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A B S T R A C T

A wide number of real problems requiring qualitative answers should be addressed by one-class classification
(OCC), as in the case of authentication studies, verification of particular claims and quality control. The key
feature of OCC is that models are developed using only samples from the target class, so that a representative
sampling is not strictly required for non-target classes. On the contrary, in the discriminant analysis (DA)
approach, all of the classes considered (at least two) have a non-negligible influence in the definition of the
delimiter. It follows that faults in the definition of the classes involved and in representative sampling for each of
them may determine a bias in the classification rules. A key aspect in one-class classification concerns model
optimisation. When the optimal modelling conditions are searched by considering parameters such as type II
error or specificity (‘compliant’ approach), information from the non-target class is being used and may
therefore determine a bias in the model. In order to build pure class models (‘rigorous’ approach), only
information from the target class should be regarded: in other words, optimisation should be performed only
considering type I error, or sensitivity. In the present study, ‘compliant’ and ‘rigorous’ approaches are critically
compared on real case studies, by applying two novel modelling techniques: partial least squares density
modelling (PLS-DM) and data driven soft independent modelling of class analogy (DD-SIMCA).

1. Introduction

One-class classification (OCC) [1,2] consists in making a descrip-
tion of a target class of objects and in detecting whether a new object
resembles this class or not. The term class modelling is often used for
denoting OCC methods [3]. In some sense, this approach is opposite to
the discrimination problem that is to allocate a new object to one of
distinct and exhaustive classes [4]. The critical difference between OCC
and discriminant analysis (DA) is that the OCC model is developed
using target class samples only.

The work of Harold Hotelling on multivariate quality control (1947)
can be considered as the first example of multivariate one-class
classification in chemistry [5]. The unequal class models (UNEQ)
method was developed by Derde and Massart (1986) as an evolution
of these concepts [6]. In fact, such a method – closely related to
quadratic discriminant analysis (QDA) – is based on the hypothesis of a
multivariate normal distribution in the class to be modelled and defines
the width of the class space based on Hotelling's T2 statistics, at a
selected confidence level.

The first method specifically developed for one-class classification
in chemometrics was soft independent modelling of class analogy
(SIMCA), by Svante Wold [7,8]. This method performs PCA on the

samples of the class to be modelled – the SIMCA model being defined
as the range of sample scores on the significant PCs. A critical distance,
at a given confidence level, is obtained by application of the Fisher F
statistics to residuals of each training sample to the model, and is used
to define the boundaries of the SIMCA class space around the model.

OCC modelling is a rather new strategy in comparison with DA. The
classical OCC version does not utilise any information about non-target
(extraneous) classes, even when the data regarding such extraneous
classes is available. We call such an approach a ‘rigorous’ one.
Contributing to the OCC technique elaboration, we consider the
outcomes that can be yielded in case the rigorous concept is violated.
The most common violation – which we call a ‘compliant’ approach –
makes use of some relevant non-target information that can influence
the results of the OCC modelling.

The main objective of the present study is the comparison between
the outcomes of ‘rigorous’ and ‘compliant’ approaches. For this
purposes, two different OCC methods, namely, partial least squares
density modelling (PLS-DM) [9], and data-driven soft independent
modelling of class analogy (DD-SIMCA) [10] are employed. Method
descriptions are presented in Sections 3.1 and 3.2. An additional goal is
to compare these techniques using two real world examples.
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2. Theory

2.1. Figures of merit

Performances of one-class classifiers are usually reported using two
parameters: sensitivity and specificity. Sensitivity is the fraction of
samples of the target class which are correctly recognised as consistent
with the model. It can also be defined as the rate of true positives and,
therefore, it is complementary to type I error (i.e., the false negative
rate). Specificity is the fraction of samples extraneous to the target class
which are correctly recognised as inconsistent with the model, corre-
sponding to the rate of true negatives. This parameter is therefore
complementary to type II error (i.e., the false positive rate). Efficiency
of one-class classifiers is usually defined as the geometric mean of
sensitivity and specificity [11].

