C, (3, �) T � 110°C, (4) mean values, (5) 0.95 confidence value, (6) critical level, (7) mean time,
and (8) confidence time.
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where R is the gas constant. It is evident that values E
(activation energy) and k (pre-exponential) are closer
to 1 than natural parameters g (traditional pre-expo-
nential) and F (traditional activation energy) (see Ta-
ble III). Such a simple model transformation helped us
to improve model structure and to overcome the prob-
lem of multicollinearity.13 As a result, for data pro-
cessing, we obtained four models with eight partial
and four common parameters.

Data processing

We used the SBE method1 for estimation of all of these
parameters. The idea of this method is the following.
A regression model for each response (the series) is
analyzed separately but with regard to the informa-
tion about the common parameters estimate (from the

previous series). As a result, posterior Bayesian infor-
mation is formed after each model fitting. Then, this
information is used as a priori information for process-
ing the next series. For a mathematical description of
SBE in application to the given method, see Appendix
B. Figure 2 shows an example of the posterior and
prior information matrices.

Here, the AT data were processed in the following
order

ELB ¡
1

STR ¡
2

ELB ¡
3

STR

The procedure started from the ELB, and we used a
simplified model for the first step

TABLE III
Scheme of Successive Parameter Estimation

Parameter ELB-1 STR-1 ELB-2 STR-2 Physical values

Partial
a0 0.97 0.64
a1 4.19 4.31
a2 0.06
b0 11.56 11.41
b1 �4.22 �4.14
b2 3.95 3.87
b3 �62.20 �59.71
b4 0.14 0.14

Common
k1 1.40 1.65 2.70 � 10	12 g1
E1 12.53 12.32 102.32 F1
k2 1.51 1.50 1.96 � 10	27 g2
E2 25.78 26.16 217.44 F2

Figure 2 Examples of the posterior and prior information matrices.

PREDICTION OF RUBBER STABILITY 1279



ELB�t, T� � a0 � a1e�K1t

as it is impossible to estimate the complete model [eq.
4]. At the end of the first step, we constructed the
posterior information and recalculated it into prior
information (with regard to k1 and E1). This new prior
information was used for the deformation curve fit-
ting. On the second step, it is possible to estimate four
common parameters and pass them in the form of
prior information to the next step. On the third step,
we returned to the ELB model to specify parameters
a0, a1, k2, and E2 and to estimate a2. On this step,
parameters k1 and E1 were excluded from the estima-
tion procedure; that is, we kept their values constant.
As the result of the third step, we estimated values of
all of common (kinetic) parameters, and we only
needed to specify values of the partial parameters
(b0,. . .b4). For this purpose, on the fourth step, we fit
the deformation curve with all common parameters
kept constant.

In the application of such a technique, when the
same data set is used several times, it is very impor-
tant to closely watch that on the second and further
fittings, the common parameters remain constant and
that the estimation is made only for the partial param-
eters. Table III presents the scheme of such an estima-
tion. The final parameter values are indicated in bold-
face type. The final values of the kinetic parameters
were obtained on the second step (STR-1), and these
values did not changes afterward. On the third step
(ELB-2), we estimated the final values for the partial
parameters a0, a1, and a2. Moreover, in the two last
columns of Table III, we present the physical values of
the kinetic parameters: the pre-exponential parame-
ters (h�1) and activation energy (kJ). Finally, we de-
termined all of the values of the unknown parameters
in the models in eqs. (3)–(6). The details of data pro-
cessing and the initial data set are located in the file
rubber.xls online in ref. 12.

RESULTS

The forecast was built as model extrapolation to T
� 20°C for the given critical levels (ycrit) for all of the
properties (see Table IV). The values of these critical

levels (Table IV, row 2) were defined by the producer.
For each property, we determined the mean value and
the confidence value. The mean value was calculated
as the time required for achievement the critical level
with the parameter estimates (Table IV, row 6). The
confidence value (Table IV, row 5) was calculated with
respect to uncertainty in the parameter estimates. For
this purpose, we evaluated the 0.95 one-side confi-
dence interval [the upper interval for MOD(n) and the
lower interval for the other characteristics] for each
model. The shelf time was determined as the intercep-
tion point of such an interval and the critical level.

