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Data analysis and mechanistic studies for complex
chemical processes are the most important areas of
chemical kinetics. Estimating kinetic parameters from
experimental data or, in other words, solving the inverse
problem of chemical kinetics was formed as an individ-
ual area in the 1970s–1980s. Mathematicians [1, 2], as
well as kineticians [3, 4], have taken part in the devel-
opment of this area. Two main, fundamentally different
approaches to the problem of kinetic data analysis can
be distinguished. In the so-called soft approach [5–13],
experimental data are described in terms of a linear
multivariate model valid in a limited range of condi-
tions. In this case, it is not necessary to know the mech-
anism of the process. However, this approach does not
always provide the desired accuracy. The other
approach uses so-called hard physicochemical model-
ing [4, 14], which is based on fundamental kinetic prin-
ciples and allows parameters to be estimated with a
high degree of accuracy. However this method is appli-
cable only when a model of the process is known a pri-
ori. Both approaches have strong and weak points, and
both have advocates and opponents. Traditionally, Rus-
sian researchers develop the hard approach [15], while
Western researchers prefer soft methods [16].

The problem of data interpretation, model construc-
tion, and prediction of unknown values (called calibra-
tion for brevity) is among the oldest but still challeng-
ing scientific problems. Since Gauss (1794), this prob-
lem has been attacked using regression analysis. The
basic principle of this method is minimizing the devia-
tion of the model from experimental data (least-squares
method) [17]. The development of this approach,
including principal component analysis (1901) [18],
the maximum likelihood method (1912) [19], ridge

regression (1963) [20], and projection on latent struc-
tures (PLS,1975) [21], has made it applicable to com-
plex, ill-posed problems. However, all of these methods
provide predictions as point estimates, whereas interval
estimates taking into account the uncertainty of predic-
tion are often required in practice. Constructing confi-
dence intervals using conventional statistical methods
is impossible because of the complexity of the problem
[22], and employing simulation methods is impossible
because of the long computational time required [23].

In 1962, Kantorovich [24] suggested another
approach to the problem of linear calibration, which is
to replace the objection function by a set of inequalities
solvable by linear programming methods. In this case,
the result of prediction appears immediately as an inter-
val estimate. For this reason, this method was named
simple interval calculation (SIC). Previously, this idea
did not gain wide acceptance and was not developed
because of inadequate computer performance. In the
1970s–1990s, this approach was taken in a series of
interesting applied studies [25–32] but was not devel-
oped into a standard method. The results of those inves-
tigations were summed up in a monograph [33], where
the main problem solved by the authors of the above-
mentioned works is considered in detail. This problem
includes the interval estimation of the model parameters
and the immersion of the admitted region of these param-
eters into a hypercube, parallelepiped, ellipsoid, etc.

This problem formulation seems to be unprofitable
and not very promising. This view is proved by the fact
that no new works using this approach have been car-
ried out in the last decade. At the same time, we believe
that Kantorovich’s idea can provide interesting results
when applied to the interval prediction of response. In
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this case, it is possible to solve two equally important
practical problems. The first is to establish the uncer-
tainty interval for the required response prediction [34]
(that is, to estimate the accuracy of the constructed
model for each particular sample). The second is to
construct an object status classification [35] (that is, to
determine the specific features of each sample, which
are defined by the relationships between this sample
and the model, and between this sample and other sam-
ples). Well-known concepts of such classification are
the outlier (which is a sample standing far out from the
general regularity) and the extreme sample (which is a
sample lying in the model fringe region and having a
profound influence on model construction). In spite of
the wide use of these concepts in various investigations
[36–44], there are no universally recognized definitions
and detection methods for such objects. The SIC
approach can fill this gap.

The theoretical aspects of SIC were reported in [35,
45, 46], and the practical results obtained by this
method were discussed in [47–49]. The main assump-
tion underlying the SIC method is the finiteness of the
measurement error. This approach to the interpretation
of experimental data requires some substantiation.
Error normality is a standard assumption in data analy-
sis. This principle has been repeatedly criticized from
various standpoints [49–51]. It is interesting that
researchers do not relate the fact of error infiniteness to
the principle of normality. The direct question of how
frequently the researcher has had to process data con-
taining values lying beyond four standard deviations
(

 

4

 

σ

 

) is usually followed by the answer that such values
have been resolutely screened out at the preprocessing
stage. At the same time, researchers often deal with data
sets containing over 10

 

6

 

 data [52], out of which some
20–30 objects will certainly fall beyond the 

 

4

 

σ

 

 limit.
According to the authors of [43], “indeed, in real case
studies, the chemist is often able to select, to some
degree, the samples, and this will lead to more uniform
distribution than normal distribution.” A detailed anal-
ysis of this problem is presented in [45].