When sensitivity and specificity are considered, it is very important
to realise on which sample subset each parameter was calculated. First
of all, let us consider the type I error, α. At the stage of model building,
some OCC methods enable to set a prior value of α and to use it for
establishing the corresponding threshold. After that, it is possible to
calculate sensitivity for the training set, referred to as SENS_T in the
following sections. This value is a classification analogue of the root
mean square error of calibration (RMSEC) for calibration problems. It
is important to verify that SENS_T is in agreement with the a-priori α
value. Varying the α value, it is possible to control the risk of wrong
rejections of target objects. The value of sensitivity that characterises
the quality of predictions should be calculated as the fraction of
samples from the target test set which are correctly recognised
(SENS_P). In this case, SENS_P is the classification analogue of the
root mean square error of prediction (RMSEP). We can also calculate
sensitivity using the cross-validation approach. The corresponding
value is referred to as SENS_V. It is worth mentioning that calculation
of sensitivity as the fraction of all samples form the target class
(training plus test samples) can provide misleading results, especially
in case the test set is rather small.

For OCC models, specificity is calculated only in the presence of
non-target objects. This figure of merit is obtained empirically or, for
some OCC method, it can be calculated theoretically [12] as the type II
error, β. In case non-target objects are organised in several extraneous
classes, specificity should be calculated for each extraneous class
separately; otherwise, the reported value of specificity would not reflect
the true relationships between the target and alternative classes. Such
an example is presented below in Section 4. At the same time, total
specificity can be reported, if the customer is not interested in the
details.

It should be mentioned that both sensitivity and specificity depend
on the selected value of type I error, α. The first parameter has a direct
relation: SENS=(1–α). Conversely, dependence of specificity is more
complex and will be considered in Section 4.

2.2. ‘Rigorous’ vs. ‘Compliant’ approach

We distinguish two approaches when building OCC models. We call
the first one ‘rigorous’ OCC. This means that a model is developed
based merely on the target training dataset, and optimal conditions are
obtained employing the type I error, α (the rate of wrong rejections of
the target samples), or sensitivity, computed as (1-α). Depending on
the method, this α value may be estimated a-priori, and/or calculated
a-posteriori. This evaluation is made using the target samples only.
Considering that sensitivity is an experimental estimate of type I error,
α, of a given model, outcomes whose sensitivity is closest to (1-α)
should be considered as optimal, when optimising a model in a
‘rigorous’ way.

The second approach is called here ‘compliant’ OCC. Such a very
common modelling strategy utilises additional information regarding
non-target samples when, except for data from the target class, one/

several datasets from extraneous classes are available. For each
alternative class, the type II error, β (the rate of wrong acceptances
of objects from the alternative class), or the corresponding specificity,
computed as (1-β), is estimated. In this case, model optimisation is
performed with respect to the estimates of both α and β and the OCC
model that has maximum efficiency is selected.

2.3. Data driven soft independent modelling of class analogy (DD-
SIMCA)

The DD-SIMCA method develops a decision rule that delineates the
objects from the target class by exploring the corresponding data
matrix. The procedure consists of two steps. The first step is the
application of principal component analysis (PCA) [13], establishing a
model using training samples from the target class. The (I×J) data
matrix X (duly pre-processed, e.g. centred) is decomposed by:

X TP E= +t (1)

where T={tia} is the (I×A) scores matrix; P ={pja} is the (J×A)
loadings matrix; E ={eij} is the (I×J) matrix of residuals; and A is
the number of principal components (PC). Matrix TtT=Λ=diag(λ1,…,
λA) is a diagonal matrix with elementsλ t= ∑a i

I
ia=1
2 , which are the

eigenvalues of matrix XtX ranked in descending order.
In the second step, we employ the PCA results when calculating two

relevant distances for each object i=1,…, I of the training set. They are
the score distance (SD), hi, and the orthogonal distance (OD), vi:
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SD represents the position of a sample within the score space, while
OD characterises a sample distance to the score space.

In a previous study [14], it was shown that distributions of both
distances are well approximated by the scaled chi-squared distribution:

N χ N N χ N∝ ( ) ∝ ( )h
h
h h v

v
v v

2 2
0 0 (3)

where v0 and h0 are the scaling factors, Nh and Nv are the numbers of
the degrees of freedom (DoF). These parameters are considered
unknown and estimated using a data-driven method explained in ref.
[10].