All of these results are also presented in Figure
1(b–d); there are the prosperities’ mean values (curve
4), the confidence intervals (curve 5) and the corre-
spondent shelf times (points 7 and 8). All of the con-
fidence values were less than mean values. Moreover,
there were the initial and the limiting values of all of
the properties (Table IV, rows 1 and 2). The initial
value was equal to the regarding property at t � 0:

y0 � y �T � 20°C, t � 0�

The limiting values (ylim’s) were calculated by the
formula

ylim � y �T � 20°C, t � 1000 years�

We defined this limiting point with the following con-
siderations. ELB goes down monotonically, and its
limiting value is ELB(
) � ELB(1000 years). The
MOD(n) values reaches their maximum and TEN(t)
had an inflection at this point. Table IV (row 4) pre-
sents variations of all of values calculated as

� y0 � ycrit

ylim � ycrit
�

It was interesting to compare the shelf-time values
(Table IV, rows 5 and 6) with the variation values
(Table IV, row 4). Apparently, the longer shelf life
values (ELB and TEN) were related to the more essen-
tial changes in properties. We supposed that mis-
match in the estimated terms of the shelf life was due

TABLE IV
Model Extrapolation to a Temperature of 20°C

Property ELB TEN MOD(1) MOD(2) MOD(3) MOD(4) MOD(5)

Initial value 5.01 25.05 3.10 7.29 12.40 18.33 24.95
Limiting value 0.71 2.04 7.25 15.57 24.83 34.89 45.66
Critical value 3.00 18.00 5.00 10.00 17.00 25.00 32.00
Property variation 47% 31% 46% 33% 37% 40% 34%
Confidence time (year) 25.00 23.00 20.00 14.00 16.00 18.00 15.00
Mean time (year) 46.00 47.00 45.00 29.00 34.00 38.00 31.00
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to incorrect critical limits that were defined by the
producer. To test this assumption, we plotted changes
in properties with the aging coefficient (AC) as a func-
tion of time:

AC � �y�t� � ycrit

ylim � ycrit
�

Figure 3 shows the correspondent curves for all of the
characteristics (the means and confidence values) cal-
culated on the practically important time interval. All
of the curves begin at the zero point and tended to-
ward 1 as t tended toward infinity. On the interval in
question, the ACs for all of the MODs overlap (Fig. 3,
curve 2). This fact evidently follows from eq. (6). Much
more interesting is the fact that the mean value of AC
for ELB overlaps with the mean value of AC for all of
the MODs (Fig. 3, curve 2). This fact does not follow
from the mathematical models, but this is an inherent
characteristic of the whole system. The ACs for TEN
(Fig. 3, curves 1 and 3) settle lower than the other
curves. This means that in the course of aging, changes
in TEN were less than the changes in the other char-
acteristics.

DISCUSSION AND CONCLUSIONS

The application of the SBE method manifested advan-
tages in parameter estimation and in the prediction of
the operation and shelf stability. This method allowed
us to construct a complicated harmonious model with
common parameters. We suppose that the availability
of such a model and its adequacy to the experimental
data prove the possibility and validity of extrapola-
tion. Discussed next are the main issues of the advo-
cated approach.

The critical point in the construction of a thermooxi-
dation aging model is the question about the number

of common parameters depending on temperature.
Why did we use only two such parameters in the
given example? Parameter K2 is necessary in the de-
formation curve model and is redundant in the ELB
model. At the same time, the introduction of the third
parameter, K3, did not improve the description of the
STR/ELN relationship but only led to overfitting, that
is, to the strict multicollinearity. It is well known,8 that
overfitting results in instability and some slips in pre-
diction. The redundant parameter K2 in the ELB model
did not contradict this principle, as K2 was estimated
from the deformation curve. As a matter of fact, eqs.
(3)-(6) give the general multiresponse model, and the
parameter estimates belonged to all of these re-
sponses. Also, the overlap of ACs for all of MODs with
AC for ELB is connected with the lack of necessity of
K2 for the prediction of these properties. At the same
time, it is necessary to add parameter K2 in the ELB
model. If it was not done, the estimates of k1 and E1

were equal to the values obtained at the first step of
the SBE procedure (Table III, column 1). In this case,
we obtained inflated shelf times: the mean was 52
years, and the confidence was 36 years.

The second issue was the form of the aging models
and their dependence on the partial parameters. This
seemed for us less important than the choice of com-
mon parameters. If we used the proper design of AT
and all of the properties crossed their critical levels,
we did not have to do time extrapolation, and there-
fore, the form of the models, that is, their dependence
on time, was not essential. For example, in the ELB
model [eq. (4)], we could use a hyperbola instead of an
exponential, and this did not change the prediction
results essentially: the confidence time was 25 years
instead of 23 and the mean time was 46 years instead
of 43. The simplest way to construct the proper design
of experiment is to do it evolutionary, consequently
specifying the next measurement point with regard to
the previous measurements. It was done with the help
of the FITTER software and the EDOE procedure de-
signed for these purposes.