In the present article, the hard and soft approaches
to kinetic data analysis are compared by applying them
to the evaluation of the efficiency of antioxidants in
polyolefins. Note that we will not predict the activity of
a new compound by familiar QSAR methods [53, 54]
using known molecular descriptors. In the example
considered here, we test the quality of existing com-
pounds that are expected, with good reason, to be anti-
oxidants. For this purpose, kinetic data obtained by dif-
ferential scanning calorimetry (DSC) are employed.
This approach allows the testing time to be significantly
shortened by doing away with the traditional expensive
procedure in which samples are held in a furnace for
1

 

−

 

3 months. DSC kinetic data are oxidation initial tem-
peratures for various heating rates. They form an X data
set, which is calibrated against a Y set consisting of the
oxidation induction period values obtained by a con-
ventional method. Two Y = F

 

(

 

X

 

)

 

 calibration models

were employed, namely, a soft linear dependence and a
hard nonlinear model in which contemporary concep-
tions of the mechanism of polyolefin oxidation are
taken into account [55]. In the construction of the first
model, we used a multivariate linear regression [5] in
which prediction intervals are obtained by SIC. In the
hard model, nonlinear regression analysis [56] was
employed and traditional confidence intervals were
constructed using the successive Bayesian estimation
approach [57, 58]. Thus, the soft and hard modeling
approaches were applied to one set of experimental
data. This has made it possible to compare the results
and to see which approach is preferable in a given case.

EVALUATION
OF ANTIOXIDANT ACTIVITY

The determination of antioxidant efficiency in poly-
olefins is a long and expensive process. In conventional
antioxidant testing procedures, samples are held at a
constant temperature for a long time. However, an alter-
native approach enabling the researcher to quickly pre-
dict the antioxidant activity can be applied. The idea of
using DSC for this purpose was suggested and analyzed
earlier [48, 59, 60]. Both hard [58] and soft [48]
approaches were employed in modeling in those works.
However the data used fell within a limited range. In the
present article, a rather representative antioxidant sam-
ple set is investigated. This makes it possible to solve
two important problems. The first problem is that of the
applicability of the alternative approach. The second is
to compare the hard and soft modeling approaches
using the same set of experimental data.

Antioxidants are special admixtures slowing down
the thermal oxidative aging of polymers. They protect a
material against oxidation during processing as well as
at the end-use application. Interacting with free radi-
cals, the antioxidant terminates chains and is thus
exhausted. It completely suppresses oxidation as long
as its concentration exceeds some critical value. That is
why the main measure of antioxidant efficiency is the
oxidation induction period (OIP), which is the time
period within which the antioxidant concentration is
sufficiently high. The greater OIP, the higher the effi-
ciency of the antioxidant (at a fixed temperature). The
induction period is conventionally determined by the
long-term thermal aging (LTHA) of samples at 120–
140

 

°

 

C. The exposure time depends on antioxidant qual-
ity and varies between 1 day for a poor antioxidant and
100 days for a good antioxidant. Within this period, a
researcher examines the samples in search of obvious
signs of degradation, such as cracking, yellowing, etc.
It is clear that this approach is unreliable, very time-
consuming, and expensive.

Alternative to this approach is the method using
DSC measurements followed by mathematical data
processing. In DSC, the measured signal is the heat flux
from a sample heated at a constant rate. If a chemical
reaction with nonzero heat takes place in the sample,
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there will be a DSC signal proportional to the reaction
rate. Regarding the problem examined, this means that
as long as the antioxidant concentration is sufficient for
the suppression of free-radical oxidation, the DSC sig-
nal is constant, but, starting at some temperature, it
begins to grow rapidly. This temperature is called the
oxidation initial temperature (OIT). Different OIT val-
ues can be obtained in runs carried out at different heat-
ing rates (

 

y

 

).

EXPERIMENTAL

Twenty-five antioxidant samples (AO-1 to AO-25)
were tested. Some of them (for example, AO-1, AO-2,
and AO-3) are standard commercial admixtures. The
other samples are new compounds expected to be effec-
tive. All samples were added to polypropylene (PP)
powder up to concentrations of 0.05% (500 ppm),
0.07%, and 0.10%. The mixtures were extruded at
250

 

°

 

C and were transformed into 0.25-mm-thick films.
These films were used as the starting material in the
LTHA and in the DSC measurements. Aging was car-
ried out in ovens at 140

 

°

 

C. This experiment provided
OIP data (in days).

DSC measurements were carried out in the temper-
ature range from 150 to 350

 

°

 

C, where an exothermic
peak due to polymer oxidation is observed. Five differ-
ent heating rates were used: 2, 5, 10, 15, and 20 K/min.
OIT was calculated using the Fitter program [63] as
described in [56].

The results of all experiments are schematized in
Fig. 1. The X data are OIT values obtained by DSC.
They form a three-way block [62]: 25 antioxidant sam-
ples 

 

×

 

 3

 

 antioxidant concentrations 

 

×

 

 5

 

 heating rates.
The Y data are OIP values obtained by LTHA. They form
a two-way block (matrix): 25 antioxidant samples 

 

×

 

 3

 

antioxidant concentrations.
The Fitter program was employed in nonlinear

regression analysis [61]. The Unscrambler program
was used [72] in PLS modeling. SIC was performed
using software made as an Add-In for the Excel pack-
age. The NIPALS algorithm [5] was used in the SIC
method for bilinear modeling. The standard SIMPLEX
algorithm [65] was used in optimization. All necessary
procedures were used in data preprocessing, transfor-
mations, etc. Now this program is in beta testing.