Statistics c, called the total distance:

c N h
h

N v
v

χ N N= + ∝ ( + ).h v h v
0 0

2
(4)

is used to generate the decision rules. Any decision rule (i.e., an
acceptance area) is determined by an inequality:

c c≤ crit (5)

The first decision rule is developed for a given type I error, α:

c χ α N N= (1 − , + )h vcrit
−2 (6)

where χ–2 is the quantile of the chi-squared distribution with Nv+Nh

DoF. To calculate the type II error β, we should assume that an
alternative class is available:

⎧⎨⎩
⎫⎬⎭β χ N N s c

c
= Pr ′ ( + , ) <

′
,h v

2 crit

0 (7)

where ccrit is defined in Eq. (5) and χ‘2 is the non-central chi-squared
distribution. Parameters c′0 and s are found by the method explained in
ref. [12].

Using this approach, every sample and the acceptance areas can be
plotted in the coordinates of h/h0 against v/v0. Fig. 2 illustrates an
example of this distance plot. Applying theory (Eqs. (6) and (7)) in
practice, we can yield two acceptance areas. First, we can develop a
‘rigorous’ decision rule defined by a given α, and then calculate a
subsequent β error. On the other hand, we can employ a ‘compliant’
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rule (area) defined by β, and obtain a subsequent α. The first rule is
stronger, because all samples accepted by the ‘rigorous’ rule are
simultaneously accepted by the ‘compliant’ rule, but the converse is
not true.

2.4. Partial least squares density modelling (PLS-DM)

The method develops a PLS model using dataset X as the predictor
matrix and a density vector as the y response vector. The response
value (yi) – for each sample i of the training set – is computed as an
estimation of sample density, based on inter-sample distances in the
multivariate space. In more detail, all the Euclidean distances (d) from
sample i to each of the other training samples are computed. Such
distances are, therefore, ordered, and the density value is obtained as
the sum of the k smallest (i.e., lowest-order) distances:

∑y d=i
j

k

i j
=1

,
(8)

Parameter k influences smoothness of the density function, which
evolves from a sharper to a smoother shape while increasing k.

PLS scores on the first L latent variables selected are used as an
input to estimate probability density of the class by a potential function
method (PFM). The global probability function, f(x), is obtained by
summing the individual contributions fi(x) defined as:
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where a is the smoothing coefficient that applies to all of the variables
within the training set, and sv is the standard deviation of variable v
within the training set. The smoothing coefficient cooperates in
determining the shape of the distribution, being higher the smoothness
when increasing a (which usually ranges between 0.1 and 1.5).

In order to define the class boundary, the critical value (fα) of the
probability density distribution f(x), at a selected type I error, α, is
obtained from the critical value of the chi-squared distribution (χα

2)
with V degrees of freedom by the so-called equivalent determinant
method [15], according to:
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where V is the number of variables and C is the estimation of the
determinant corresponding to the variance-covariance matrix of the
multivariate normal distribution equivalent to the probability distribu-
tion estimated by PFM, computed as:

π
C = 1
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2

2
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The term ‘equivalent’ is used in this context to indicate distributions
with the same mean value [15].

In addition, PLS residuals are used to compute the critical value of
Q statistics, Qα, at the same level of α according to the Jackson-
Mudholkar approximation [16]. In this way, compliance of each object

with the class model is granted when it complies with both fα and Qα
criteria.

The algorithm calculates models with all of the different parameter
combinations – i.e. the k distance, the a smoothing coefficient and the
L latent variables, as well as the suitable X-block pre-processing. Then,
the procedure selects the optimal parameter combination by: (1) fixing
the number of L through the efficiency criterion and (2) evaluating the
rest of parameters applying a Pareto's multicriteria decision method
(‘compliant’ strategy), or by evaluating only type I error, α (‘rigorous’
strategy).

3. Materials

We consider two different datasets. One set, Olives, is comprised of
samples of natural origin, olives in brine. Variability among samples is
inevitable. In the present study, variability is taken into account both
within a single harvest year and between different harvest years. The
second dataset, Remedy, consists of samples of artificial origin, un-
coated tablets. Certainly, variability between samples is much lower
and mainly manifests as variation between batches.

3.1. Dataset Olives

Dataset Olives consists of very close/overlapped classes: one target
class, Taggiasca, and two non-target classes that are considered as
potential adulterants, Leccino, and Coquillo. Data are organised as
follows. Each class consists of three sub-sets: training and internal test
samples, both composed by olives from harvests 2010–11 and 2011–
12, and external set, composed by olives from harvest 2012–13 [9].
Data summary is presented in Table 1.

