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This paper investigates a feasibility of using confocal Raman spectroscopy (CRS) and multivariate analysis for
classification of sperm cells. The spectral based classification is compared with the morphological analysis, which
is the main criterion for sperm selection in intracytoplasmic sperm injection procedure. The spectral analysis is
conducted using the data driven soft independent modeling of class analogies method. The supervised classifi-
cation reveals numerous outliers that pass from the 'normal' class to the 'abnormal' class, and vice versa. The
ultimate result shows that the initial morphological discrimination overlaps with the spectral classification only
partly. It is shown that CRS provides additional information regarding the nuclear DNA stability and helps to
reveal spermatozoa with fragmented and defective DNA. This can be a promising direction for future evaluation of
spectra from live, unfixed cells.
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1. Introduction

Over the past 25 years, Raman spectroscopy has proven to be an
effective and reliable method for characterization of the intermolecular
bonds [1]. This method has perspectives in the biological and medical
applications. The confocal Raman spectroscopy (CRS) does not need any
special conditions or sample preparation to acquire spectra. It can be
used for the structural and compositional analysis of a sample before
application of some destructive analytical methods [2]. The amount of
the CRS applications for the investigation of tissues [3], cells [4], sub-
cellular organelles and intercellular metabolic processes grows subse-
quently [5]. A particular interest deserves the CRS usage in the areas of
oncology [6,7], cardiology [8], and reproductive medicine [9]. Despite
the fact that the results of these studies are still far from the clinical
practice implementation, the available data allow us to conclude that this
method has a great potential. In biology and reproductive medicine the
researchers are interested in using CRS for evaluating quality of gametes.
Confocal microscopes allow Raman spectroscopy to be performed with
very high lateral spatial resolution and minimal depth of field (i.e., below
1 μm), thereby permitting the identification of molecules in organelles
[10]. The CRS approach is especially valuable in the analysis and selec-
tion of sperm for ICSI (intracytoplasmic sperm injection) procedure,
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because spermatozoon can be explored without harming.
The studies of sperm using CRS are few so far. The sperm is a

specialized, highly differentiated cell bearing the haploid number of
chromosomes. The sperm main function is to deliver genetic material
into the oocyte. To fulfill this task the sperm undergoes a number of
significant structural and functional changes ensuring tighter condensa-
tion of nuclear DNA. However, those changes have their negative fea-
tures. With synthetic and metabolic processes coming to a halt in the cell,
DNA is not transcribed and ready mRNA transcripts are absent due to the
extremely small amount of cytoplasm. Thus, the mature sperm cell with
90–95% of its histones replaced with protamines is unable to repair the
DNA damage. The DNA condensation provides a sufficiently reliable
degree of protection, but if the process of histone replacement with
protamines is not completed, the vulnerable DNA sites are exposed to
damaging agents. Oxidative stress can lead to the single- and double-
stranded DNA breaks, and the lack of DNA repair mechanisms in the
sperm prevents DNA restoration. This sperm can have good morpho-
logical features and motility characteristics; nevertheless, it gives rise to
an embryo of a poor quality and low implantation potential. The corre-
sponding embryos often stop in development [11]. Sperm DNA damage
can be partially restored by the oocyte, but once the damage reaches a
critical mass the oocyte DNA repair mechanism is insufficient. This fact
dilny per.2, Bld.2, Russia.
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leads to the growth of interest to the study of sperm nuclear DNA and
assessment of its functional state. Since standard methods of ejaculate
evaluation using light microscopy cannot provide relevant data, addi-
tional sperm evaluation methods have recently got widespread. In
particular, this applies to methods used for studying sperm DNA frag-
mentation [12–14]. Unfortunately, beyond determining the percentage
of sperm with fragmented DNA in the ejaculate, these methods provide
little information relevant for use in assisted reproductive technologies.
In ICSI practice, we need a method that can test a single sperm cell
without damaging it, for the integrity of sperm nuclear DNA and its
functional state. We think that the CRS approach is quite promising in
solving the above mentioned tasks.

The first study of Raman spectra (RS) of salmon spermatozoa was
conducted in 1986 by Kubasek et al. [15]. In 2009 Huser and co-authors
[16] compared RS of sperms with normal and abnormal morphology and
concluded that the sperm morphology does not always correlate with a
proper nuclear DNA packaging. Meister et al. [17] investigated the
spectra of subcellular organelles and the impact of UV irradiation upon
them. Further work on the use of Raman spectroscopy in visualization of
the sperm nuclear DNA damage was continued by Mallidis et al. [18],
who used UV irradiation for damaging the structure of sperm nuclear
DNA. S�anchez et al. [10] induced oxidative damage by Fenton's reaction
with hydrogen peroxide. Spectra obtained from the sperms damaged in
such a way fully correspond to those obtained in study by Mallidis et al.
[18]. It should be emphasized that until recently all studies were con-
ducted on fixed cells. The article by Li et al. [19], who used CRS on
unfixed live buffalo spermatozoa, was published only in 2016. To keep
the sperms in focus, the so-called optical (laser) tweezers were used. It
was shown that spectra acquired from the motile spermatozoa were
similar to those obtained from the fixed sperm cells. This method seems
to be very promising for the introduction of CRS into clinical practice of
in vitro fertilization centers.