SOFT MODELING

The data set was processed using the soft approach
that combined the PLS method [5, 21] for calibration
and the SIC method [35] for constructing prediction
intervals.

Initially, the three-way X data were unfolded into a
flat matrix (25 

 

×

 

 15) as shown in Fig. 2. It is important
that the error in OIP is not constant and grows with
increasing OIP value. This can be due to two circum-
stances. The first is the above-mentioned visual inspec-

tion method, whose accuracy is lower for more stable
(that is long-lived) antioxidants. The second is that, in
our sample preparation procedure, a small amount of
antioxidant is mixed with a large amount of PP. This
leads inevitably to some heterogeneity in the antioxi-
dant distribution in PP. In order to compensate for the
inconstancy of the OIP measurement error, we used the
square root transformation of all OIP values. Further-
more, we centered X and Y data in PLS modeling.

In the construction of the linear calibrating model

 

y

 

 = 

 

Xa 

 

+ 

 

e

 

, (1)

 

the main mathematical difficulty is to invert the matrix

 

X

 

t

 

X

 

, which, in our case, has dimensions of 

 

15 

 

×

 

 15

 

. If
this matrix were nondegenerate (full-rank), such cali-
bration could be performed using the ordinary least-
squares procedure to estimate the unknown model
parameters: 

 

 = (

 

X

 

t

 

X

 

)

 

–1

 

X

 

t

 

y

 

. However, in our case, the
matrix is degenerate, as in most practical problems. As
was mentioned above, this obstacle is circumvented by
using various methods of regularization, for example,
principal component analysis and ridge regression. We
chose the PLS method [5]. Its essence is the simulta-
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 Graphical representation of data (see explanation in
text).
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Schematic presentation of X-data for PLS modeling:
relationship between OIT and the heating rate for various
initial antioxidant concentrations.
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neous decomposition of the matrix 

 

X

 

 and vector 

 

y

 

 and
their representation in the form of

 

X

 

 = 

 

TP

 

t

 

 + 

 

E

 

,

 

y

 

 =

 

 T

 

q

 

 

 

+ 

 

f

 

, (2)

 

where 

 

T

 

 is the score matrix, 

 

P

 

 and 

 

q

 

 are the loading
matrix and vector, and 

 

E

 

 and 

 

f

 

 are the residual matrix
and vector. In this decomposition, three circumstances
are taken into consideration. First, the columns 

 

t

 

i

 

 of the
matrix 

 

T

 

 are linear combinations of the columns 

 

x

 

 of
the matrix 

 

X

 

; that is 

 

t

 

i

 

 = 

 

X

 

w

 

i

 

. Second, the coefficients

 

w

 

 are chosen in such a way as to maximize the correla-
tion between the response 

 

y

 

 and 

 

t

 

i

 

. Third, the number of
columns in the matrices 

 

T

 

 and 

 

P

 

 must be equal to the
effective rank of the matrix 

 

X

 

. This value (

 

r

 

) is called
the number of PLS components, and it is obviously
smaller than the number of columns in 

 

X

 

. As a result of
this decomposition, the initial calibration problem (1) is
projected onto a subspace of a smaller dimension,
where the new problem (2) is nondegenerate. An
important advantage of the PLS method is that it allows
data to be visualized as the score plots (in the PLS com-
ponent coordinates PC1–PC2). We will make use of
this advantage. The PLS method is described in numer-
ous publications (see, for example, references in [5,
20]), which are, however, hardly available in Russia.
Recently, a correct but brief description of this method
has appeared in a textbook [63]. A detailed description
of the PLS method and other multivariate data analysis
methods in Russian can be found in [6].

Applying the PLS method to our example, we
divided the overall data set into two parts. The calibra-
tion set includes 18 samples (AO-1 through AO-18).
These data were employed to construct the model. The
second, test set consists of seven samples (AO-19
through AO-25). These data were employed in model
validation. For each initial antioxidant concentration

 

A

 

0

 

, its own PLS model with two PLS components was
built. The main features of these models are presented
in Table 1. In this table, for each initial antioxidant con-
centration, the following values characterizing the
quality of the model are presented. The explained vari-
ances of 

 

X

 

 and 

 

y

 

 are the averaged residuals calculated
with the calibration set (

 

X

 

cal

 

, 

 

y

 

cal

 

) of model (2):

They characterize the accuracy with which the data are
approximated (explained) by the PLS method. Root-
mean-square errors are derived from the calibration
data set as

 

(3)

 

They characterize the accuracy of response modeling.
In the above formulas, 

 

n

 

cal

 

 is the number of data in the
calibration set and 

 

r

 

 is the number of PLS components.
The norm of a matrix (vector) is the square root of the
sum of the squares of its components. The correlation
coefficients for the measured and predicted values for

the calibration ( ) and test ( ) sets are calculated
in a usual way. The last column of Table 1 is the SIC
calibration error (

 

β

 

), which is explained below.