Therefore, we concluded that the true number of
common kinetic parameters could be defined with
principles of model adequacy and identifiability.
These parameters carry physical meaning; they reflect
the process of thermooxidizing destruction in the ma-
terial. Partial parameters do not carry any physical
sense and may depend on the selected mathematical
description; they are not essential for prediction re-
sults. Analyzing the numerical results of the forecast,
we concluded that apparently, these values were close
to the empirical estimates of the shelf time. The com-
mon aging processes differently influence different
material properties, and therefore, we had a disagree-
ment in the estimates of the ACs (Fig. 3), which was
expected.

Figure 3 ACs for different properties, mean characteristics,
and confidence characteristics: (1) TEN mean characteristics,
(2) ELB and all MODs (mean characteristics), (3) TEN con-
fidence characteristics, (4) ELB confidence characteristics,
and (5) all MOD confidence characteristics.
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In conclusion, we emphasize that such an analysis
of an aging model was possible only because of the
application of the SBE method. Other methods do not
allow one to estimate the parameters of a multire-
sponse model with a heteroscedastic data set.

APPENDIX A: EDOE PROCEDURE

Here we present a special procedure, which was used
to design the experiments for the accelerated aging of
rubber. To characterize the investigated material, we
used Tcur and tcur as input data. We used ELB to
characterize the aging process (Fig. 4).

First stage: Preliminary testing

First, we performed testing at Tmax for two minimal
time periods. Tmax was chosen as less than Tcur at
15–30° because it is usually taken for the thermoaging
of rubbers. Two measurements of ELB were per-
formed at Tmax and for two time periods: t1 and t2
� 2t1. The term t1 was calculated with the curing
mode and the Arrhenius law

t1 � tcur exp�E
R � 1

Tmax
�

1
Tcur

�� (A.1)

where tcur is the curing time. E was chosen with regard
to the rubber recipe (E/R � 10,000 for sulfur curing
agents and 12,500 for compounds that do not have free
sulfur). Our goal was to select the AT conditions that
provided the achievement of a given aging depth
(AD). When we write about AD, we the mean relative
change of ELB, that is, D(t) � [�(0) � �(t)]/�(0), where
Dis AD, � (t) is ELB, �(0) is ELB before aging.

Second stage: Time extrapolation

The results of the measurements [including values of
�(0) for the unaged samples] were used for the con-
struction of the whole plan of AT at each desired
temperature. First, we analyzed the data for �(0), �(t1),
and �(t1) to be certain that ELB essentially decreased.
Our computer experiments showed that AD should
not have been less then 0.25 at the end of the prelim-
inary tests. Otherwise, the result of extrapolation
through time could be strongly overestimated. We
also had to consider that sometimes a small increase in
ELB could be seen during the initial stage of rubber
thermo-aging. This circumstance also may have dis-
torted the results. To confirm the decrease in ELB, we
used the Student’s test. If ELB did not fall enough, we
conducted an additional test at time t3 � 3t1. The
procedure permitted not more than three such correc-
tions. Any value of tm (m � 2, 3, 4, . . .) was calculated

as tm � mt1. At the end of the procedure we obtained
values of �(t) at three last points, tm�2, tm�1, and tm.

To analyze the data and to define the term of aging,
we used a simplified model for ELB:

��t� � �0exp��kt� (A.2)

where �0 is the initial value of elongation at break and
k is a kinetic parameter. These parameters were esti-
mated by the least squares method, which was applied
to the logarithmic transformed model

y�t� � b � kt

where y(t) � ln � (t) and b � ln(�0). This transforma-
tion was valid because we used only the initial part of
the ELB curve, where error distortion was not impor-
tant. The quality of estimation may have been charac-
terized by the variance–covariance matrix C � cov(b,
K), as calculated in the usual way.

Afterward, we evaluated tmax at Tmax, meaning that
a given aging depth, Dmax should have been achieved.
The value of Dmax corresponded to the designed value
of ELB �des fixed by the user. Actually, the description
of the material aging behavior was more complicated
than shown in eq. (A.2). For example, the ELB curve
went down more slowly for a large AD in comparison
with the initial period [see eq. (4)]. To consider such a
possibility, we determined tmax as the upper confi-
dence bound. For confidence probability, P � 0.99,
tmax was calculated as the solution to a quadratic
equation:

�k2 � xP
2Ckk�

2t2 � 2�bk � zk � xP
2Ckb�t

� �z2 � b2 � 2zb � xP
2Cbb� � 0

where z � ln �des, xP is the normal P quantile (inverse
normal distribution), and the Cxy values are the com-
ponents of the variance–covariance matrix C.