Data from subset Taggiasca are considered as the target class due
to the request of the customer, who is interested in the confirmation of
authenticity of this product. Subsets I1 and E1 are not involved in the
development of the ‘rigorous’ Taggiasca model; they are used as an
independent test set to validate the quality of authentication models.
Other subsets are employed for calculation of specificity.

NIR spectra of dataset Olives were recorded by a FT-NIR Thermo
Scientific spectrometer (Thermo Scientific, AntarisII™ FT-NIR
Analyser), in the 4,000–10,000 cm−1 range, at 4 cm−1 resolution.
Samples were analysed in the reflection mode using standard glass
Petri dishes (9 cm diameter). Spectral profiles of each sample were
acquired as the mean of 64 scans recorded during rotation of the Petri
dish. Systematic differences among Petri dishes – mainly due to small
variations in glass thickness – were corrected by dividing point by point
the reflectance spectrum of each sample by the spectrum of a certified
reference material (Spectralon®) with 99% reflectance in the entire NIR
region, recorded on the same dish. The whole analytical procedure was
repeated on three different aliquots of each sample and the resulting
average spectrum was submitted to data analysis.

Acquired spectra were corrected by the standard normal variate
(SNV) transform.

Table 1
Dataset Olives. Subset names, marks, and corresponding number of samples.
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3.2. Dataset Remedy

Dataset Remedy is a part of a bigger dataset that was analysed in
details in ref. [17]. The samples are uncoated tablets of calcium channel
blockers, produced by three different manufacturers, denoted as A, B,
and C. All the manufactures employed the same quantity, 10 mg, of the
active pharmaceutical ingredient (API) originated from the same
source. Each manufacture is represented by a set of batches ranging
from five to ten. Each batch consists of 10 tablets. Overall, there are
220 objects in dataset Remedy, whose summary is presented in
Table 2. This set imitates the fakes of various ‘quality’ in case real
counterfeited objects are unavailable. The range of producers consid-
ered against a specific genuine class may be used for assessing the
target class acceptance areas, which account for a possible future
variation of the target class. Each class in turn is considered as a target
class.

NIR spectra of dataset Remedy were acquired in the interval 4000–
12500 cm−1 with a resolution of 8 cm−1 using the FT-NIR spectrometer
MPA (by Bruker Optics) equipped with a handheld fibre-optic probe
(FP). Measurements were carried out in the diffuse reflection mode
through an optically transparent PVC blister. Each time, triplicate
readings are made to control repeatability. Replicas were averaged for
data analysis. All spectra were pre-processed by a second-order
Savitzky-Golay derivation with a 21 data-point window size and a
third-order polynomial. This transformation was used to remove most
artefacts caused by the PVC blister and application of the handheld FP.

Aim of the study is to build three independent models for each of
the manufactures. It is important both to classify new objects from the
same manufacture as objects from the target class and to reveal alien
objects.

PCA applied to the whole data sets shows the overall disposition of
the subsets (Fig. 1).

4. Results for dataset Olives

4.1. DD-SIMCA

As it was mentioned above, two types of models, ‘rigorous’ and
‘compliant’, are considered. The results regarding model sensitivity are
presented in Table 3. The best results for the ‘rigorous’ model are
obtained with 3 PCs and type I error α=0.01. Both a-priori α values are
in good agreement with a-posteriori sensitivity calculated for subsets
T1, I1 and E1.

At the same time, specificity is not completely satisfactory (see
Fig. 2a and Table 4). Misclassification results are originated from
subsets T3 and I3 (Coquillo olives). Taking into account knowledge
regarding extraneous samples, the ‘compliant’ model, which is more
complex, 6 PCs, provides better results (see Fig. 2b and Table 4),
providing 0.98 specificity at α=0.05.

By varying α values, we can select the risk of wrong rejection and
wrong acceptance: α=0.05 provides better separation between classes
at the cost of wrong rejection of 5% of target objects. Instead, for
α=0.01, sensitivity is excellent but the risk of acceptance of non-target
objects increases.

It is important to notice that, in this example reporting the results
as ‘total specificity’, we hinder the real problem of misclassification,
because the source of misclassification is the Coquillo class. Thus, a
joint calculation of specificity for all alien objects does not reflect the
real problem.