Using the PLS method, we obtain the average point
estimate of OIP. In order to find the interval prediction,
we employed the SIC method. This method is based on
the only assumption that all errors involved in the mul-
tivariate calibration are bounded. Under this assump-
tion, there is a positive 

 

β

 

 value such that

 

(4)

 

where Prob is probability of the event. The value of 

 

β

 

 is
called the maximum error deviation. It characterizes
the calibration error and can be estimated by conven-
tional statistical methods [46]. The 

 

β

 

 values obtained
for the data examined are presented in Table 1.

Based on postulate (4) and using the given calibra-
tion set {

 

X

 

, 

 

y

 

} with 

 

n

 

 samples, one can construct a set
of inequalities regarding the unknown regression
parameters a. This set will define a closed convex set in
the space of parameters:

(5)

X lexp 1
Xcal TPt–

2

Xcal
2

------------------------------,–=

Y lexp 1
ycal Tq– 2

ycal
2

---------------------------.–=

RMSEC
ycal Tq–

ncal r–
-------------------------.=

rcal
2 rtest

2

Prob ε β>{ } 0=

and for any   0 b β< < Prob ε b >{ } 0, >

A a Rp : y– Xa y+< <∈{ }.=

 

Table 1. 

 

Main properties of the PLS models constructed for various initial antioxidant concentrations

 

A

 

0

 

, % X

 

expl

 

, % Y

 

expl

 

, % RMSEC

 

β

 

0.05 99 92 0.287 0.96 0.99 0.84

0.07 99 88 0.342 0.93 0.99 1.02

0.10 99 84 0.395 0.91 0.97 1.20

rcal
2 rtest

2
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Here, 

 

 = 

 

y

 

j

 

 – 

 

β

 

,  = 

 

y

 

j

 

 + 

 

β

 

, 

 

j

 

 = 1, …, 

 

n

 

. The set 

 

A 

 

is
the region of possible values. It is a volumetric ana-
logue of the ordinary point estimate  obtained by con-
ventional regression methods (for example, PLS).
Using the set 

 

A

 

, one can predict the response 

 

y

 

 for any
given (new) vector 

 

x

 

. Obviously, if the parameter 

 

a

 

changes within 

 

A

 

, then the corresponding predicted
value 

 

 = 

 

x

 

t

 

a

 

 will remain inside the interval

 

(6)

 

where

These equations represent a typical problem of linear
programming [64]. The optimum of a linear form 

 

x

 

t

 

a

 

 is
known to be achieved in one of the vertices of the con-
vex set 

 

A

 

. A standard numerical procedure (Simplex
algorithm) allows one to move from one vertex to
another in the direction of the maximum change
(increase or decrease) of the form, and this makes it
possible to carry out optimization in such a way that it
is unnecessary to construct a set 

 

A

 

 explicitly. However,
a bounded solution of the linear programming problem
exists if and only if the set A is bounded. It is well
known [65, 66] that A is bounded if and only if X is a
full-rank matrix. Therefore, in the rank deficiency case,
which is a typical of practical problems, one should use
some regularizing procedure, for example, PLS. Subse-
quently, the regular score matrix T (2) should be used
in place of the initial matrix X (1) in the SIC method.

The results of PLS/SIC prediction for the initial
antioxidant concentration A0 = 0.05% are shown in
Fig. 3. Here, the predicted OIP values are plotted
against the corresponding measured values, the square
root being taken of both of them. Each sample (the
points A are calibration samples, and the points B are
test samples) is shown together with two error intervals.
The horizontal bars are error intervals for the measured
OIP values, and they are equal to the doubled value of
the maximum error deviation β for all samples. The ver-
tical bars indicate the prediction intervals (6), and they
vary from one sample to another. Obviously, for all cali-
bration samples, the prediction interval is always less
than or equal to the error interval. This is the fundamental
feature following immediately from SIC theory.

HARD MODELING

Hard models for OIP prediction are constructed for
each particular type of antioxidant. To do this, 25 hori-
zontal “cuts” are chosen in the overall data set shown in
Fig. 1. This leads to 25 sets of data, specifically, matrices
Xi with dimensions of 5 × 3 and vectors yi of length 3.

The calibration procedure for these data consists of
two steps. In the first step, a model describing antioxi-

y j
– y j

+

â

ŷ

V v
–
v

+,[ ],=

v
– xta( )

a A∈
?÷min? , v

+ xta( ).
a A∈

?÷max?== min max

dant consumption during a DSC run is constructed.
This is X data calibration. The regression model is an
implicit function relating OIP, the initial antioxidant
concentration A0 , and the heating rate v. This function
depends nonlinearly on the unknown kinetic parame-
ters to be estimated by nonlinear regression (NLR)
analysis. In the second step of calibration, a model
describing antioxidant consumption during LTHA is
constructed. This is Y data calibration. This regression
model explicitly expresses OIP as a function of the
exposure temperature (Te) and the initial antioxidant
concentration. This function involves the same kinetic
parameters as the first model. Their estimates are found
in the first step, while in the second step, a special error
propagation procedure is employed to estimate the
uncertainty in the predicted induction period.