The aim of this study is to assess feasibility of the CRS and multi-
variate analysis methods in studying the sperm nuclear DNA. Additional
goal is to perform a comparative analysis of the RS obtained from the
morphologically normal and abnormal spermatozoa.

2. Materials and methods

2.1. Samples

We performed analysis of semen taken from 21 healthy donors. The
period of sexual abstinence was 2–7 days. In each case, a standard
semiological study of the ejaculate was carried out using a light micro-
scopy. The results were interpreted according to the 2010 World Health
Organization guidelines [20] and corresponded to normozoospermia
(�4% of normal spermatozoa according to Kruger's strict criteria).
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2.2. Compliance with ethical standards

This study was approved by the Independent Local Committee for
Ethics of the Regional Research Institute of Obstetrics and Gynecology,
Moscow, Russia (Registration number JRB N� 06004245), and written
informed consent was obtained from all participants. The authors declare
that they have no conflict of interest.
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2.3. Sample preparation for spectra acquisition

The ejaculate was subjected to a double density gradient centrifuga-
tion (FertiPro, Breenem, Belgium) for 20min at 415 g. After removal of
the supernatant, the pellet was resuspended with Phosphate Buffered
Saline (PBS, Sigma-Aldrich, Saint Louis MO, USA) at 37 �C and re-
centrifuged for 10min at 415 g. Thereafter 10 μl of the sperm suspen-
sion was placed onto the aluminum foil. The preparation was fixed in
alcohol (ethanol 70%) and air-dried.
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2.4. Reference method

Using standard light microscopy, we assembled two sets of samples
(each sample corresponds to 1 sperm cell): morphologically normal
sperm cells (group N, 125 samples), and morphologically abnormal
sperm cells (group A, 36 samples). We selected only the sperm cells with
clearly visible tail, nucleus and acrosome.
2.5. Confocal Raman spectroscopy

The SENTERRA confocal Raman microscope, Bruker Optics, Germany
was used. The spectral analysis of the sperm nucleus was carried out at
the 532 nm laser excitation wavelength and the 10mW power in the
range of 280–1730 cm�1 at the resolution of 3–5 cm�1. Each sample was
measured for 20 s integration time averaged over 3 scans. The spectra
acquisition mode was chosen in a way that did not damage the sperm cell
according to Eidengeiser et al. [21], who confirmed that laser power less
than 15mW did not induce the photo damage of the sperm cell mem-
brane. The more detailed information about the influence of laser light
on sperm cell can be found in the article [21].

Fig. 1 shows a typical image of morphologically normal spermato-
zoon with designation of the regions of analysis (a) and the RS obtained
from the different regions (b). 1 – nucleus, 2 – neck, 3 – acrosome.
Spectra acquired from different regions have specific features. This
demonstrates that the laser beam has a local impact, and, therefore,
confirms suitability of the CRSmethod in our studies. In general, it can be
seen that the spectra obtained at acrosome and neck have less intensities
in comparison with the nucleus one. A high band round 749 cm�1, which
appears in the spectra of the neck region, refers to mitochondrial DNA
according to Tesarik et al. [13]. In our study, the spectra were collected
from nucleus region only.
2.6. Preliminary spectra analysis

Each spectrum is analyzed in the range from 680 cm�1 to 1700 cm�1

after polynomial baseline fitting (4th order), smoothing using themoving
average filter (21 points). We also perform the standard normal variate
correction for all spectra. Using the preprocessed spectra, we compile the
data matrix X (161 x 510), where each row contains the Raman readings
in the interval from 680 to 1700 cm�1 at the 2 cm�1 increment; the
number of rows corresponds to the number of spectra.
2.7. Chemometric methods

Principal component analysis (PCA) [22] is used for the data
dimensionality reduction, for separation of the significant information
from noise, and for elucidation of hidden relationships between the
samples.

The DD-SIMCA (Data driven - Soft independent modeling of class
analogies) method is used for the outlier detection and the final classi-
fication. DD-SIMCA is a one-class classifier (OCC). Such type of methods
is also called the class modeling approach [23]. For application of OCC, a
unique target class should be defined by the properties of its represen-
tative members. The set of representative target samples is called the
training set. The DD-SIMCA method consists of three steps. At the first
step, the PCA decomposition is applied to the (I� J) training matrix X.