4.2. PLS-DM

Application of PLS-DM to the Olives data set was performed
following both the ‘compliant’ and the ‘rigorous’ approaches.
Different parameters were varied according to a full factorial design
(i.e., all of the possible combinations were tested), within cross-
validation (CV) cycles with five deletion groups and Venetian-blind
scheme. In more detail, different levels of column pre-processing were
tested (namely: raw data, column centring, column scaling, and column
autoscaling); k was varied from 1 to 6; a was varied from 0.3 to 0.8, and
L was varied from 1 to 10.

Table 3 reports the CV sensitivity values obtained for the target
class T1 (Taggiasca), at both α=0.05 and α=0.01, for the ‘rigorous’ and
the ‘compliant’ approaches, respectively. Table 4 reports total and
partial specificity results for the Olives data set under the optimal
conditions selected.

Table 2
Dataset Remedy Subset names, marks, and corresponding number of samples.

T1
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T3
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I2

I3

E1

E2
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0.8
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C

PC2

PC1

Fig. 1. Joint PCA using all data. Score plots PC1 vs. PC2. (a) Dataset Olives; (b) dataset Remedy.
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Very satisfactory results are obtained, especially for α=0.05 while,
as it can be expected, specificity decreases when decreasing α.
Specificity of the target class T1 is higher as long as samples of class
Leccino (I2 and E2) are considered, while less satisfactory results are
obtained when specificity is evaluated by samples of class Coquillo (I3).
This may suggest that olives belonging to cultivar Coquillo are more
similar to the Taggiasca type than the Leccino cultivar, as long as their
NIR spectral features are considered.

5. Results for dataset Remedy

Unlike the Olives case, we consider three peer subsets correspond-
ing to three different manufactures. Samples originated from each
manufacture are considered as target class samples and three OCC
models are built respectively.

Table 3
Sensitivity for Olives data.

Method Strategy α=0.05 α=0.01

Model parameters T1 I1 E1 Model parameters T1 I1 E1

DD-SIMCA Rigorous 3 PCs 0.95 1.00 0.89 3 PCs 1.00 1.00 1.00
Compliant 6 PCs 0.93 1.00 0.79 6 PCs 0.99 1.00 0.89

PLS-DM Rigorous L=1, a=0.3, k=2, autoscaled data 0.95 1.00 0.95 L=4, a=0.5, k=5, autoscaled data 0.99 1.00 1.00
Compliant L=1, a=0.8, k=2, autoscaled data 0.98 1.00 1.00 L=6, a=0.5, k=1, centred data 0.94 0.89 0.82

3

2

1

1 2 3
0

3

2

1

0
0 1 2 30

Fig. 2. ‘Rigorous’ (subplot a, 3 PCs, α=0.01) and ‘compliant’ (subplot b, 6 PCs, α=0.05) models for Olives dataset.

Table 4
Total and partial specificities for Olives data.

Method Strategy Total specificity Partial specificity

α=0.01 α=0.05 α=0.01

Model parameters Spec. Model parameters Spec. T2 I2 E2 T3 I3

DD-SIMCA Rigorous 3 PCs 0.91 3 PCs 0.86 1.00 1.00 1.00 0.69 0.40
Compliant 6 PCs 0.98 6 PCs 0.92 1.00 1.00 1.00 0.80 0.80

PLS-DM Rigorous L=4, a=0.5, k=5, autoscaled data 0.94 L=1, a=0.3, k=2, autoscaled data 0.89 1.00 1.00 1.00 0.74 0.60
Compliant L=6, a=0.5, k=1, centred data 0.94 L=1, a=0.8, k=2, autoscaled data 0.89 1.00 1.00 1.00 0.88 0.60

Table 5
Dataset Remedy. Model sensitivity for the three classes. Specificity for all models is equal to 1.00 and, therefore, those values are not presented in the table.