Let us consider the first step of calibration. Antioxi-
dant is consumed in the course of material aging. The
OIP value is defined by the point in time at which the
antioxidant is spent up to some critical value AÒ ,
which is temperature-dependent according to the
Arrhenius law [55]:

(7)

During oxidation, antioxidant is consumed according
to the law

(8)

where A is the current antioxidant concentration and
k is the reaction rate constant, which depends on tem-
perature according to the Arrhenius law

Ac kc
Ec

RT
-------–⎝ ⎠

⎛ ⎞ .exp=

dA
dt
------- kA,–=

A 0( ) A0,=
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Fig. 3. Prediction of the induction period using the soft
approach for an initial antioxidant concentration of 0.05%.
Relation between the square roots from predicted and mea-
sured values. A—calibration samples; B—test samples. The
horizontal bars show β values (calibration error), and the
vertical bars indicate SIC (prediction) intervals.
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In the DSC runs, a sample is heated at the rate v from
the initial temperature T0 = 293 K:

In this case, a solution of Eq. (8) can be presented as

(9)

where the function Z(t) is

This integral can be expressed in terms of the standard
integral exponential function En(z) [67],

It is convenient to represent Z as a function of tempera-
ture T rather than time t:

(10)

Inserting Eq. (10) into Eq. (9) and setting the current
antioxidant concentration to be equal to the critical con-
centration Ac from Eq. (7), we obtain the equation

(11)

which implicitly defines the dependence of the OIT T
on the unknown parameters and known experimental
conditions. However, it is inconvenient to utilize this

k ka
Ea

RT
-------–⎝ ⎠

⎛ ⎞ .exp=

T t( ) T0 vt.+=

A t( ) A0 kaZ t( )–( ),exp=

Z t( )
Ea

R T0 vs+( )
---------------------------–⎝ ⎠

⎛ ⎞exp ds.

0

t

∫=

En z( ) t n– e zt– dt n 0 1 2 …; z 0>, , ,=( ).

1

∞

∫=

Z T( ) 1
v
---- TE2

Ea

RT
-------⎝ ⎠

⎛ ⎞ T0E2

Ea

RT0
---------⎝ ⎠

⎛ ⎞– .=

A0 kaZ T( )–( )exp kc
Ec

RT
-------–⎝ ⎠

⎛ ⎞ ,exp=

equation in practice. Let us set it in a form more appro-
priate for parameter estimation. After taking the loga-
rithm and making some simplifications, one obtains

(12)

where a = lnka and c = lnkc .
In this equation, temperature T is the response, and

the heating rate v and the initial concentration A0 are
predictors (experimental factors). The variables a, Ea, c,
and Ec are the unknown parameters that are estimated
from experimental data. When seeking the estimates,
one has to repeatedly solve Eq. (12) for T,

(13)

for each given set of predictors v and A0 , and to find
such values (estimates) of a, Ea, c, and Ec that minimize
the sum of squares

(14)

Here, Yij are the measured OIT values, the index i
stands for three initial antioxidant concentrations, and
the index j numerates five heating rates v.

In the minimization of sum (14), we face significant
difficulties. First of all, function (13) cannot be repre-
sented explicitly and even cannot be expressed implic-
itly in terms of elementary functions. Secondly, it is
obvious that the function given by Eq. (12) depends
nonlinearly on the unknown parameters. Finally,
sum (14) minimization is a stiff problem [3, 67]. All of
these circumstances make the model calibration a com-
plicated computational problem. This problem was
solved with the use of the Fitter program [61], which is
appropriate for solving such problems. This software
implements a stable gradient minimization approach
based on the matrix exponent technique [68]. This
approach has shown high efficiency exceeding the effi-
ciency of the popular Levenberg-Marquardt approach
[69, 70] in the solution of stiff problems. Besides, the
regression equations in the Fitter program may be
defined in a natural algebraic form admitting implicit
expressions. Finally, a very important feature of the
software is that the derivatives are calculated automati-
cally by symbolic differentiation, ensuring high calcu-
lation accuracy.

The first model calibration for AO-1 is illustrated in
Fig. 4. Experimental data (points) and the correspond-
ing calibration curves are shown.

Let us consider the second step of modeling, in
which the model of antioxidant consumption during
LTHA is constructed. The solution of Eq. (8) for con-
stant conditions (T = const) appears as

a( )exp E2

Ea

RT
-------⎝ ⎠

⎛ ⎞ T v c a–
Ec

RT
-------–⎝ ⎠

⎛ ⎞+ 0,=

T T v A0; a Ea c Ec, , ,,( ),=

Yij T v j A0i; a Ea c Ec, , ,,( )–[ ]2.
ij

∑a Ea c Ec, , ,
?÷min?min

A t( ) A0 kt–( ).exp=
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Fig. 4. Relation between the oxidation initial temperature of
PP in the system PP + AO-1 and the heating rate for various
initial antioxidant concentrations, %: (1) 0.1, (2) 0.07, and
(3) 0.05. The points are experimental data, and the curves
represent calibration data.
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In order to find the induction period t i (OIP), the current
concentration A(t) should be set equal to the critical
concentration Ac defined by Eq. (7). Thus,

(15)

where Te is the aging temperature. In our case, Te =
140°C or 413 K.