X¼ TPt þ E (1)

where T¼ {tia} is the (I�A) scores matrix; P¼ {pja} is the (J�A) load-
ings matrix; E¼ {eij} is the (I� J) matrix of residuals; and A is the number
of principal components (PCs). At the second step, for each object i¼ 1,
…, I from the training set, two distances are calculated. They are the
score distance hi, and the orthogonal distance vi:



Fig. 1. (a) Microimage of a morphologically normal spermatozoon with the regions of CRS analysis. (b) Exemplars of the RS obtained at the corresponding regions. 1-
nucleus; 2 –neck; 3 – acrosome.
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h i ¼ ttiðTtTÞ�1ti ¼
XA t2ia

λ
; vi ¼

XJ

e2ij (2)
Fig. 2. Successive partitioning of the group N into NN and NA classes, α¼ 0.01,
γ¼ 0.05. Samples marked with red squares are considered as outliers and are
removed from the training set. The yellow diamonds represent the extreme
objects. The green dots are the regular samples. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of
this article.)

Th
is

 a
rti

cl
e 

is
 p

ro
te

ct
ed

  b
y 

th
e 

co
py

rig
ht

 la
w

. Y
ou

 m
ay

 c
op

y 
an

d 
di

st
rib

ut
e 

th
is

 a
rti

cl
e 

fo
r y

ou
r p

er
so

n
a¼1 a j¼1

In this formula elements λa ¼
PI

i¼1t
2
ia are the eigenvalues of matrix

XtX ranked in descending order. In the process control area [24] these
distances are often denoted as Q (for v) and T2 for (h). The total distance
for the sample is calculated as:

c ¼ Nh
h
h0

þ Nv
v
v0
∝χ2ðNh þ NvÞ (3)

where parameters v0 and h0 are the scaling factors, Nh and Nv are the
numbers of the degrees of freedom (DoF). These parameters are unknown
a priori, and they are estimated using a data driven approach with
application of a classical (method of moments) and/or a robust (median
and interquartile) statistics. Details are presented in the works by Pom-
erantsev et al. [25,26]. This feature of DD-SIMCA provides the possibility
to apply the method for detection of outliers. In case the abovementioned
parameters of the χ2-distribution coincide being calculated by both
techniques, we can conclude that the training set does not contain
outliers.

At the third step, the acceptance area or a threshold (the green curve
in Fig. 2) for the target class is defined. Given the type I error α, the
acceptance area is determined as

c� ccrit(α), (4)

where

ccrit ¼ χ�2ð 1� α; Nh þ NvÞ (5)

is the (1–α) quantile of the chi-squared distribution with Nv þ Nh DoF.
This cut-off level forms the border for the acceptance area, which covers
(1 - α) 100% of all population. If an object belongs to this area, it is
assessed as a regular one (the green dots in Fig. 2).

The second border is determined as the outlier cut-off level (the red
curve in Fig. 2) constructed for a given γ-value. This value specifies the
probability that at least one regular object from the data set will be
174
erroneously considered as an outlier. Objects located beyond the outlier
threshold are considered as outliers (the red squares in Fig. 2). The area
located between the acceptance and the outlier areas is the extreme
objects area. Extreme objects or ‘extremes’ (the yellow diamonds in
Fig. 2) are always present in the data and they should not be confused
with outliers [26]. Elimination of extremes is undesirable, since this can
distort the analysis results.

In this work, the DD-SIMCA method is used for two purposes. First
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purpose is the search for outliers in the training set. The second purpose
is the OCC model building [27].

Calculations are performed using Chemometrics Add-In for the
Microsoft Excel [28] and Matlab GUI tool for DD-SIMCA [29], which is
freely available from GitHub: https://github.com/yzontov/dd-simca.git.

3. Results

3.1. Analysis of morphologically normal spermatozoa (group N)

To build an OCC model we have to be sure that the target class
(normal samples) does not contain outliers. Suspicious samples are
revealed by application of the DD-SIMCA procedure to the spectra of the
morphologically normal sperm (group N). For this purpose, we develop
the SIMCA-models applying two methods of estimation: classical and
robust. The number of PCs is selected based on the principle of parsimony
[30], i.e. the minimal A that provides a desired solution corresponding to
the given α value. In our case, two values of A are in focus, 2 or 3. When
outliers are detected (Fig. 2, red squares), these samples are excluded
from the target class, and the DD-SIMCA procedure is repeated for the
reduced training set. The process of the outlier elimination is over when
the results obtained using the classical and robust methods become
similar. It took 5 steps of the DD-SIMCA application to clean the training
set from the outliers.