Class A Class B Class C

Model parameters Training Test Model parameters Training Test Model parameters Training Test

Method α=0.05
DD-SIMCA 3 PCs 0.94 0.90 2 PCs 0.98 0.90 2 PCs 0.97 0.90
PLS-DM L=2, k=1, a=0.6, scaled data 0.96 1.00 L=4, k=1, a=0.7, scaled data 0.98 1.00 L=3, k=4, a=0.6, scaled data 0.96 0.60

α=0.01
DD-SIMCA 3 PCs 1.00 1.00 2 PCs 1.00 1.00 2 PCs 0.99 0.97
PLS-DM L=2, k=2, a=0.8, centred data 1.00 1.00 L=3, k=1, a=0.4, autoscaled data 1.00 1.00 L=5, k=2, a=0.6, scaled data 0.98 0.60
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5.1. DD-SIMCA

In the case class A is considered as the target class, attention should

be devoted to accurately defining the training conditions. Two PCs are
not enough. Three PCs and α=0.01 are chosen to reach sensitivity equal
to 1.00 (see Table 5 and Fig. 3a). Datasets B and C are well-separated
from the target objects and specificity is equal to 1.00. Extraneous
classes are rather far and the β value for each of the extraneous classes
is close to zero.

In the case we consider class C as the target, two PCs and α=0.01
can be chosen as the optimal conditions (see Table 5 and Fig. 3b). Both
of the extraneous classes are well separated from the target class, with
specificity=1.00. From Fig. 3b, it can be observed that class B is located
closer to the border of the acceptance area than class A. The β value for
class B is equal to 0.006. This means that, theoretically, one out of 170
objects from class B can be wrongly attributed to the target class C.

Results for class B are rather similar to those for class C. The model
with 2 PCs, at α=0.01, is chosen as optimal (see Table 5). Both of the
extraneous classes are well separated from the target class, with
specificity=1.00. Though class C, as one might expect, is located closer
to the threshold than class A. The β value for class C is equal to 0.001.

The main challenge in modelling Remedy data is some hetero-
geneity inside target classes caused by natural variation between
batches of one manufacture. Classes are well separated and considera-
tion of the extraneous subsets on the modelling stage does neither
bring additional information nor provide any model improvement in
comparison with ‘rigorous’ DD-SIMCA modelling.

0

1

2

3

4

0 1 2 3 4

ln(1+v/v0)

ln(1+h/h0)
0

1

2

3

4

0 1 2 3 4

ln(1+v/v0)

ln(1+h/h0)

Fig. 3. Modelling in case the target is class A (subplot a, 3 PCs) and class C (subplot b, 2 PCs). Two acceptance thresholds, α=0.05 (dotted line) and α=0.01 (solid line) are shown.

1.0

0.9

0.8

0.7
1 2 3 4 5 6 7

Fig. 4. Figures of merit (α=0.05) for dataset Olives. (1, blue circles) training sensitivity,
(2, green triangles) cross-validation sensitivity; (3, violet rhombs) test set E1 sensitivity,
(4, red squares) total specificity; (5, black dashed line) confidence threshold (1–α). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Olives data set. Outcomes of ‘rigorous’ (a) and ‘compliant’ (b) approaches, α=0.05 (confidence level=0.95).

O.Y. Rodionova et al. Chemometrics and Intelligent Laboratory Systems 159 (2016) 89–96

94



Thus results of ‘compliant’ modelling are the same as for the
‘rigorous’ one and are not provided here.

5.2. PLS-DM

Interestingly, application of PLS-DM on the Remedy dataset led to
identical choices in terms of optimal model conditions, for both the
‘compliant’ and the ‘rigorous’ strategies. In fact, as summarised in
Table 5, models with sensitivity and specificity equal to 1.00 on the test
set prediction were obtained for classes A and B, at α=0.01.

Sensitivity values achieved as the prediction on the test set cannot
be considered satisfactory for class C. This could be ascribable to data
overfitting – a conceivable occurrence when model complexity (i.e., the
number of LV) increases.

6. Discussion

Comparing the two OCC methods, we can conclude that DD-SIMCA
is a global modelling method, while PLS-DM represents a local
approach. At a fixed level of type I error, α, the first method has the
only free parameter – the number of PCs – that can be used for tuning
in case of ‘compliant’ approach. When the number of PCs is increased,
training sensitivity is varying near to the given sensitivity level (1–α),
while validation sensitivity is decreasing. These tendencies are ob-
served due to evident facts. For a given number of PCs, the DD-SIMCA
model is developed to the better accounting for all variations in the
training set. The test set is not involved in this process, and accounting
for its own variations is beyond the scope of the study. A more complex
model means that a higher amount of variation in the training set is
taken into account, and that more specific properties of the test set
come into conflict with this model. In case the test set is a good
representation of the target class population, test sensitivity is not
decreased when a small number of PCs is used, because the main
variations are common for the test and training sets.