Third stage: Temperature extrapolation

Usually, it is supposed that rubber thermoaging com-
plies with the Arrhenius law. However, E may be
different for different materials (E/R varies from
10,000 to 12,500). Therefore, for the temperature ex-
trapolation, we used an expression in which E de-
pended on extrapolation interval �T � Tmax � T:

E�T� � 10	3�1 � ��1 � exp����T�� (A.3)

The parameters � � 0.3 and � � 0.06 were chosen
heuristically to achieve the given AD; that is, overes-
timation was considered more preferable than under-
estimation.
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Then, we composed the plan of experiments for any
given T as

tmax � tmax�Tmax�exp�E�T�

R �1
T �

1
Tmax

��
where E(T) was calculated by eq. (A.3). The aging
interval tmax(T) was divided by the time points (e.g.,
the points where ELB was measured) in the following
way. The first period was a little longer than the term
of a possible ELB increase:

t1 � tcurexp�E�T�

R �1
T �

1
Tcur

��
and other time points, tk, for k � 1,. . .,n (where n is the
number of points), were calculated as tk � t1 	 k(tmax
� t1)/n.

The EDOE procedure uses information about the
curing mode, and it is based on half-empirical models.
The AT design was, of course, rather approximate.
Validation of EDOE was performed on seven different
rubber componds.10 There was good conformity be-
tween the predicted results and those received in the

real tests. In the temperature interval from Tmax up to
Tmax � 30°C and for the aging depth Dmax � 0.5, the
procedure gave the exact time or an insignificantly
overestimated time of the tests in 90 cases of 100. The
increase in the aging depth augmented the risk of
obtaining underestimated testing times. When we
lowered the testing temperature, the probability of
time overestimation increased.

APPENDIX B: SBE

The idea of SBE applied to our example was the fol-
lowing. The whole data set was divided into parts (the
series) so that each part was related to some response
(ELB, STR). The estimation of common parameters
was made successively series by series. After process-
ing each series, we obtained the estimates that formed
posterior Bayesian information. This information con-
sisted of the vector of parameter values and the co-
variance matrix, and it was used as prior information
for the next series. The first series was processed with-
out prior information, and the last series gave the
ultimate results of the procedure. To form prior infor-
mation, it is necessary to separate common parameters

Figure 4 EDOE spreadsheet solution.
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from the partial ones and to recalculate the Fisher
information matrix.

A priori information was taken into account by mod-
ification of the objective function. In our case, the
objective function Q(a) is the product of two terms, the
sum of squares S(a) and the Bayesian term B(a):

Q�a� � S�a�B�a�

S(a) (may be weighted with wi) is calculated as

S�a� � �
i�1

N

wi
2�yi � fi�

2 (A.4)

The Bayesian term has the form

B�a� � exp�R�a�

N � (A.5)

where R(a) is a quadratic form

R�a� � �a � b�tH�a � b�

and where vector b consists of the prior parameter
values

b � �b1, . . . , bp�
t (A.6)

The matrix H is the prior information matrix: .0

H � 
hij, I � 1, . . . , p, j � 1, . . . , p� (A.7)

The Bayesian information matrix H is constructed
from the posterior Fisher’s matrix A

A � B�â�� N
S�â�

VtV � H�
which was obtained on the previous step. V is the p
� N matrix whose elements are weighted derivatives
of the fitting function

Vij � wj

�f�xj, â�

�ai
, i � 1, . . . , p; j � 1, . . . , N (A.8)

where S(a) and B(a) are defined in eqs. (A.4)–(A.5), N
is the number of observations, and the vector â con-
sists of estimates of the a parameters. All of the ele-
ments in eq. (A.8) are related to the previous step
(series), and they should not be confused with the
elements of the same name but related to the current
step.

When a priori information is constructed from a
posteriori information, it is essential to separate data
relating to the common and partial parameters. Com-

mon information is kept for further use, and partial
information is removed because it does not conform
with the next portion of data. The posterior Fisher
matrix A can be represented by a block matrix

A � � A00 A01

A01
t A11

�
where A00 is the (r � r) square matrix corresponding
to the common parameters, A11 is the (p � r) � (p � r)
square matrix corresponding to the partial parame-
ters, and A01 is the r � (p � r) matrix. The prior
information matrix H is recalculated from matrix A by
the following formula:

H �
1
s2 � A00 � A01A11

�1A01
t 0

0 0 � (A.9)

where s2 is the posterior value of the error variance.
The matrix dimension should correspond to the num-
ber of parameters in the next portion of data, so the
matrix is completed with zero values. The prior pa-
rameter values are transformed in parallel

b� � � â�, 0 	 � � r
0, r 	 � � p (A.10)

Equations (A.9) and (A.10) present the prior informa-
tion that is applied on the next step of the SBE proce-
dure.
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