The estimates of the parameters  = ( , , , )
found in the first step of calibration should be employed
in Eq. (15). In order to find a point estimate for the
induction period and to determine the confidence inter-
val, the uncertainty in these estimates should be taken
into consideration. Unfortunately, the conventional
error propagation method [17]

cannot be applied to Eq. (15) because of the nonlinear-
ity of the model. An accurate confidence interval can be
obtained by a statistical simulation or, more precisely,
by using the free simulation approach [23]. In this
method, the confidence interval for the function f(q) is
calculated as the percentile of a sampling {f(q1), f(q2),
…}, in which the f(qi) values are calculated in the sim-
ulation of parameters qi in accordance with the normal

distribution N( , cov( , )).
An example of confidence prediction constructed by

means of this approach for AO-18 is shown in Fig. 5.
The confidence probability here is P = 0.90. The confi-
dence intervals for the other samples are presented in
Fig. 6.

It is important that, in hard modeling (NLR), we did
not use the OIP values obtained in long-term aging.
Therefore, these values may be employed in the model
validation by calculating the root-mean-square error of
prediction (RMSEP),

which is shown in Table 2. At the same time, the root-
mean-square error of calibration (RMSEC) (3), which
is a conventional measure of accuracy, cannot be esti-
mated because not the OIP, but the OIT values were cal-
ibrated as a function of v and A0 in the first step of mod-
eling. However, the residual sum of squares can be
found for each antioxidant and the standard deviation
for OIP estimates can be calculated (entry 4 in Table 2).

COMPARISON OF METHODS

Let us compare the results of hard (NLR) and soft
(PLS/SIC) modeling obtained for a common data set.

ti
Ec

RTe
--------- A0ln c–+

Ea

RTe
--------- a–⎝ ⎠

⎛ ⎞exp ,=

q̂ â Êa ĉ Êc

var f( ) ∂f q̂( )
T

∂q
----------------= cov q̂ q̂,( )∂f q̂( )

∂q
--------------

q̂ q̂ q̂

RMSEP
ytest Tq–

ntest r–
--------------------------,=

These models utilize data in different ways. There are
25 hard models constructed for each particular antioxi-
dant and three soft models constructed for each initial
antioxidant concentration.

Figure 6 summarizes the results obtained by both
approaches for the initial concentration 0.05%. The
results of hard modeling (NLR) (points 1 and rectan-
gles 2 of confidence intervals for a probability of 0.90)
and of the soft method (PLS/SIC) (points 3 and rectan-
gles 4 of prediction intervals) are plotted here. The ref-
erence OIP values measured in LTHA are represented
by points 5, with error intervals equal to the maximum
error deviation β. In order to make the comparison
clearer, the square root was taken from all OIP values.
Such plots can also be constructed for the data subsets
corresponding to the initial antioxidant concentrations
0.07 and 0.10%. They appear similar.
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Fig. 5. Prediction of the induction period (OIP) in the sys-
tem PP + AO-18 for various initial antioxidant concentra-
tions: (1) confidence intervals for P = 0.90, (2) point esti-
mates, and (3) measured values.
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Some general statistical features of the hard (NLR)
and soft (PLS/SIC) approaches are presented in Table 2.
The following designations are used here for the mea-
sured and predicted X (OIT) and Y (OIP) values. X and

 are the measured and predicted OIT values, y = 

is the square root of the measured OIP value,  is the
corresponding vector obtained by taking the square root
from the OIP estimates obtained by the hard (NLR,
i = 1) and soft (PLS/SIC, i = 2) methods, and wi is equal
to the width of the confidence (NLR, i = 1) and predic-
tion (PLS/SIC, i = 2) intervals. The square root was
taken from all intervals. For brevity, confidence and
prediction intervals will be designated CI and PI,
respectively. The former were obtained by hard model-
ing; the latter, by the PLS/SIC soft approach.

Examination of Table 2 and Fig. 6 suggests the fol-
lowing inferences. The approaches provide similar
accuracies (entry 1 in Table 2) and biases (entry 2). The

X̂ IP

ŷi

accuracy decreases as the initial antioxidant concentra-
tion is increased. The PLS/SIC method affords better
results for lower initial antioxidant concentrations,
whereas NLR is better for higher concentrations. How-
ever, on the average, the point estimates are similar
(entry 3). X (OIT) values are well modeled with both
approaches, but the hard approach (NLR) does this a
little bit better (entry 4).

The interval estimates are also very close on the
average (entry 5), although CIs can differ greatly from
PIs for some samples (see entry 6 in Table 2 and Fig. 6).
The CI width increases with an increase in OIP for all
initial antioxidant concentrations, whereas the PI width
does not depend on y (entry 7 in Table 2). This indicates

that the response transformation y =  does pro-
duce the expected effect in PLS/SIC modeling, but can-
not improve the results of NLR modeling.

As can be seen from Table 2 (entry 5), the width of
the prediction intervals increases with an increase in the
initial antioxidant concentration. This is even more evi-
dent from the hard model (15), which establishes a rela-
tionship between the induction period t and A0 . This
can by no means be foreseen within the soft PLS-mod-
eling. Apparently, this fact is a consequence of a funda-
mental property of the polymer system. Specifically,
the greater the amount of antioxidant added, the less
accurate the prediction of the induction period. From
this standpoint, the hard and soft approaches produce
similar results. At the same time, the results of these
approaches can be quite different for some samples. As
can be seen from Fig. 6, for some samples (for example,
AO-5, AO-6, AO-10, and AO-11), CI is narrower than
PI, whereas for other samples (for example, AO-1,
AO-2, and AO-3), the reverse is true. It would be inter-
esting to understand why CI and PI values differ so
greatly.