This trade-off analysis provides a way for the selection of a proper
number of PCs in the pattern recognition context, see e.g. [18], and it
was used in the ‘rigorous’ application of DD-SIMCA. In the case of the
‘compliant’ approach, a balanced number of PCs was selected, with the
goal of improving specificity, which is also increased while increasing
PC number.

A typical example is shown in Fig. 4, which demonstrates the
figures of merit for dataset Olives obtained at α=0.05 as a function of
the number of PCs. In the ‘rigorous’ case, we obtain curve 1 (training
sensitivity, SENS_T) and curve 2 (validation sensitivity, SENS_V).
Curve analysis leads to the conclusion that PCs=3 is the optimal choice,
with SENS_T=0.95 and SENS_V=0.93.

In the ‘compliant’ case, we are considering two additional curves: 3
(test set sensitivity, SENS_P), which is going down, and 4 (total
specificity, SPEC), which is growing. Our goal is to select the number
of PCs at which specificity is large enough and sensitivity is satisfactory.
Our choice is PCs=6, with SPEC=0.98, but SENS_T=0.93,
SENS_V=0.83, SENS_P=0.79.

The PLS-DM approach demonstrates a similar behaviour.
Considering the effect of modelling parameters, in the case of PLS-
DM, variations of parameter k do not affect in a systematic way
sensitivity and specificity outcomes, while an increment of parameter a
usually leads to higher sensitivity and moderately lower specificity. The
effect of increasing model complexity (i.e., the number of latent
variables L) is usually the opposite.

Fig. 5 graphically reports, as an example, the results which were
evaluated in terms of sensitivity (‘rigorous’ approach, Fig. 5a), and in
terms of sensitivity and specificity (‘compliant’ approach, Fig. 5b), for
α=0.05 (confidence level = 0.95). In the case of the ‘rigorous’ approach,
the outcomes are evaluated in terms of sensitivity and model complex-
ity (number of latent variables, L). Each model is represented by a
scatter point, while the blue line represents the pre-determined

confidence level (0.95). Since sensitivity is an experimental estimate
of the confidence level, models with sensitivity values closest to the
confidence level and lowest model complexity are selected as optimal.
In this case, models complying with such a requirement can be
obtained for L=1 to 3 and, following the ‘rigorous’ approach, the three
choices are equivalent. An analogue plot was used for making decisions
at α=0.01 (not shown).

In the case of the ‘compliant’ approach, a Pareto chart is used to
select the optimal conditions (Fig. 5b). Blue points represent the
individual models, while the red line indicates the so-called Pareto
front, which connects the optimal solutions in terms of sensitivity and
specificity.

We see that, regardless of the employed OCC method, the same
tendency is held. Any improvement of specificity can only be done at
the cost of a sensitivity decreasing.

7. Conclusions

A distinct feature of OCC is the possibility to build a model for one
class without in-depth information regarding other classes or samples.
In the ‘rigorous’ OCC approach, all model parameters and validation
procedures are based only using information regarding the target class.
This can be considered as an advantage of OCC, especially for solving
authentication problems. At the same time, for overlapping datasets,
this is a drawback. When the classes under study are well separated,
the ‘rigorous’ and the ‘compliant’ approaches may lead to very similar
or even identical optimisation outcomes, like in the case of data set
Remedy. Conversely, when classes are characterised by complex
distributions and tend to overlap, the two approaches may lead to
different outcomes, like in the case of data set Olives.

Depending on the dataset under consideration, the importance of
extraneous objects is different. In any case, application of ‘compliant’
modelling brings additional information to the modelling stage and,
depending of the specific OCC method applied, it may provide more
reliable results. It is important to underline that, theoretically, non-
target objects could be as close as possible to a target class. Even the
intensive training and validation measures cannot prevent us from
unavoidable misclassification.

Application of OCC is also possible for the goal of discrimination, if
each class of interest is modelled using the OCC method and, after-
wards, the minimum distance from the different models is assumed as
the discriminant criterion. Though, it should be taken into account
that, in the latter case, information regarding extraneous classes is used
partly and implicitly. We definitely do not recommend using any OCC
method for DA purposes.
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