Figure 7 shows PLS scores (that is, the X data pro-
jection onto the subspace of two principal PLS compo-
nents—PC1 and PC2) for samples with the initial anti-

OIP

Table 2. Statistical characteristics of the prediction obtained by the hard (NLR) and soft (PLS/SIC) methods

No. Statistical features of prediction

NLR (i = 1, CI) PLS/SIC (i = 2, PI)

Initial antioxidant concentration, %

0.05 0.07 0.10 0.05 0.07 0.10

1 RMSEP, day1/2 0.242 0.246 0.272 0.239 0.251 0.336

2 Bias, day1/2 0.087 0.058 0.040 0.011 0.004 0.002

3 Correlation ( , ) 0.953 0.934 0.916 0.953 0.934 0.916

4 Average value (X – )2, K2 – 0.224 – 0.286 0.286 0.286 

5 Average value (wi) 1.038 1.151 1.397 0.934 1.204 1.476

6 Correlation (w1, w2) 0.202 0.007 0.028 0.202 0.007 0.028

7 Correlation (y, wi) 0.815 0.846 0.836 –0.184 –0.161 –0.113

ŷ1 ŷ2

X̂
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Fig. 7. PLS score plot for samples with A0 = 0.05%: (1) cal-
ibration samples and (2) test samples. Line 3 separates the
samples for which the confidence interval (CI) is narrower
(wider) than the prediction interval (PI).
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oxidant concentration of 0.05%. (AO-1, …, AO-18 are
calibration samples, and AO-19, …, AO-25 are test
samples). Clearly, AO-25 is an obvious outlier (or, more
precisely, outsider in SIC theory, which will be consid-
ered below). The value predicted for AO-25 differs only
slightly from the measured value; however, this sample
is far from the center of the PLS model. This is the rea-
son why the prediction uncertainty for AO-25 is high,
and this sample has the widest SIC interval (Fig. 6),
being a unique test sample for which the prediction
error is greater than the calibration error. It can be seen
in Fig. 7 that all samples for which the confidence inter-
val (CI by NLR) is narrower than the prediction interval
(PI by SIC) are in the left lower part of the plot, below
straight line 3. This line separates the totality of sam-
ples into two parts, specifically, samples for which CI >
PI and for which CI < PI.

This result seems to be surprising. We expected to
observe some patterns in interval widths (i.e., predic-
tion accuracies) for the samples examined. In fact, there
is a structure classifying the samples according to the
method (hard or soft) that is more appropriate for them.
It would be interesting to examine the plot resulting
from the hard NLR method and to see if similar struc-
tures are there. The correlation between the Ec and c
estimates is shown in Fig. 8 (see Eq. (12)). Note that
there is a significant correlation between the estimated
parameters in the pairs (a, Ea) and (c, Ec). In the Arrhe-
nius equation, the correlation between the preexponen-
tial factor and the activation energy is often close to

unity [71]. In our case, cor( , ) = 0.995 and

cor( , ) = 0.997. Figure 8 enables us to look at the
problem from another angle. It clearly shows that all
samples for which the hard (NLR) approach is better
(CI < PI) are on the lower part of the plot, under line 4.
Transition is observed at a critical antioxidant concen-
tration of 0.016% at T = 140°ë.

The score plot in Fig. 7 represents only one subset
of samples, namely, samples with the initial antioxidant
concentration of 0.05%. The plots for A0 = 0.07% and
A0 = 0.10% have the same structure and are not pre-
sented here. However, the parameter estimates (c, Ec)
were obtained by the hard modeling, in which all sam-
ples with various initial antioxidant concentrations
were processed together by NLR. Therefore, Fig. 8 pre-
sents the overall data set. This circumstance suggests a
conclusion that is important in selecting a calibration
approach. Whether CI from NLR is wider or narrower
than PI from SIC does not depend on the initial antiox-
idant concentration, but does depend on the critical
antioxidant concentration, which is a property of the
antioxidant itself. Thus, NLR will always be better
(worse) than PLS/SIC for a given antioxidant, irre-
spective of the initial antioxidant concentration. The
hard approach will be precise for the antioxidants with
a low critical concentration, while the soft method

â Êa

ĉ Êc

PLS/SIC will be precise for the antioxidants with a
high value of Ac .

Another important aspect that should be considered
when comparing modeling methods is the limitations
imposed on their domains of applicability. Hard model-
ing (NLR) offers an obvious advantage here, because it
can be used in the prediction of the induction period at
various antioxidant concentrations and at various expo-
sure temperatures. The prediction of the induction
period for AO-18 at an initial concentration of 0.04%
and an exposure temperature in the range 80°C < T <
200°C is illustrated in Fig. 9. Obviously, these condi-
tions were not examined experimentally. The results
presented were obtained by extrapolating Eq. (15) to
these conditions. The soft method cannot provide such
a prediction. The data obtained for T = 200°C are very
important, because polypropylene is processed at this
temperature. On the other hand, the application of the
hard nonlinear model to conditions lying far from the
experimental area is rather risky. In particular, this
model cannot be used in the extrapolation to room tem-
perature. Therefore, the service life of polypropylene
cannot be predicted from DSC data. In other words, we
cannot precisely bound the region in which the hard
method is applicable.

The situation with the PLS/SIC soft method is quite
different. Here, the applicability range can be deter-
mined exactly. Figure 10 shows the test samples in the
SIC object status plot (OSP), which is used to establish
applicability limits. SIC classification theory is detailed
in [35, 45, 46]. Here, we present a very brief description
of this method. Each sample from the test set (AO-18,
…, AO-25) is represented on the OSP in the following
coordinates. The SIC residual is the difference between
the center of the prediction interval (6) and the corre-
sponding reference value divided by the maximum
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error deviation β defined by Eq. (4). The SIC leverage
is equal to the half-width of the prediction interval
divided by β. The position of a test (or new) sample on
this plot determines the possibility of constructing a
prediction for this sample. All samples situated inside
the triangle (AO-20, AO-21, …, AO-24) are called
insiders. They are in full agreement with the model, and
the prediction for them is the most reliable. Samples
lying beyond the model are called outsiders (AO-19
and AO-25). The outsiders are not in conflict with the
model, but the prediction for them is less accurate. This
is explained either by a large leverage (AO-25) or by a
large bias (AO-19). Thus, utilizing the SIC object status

technique, one can classify a new sample and bound the
applicability range of the PLS/SIC method.

Note that the applicability ranges of the hard and
soft methods are quite different in nature. In the hard
approach, the applicability range is the range in the fac-
tor space (T and A0) to which the model may be extrap-
olated. Here, we deal with the same antioxidant, which
was preliminarily investigated by DSC. In the soft
approach the applicability range is the range of new
antioxidants to which the constructed PLS/SIC model
may be applied. Here, the experimental conditions (that
is, the initial antioxidant concentration and the heating
rate in DSC) must be the same as for the calibration set
utilized. One more circumstance is relevant to this con-
sideration. Let us assume that model improvement and
a higher accuracy are desired. In the hard method, a
model is constructed for each particular antioxidant.
Therefore, new experiments with other initial concen-
trations of the same antioxidant should be carried out.
This will increase the prediction accuracy for this anti-
oxidant, and there will be no influence on the prediction
quality for the other antioxidants.

CONCLUSIONS

We have demonstrated that, in the antioxidant activ-
ity problem, long-term and expensive thermal aging
can be replaced with fast DSC measurements followed
by data processing using a hard (NLR) or soft
(PLS/SIC) method. Both approaches to calibration pre-
dict the induction period with a satisfactory degree of
accuracy that is not worse than the error in the conven-
tional approach. Therefore, both methods can be rec-
ommended for practice.

Each calibration approach has its own advantages
and disadvantages. The hard approach enables one to
obtain predictions extrapolated to conditions (tempera-
ture and concentration) lying beyond the range of the
experiment. However, such extrapolation cannot be
constrained; therefore, the result is sometimes unreli-
able. On the other hand, the soft approach has a rigor-
ously defined applicability that can be bounded by
means of the SIC object status approach. At the same
time, the PLS/SIC method cannot be employed in the
prediction of the induction period under conditions dif-
fering from those in the calibration experiment. Both
approaches have the same prediction accuracy and
show similar behaviors towards prediction conditions:
the greater the initial antioxidant concentration, the
worse the accuracy of prediction. However the hard
approach gives better results for the antioxidants with a
low critical concentration (that is, for the antioxidants
with a short induction period), whereas the soft
approach is better in the opposite case. This is the fun-
damental, inherent property of an antioxidant that is
independent of the initial antioxidant concentration.

Thus, in the case when the prediction of the behav-
ior of a given polymer system is the goal of the investi-
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gation, the hard approach is preferable. In the case
when the investigator wishes to compare the activities
of various antioxidants, the soft model is better.

The hard approach establishes a relationship
between experimental factors and responses, taking
into account the notion of chemical and physical pro-
cesses occurring in the system. This leads to rather
complicated mathematical models requiring special
computational methods for their processing. However,
if these models adequately describe the process exam-
ined, they allow extrapolation, or, in other words, a pre-
diction going beyond the experimental range of factors.

The soft approach does not require deep knowledge
of the nature of the investigated phenomenon. The
mathematical models utilized in this approach are lin-
ear in the unknown parameters and are, therefore, sim-
ple in use and interpretation. However, for constructing
such models, it is often required to guess an appropriate
factor or response transformation leading to system lin-
earization. In the example of antioxidant activity pre-
diction considered here, the square root was success-
fully taken from all experimental values of the induc-
tion period and the desired result was thereby achieved.
Therefore, the soft approach requires that the
researcher have some experience in solving similar
problems. At the same time, this approach produces
reliable results in very different areas. It works well in
solving classification problems or interpolation (that is,
in prediction for (nearly) the same conditions as in the
experiment). It is impossible to apply this approach to
extrapolation problems.
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