In the result, the group N (125 samples) is divided into two classes:
class NN (102 samples) and class NA (23 samples). Class NN is later used
as the target class. It comprises the samples recognized as the normal
both by morphology and by the results of spectral data analysis. Class NA
comprises the samples considered normal according to the morphology
analysis, but treated as extraneous samples relative to the target class NN.
The final acceptance area is designed at 3 PCs using samples of the target
class NN (102 samples). In Fig. 3 acceptance area for α¼ 0.01 is repre-
sented by the solid green curve; the training samples of class NN are
shown as the closed blue dots, the class NA samples are represented by
the red dots with the blue border, class AN is given by the blue squares
with the red border. In general, the markers border color stands for the
original classification, while the interior color symbolizes the ultimate
decision. In all cases, the blue color means normality, and the red color
stands for abnormality.
Fig. 3. Distribution of all samples into classes with respect to NN (the blue dots)
class, α¼ 0.01. The green curve delineates the acceptance area. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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3.2. Analysis of morphologically abnormal spermatozoa (group A)

We assume that morphological analysis of abnormal spermatozoa
samples (group A) may, in some cases, lead to erroneous results, in the
same way as for group N samples. The spectra of the second group are
analyzed using the model developed for the NN target class. Initially
group A contains 36 samples (spectra) of the morphologically abnormal
spermatozoa. Application of the DD-SIMCA model results in a split of
group A into two classes: class AA (19 samples), morphologically and
spectrally anomalous, and class AN (17 samples), morphologically
abnormal, but spectrally normal. In Fig. 3 the AN samples (the blue
squares with red border) are located inside the acceptance area. The NA
samples (the red dots with blue border), comprising the outliers of group
N, are located outside the acceptance area, and they are uniformly
distributed among the class AA samples (the red squares).

Certainly, we can use the AA samples as the target class and consider
all other samples as the alternative classes. The DD-SIMCA model for
class AA accepts all alternative samples as the members of the target class
AA. Therefore, in respect to class AA all samples are regular and belong to
class AA. It is concluded that class NN is a uniform class, which, in fact,
includes class AN. Therefore, all the samples in these classes are classified
as the spectrally normal.

The application of PCA to the joint data set shows (Fig. 4) that classes
NN and AN form a compact group in the centre of the PC score space,
whereas the AA and NA samples are located at the periphery. Classes AA
and NA are the heterogeneous groups with a wide dispersion of data. This
fact allows us to classify such spectra as spectrally abnormal.

The comparison of the average spectra of the spectrally normal
(NN þ AN) and abnormal (NA þ AA) samples is shown in Fig. 5. The
average spectrum of the normal samples (the blue curve) and the 95%
tolerance corridor (vertical blue bands) are calculated for each wave-
length on the entire NN þ AN set. The red curve represents the average
spectrum computed for the AA þ NA classes. Vertical red bands show the
corresponding 95% tolerance corridor for this set.

Despite the fact that the abnormal spectrum (Fig. 5) has a high band
at 1045 cm�1, the tolerance corridor of this spectrum completely in-
cludes the normal spectrum with its corridor. We can see that spectral
abnormality is characterized by a much greater spread, which makes it
impossible to distinguish visually the normal spectrum from the
abnormal one.

Let us analyze the PCA model for the NN þ AN set, interpreting the
AAþNA data as new samples. Fig. 6 represents the bi-plot [31] for PC2 vs.
PC1. In this plot the PCA scores for the first two components are shown
together with the corresponding PCA-loadings. This plot helps to interpret
the sample properties and the variable relationships simultaneously. In
Fig. 6, the blue dots (PCA scores) represent spectrally normal samples,
while the red squares show spectrally abnormal samples. Samples located
close to each other are similar. The opposite samples are different. The
green crosses (PCA loadings) represent variables (Raman bands). Loadings
indicated by numbers present the characteristic bands. The samples
located near these extreme crosses have the distinctive Raman band. We
can conclude that PC1 is mainly determined by the bands at 782 cm�1 and
1663 cm�1. PC2 is formed by bands at 980 cm�1 and 1374 cm�1. Two very
important bands round 1045 cm�1 and 1451 cm�1 contribute to both first
PCs. The spectrally abnormal AA þ NA samples (the red squares) are
located mainly in peripheral areas of the plot, while the spectrally normal
samples NN þ AN (the blue dots) occupy the centre. Different loadings
values, i.e. bands, are responsible for specific locations of various
sub-groups inside the AA þ NA set. So in Fig. 6, it can be seen that spec-
trally abnormal samples (NA1, NA2, AA1, AA2) have Raman specific
features (bands) different from uniform class NN þ AN.

Concluding the data analysis we can note that they represent a real-
world example for the data set of a special type called ‘vatrushka’.1
1 Vatrushka is a pastry formed as a ring of dough with quark in the middle.
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Fig. 4. PCA on the entire data set. The score plots PC1-PC2 (a) and PC1-PC3 (b).

Fig. 5. Average spectra with their 95% tolerance intervals for NN þ AN classes (blue) and AA þ NA (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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This term and analysis of its distinct properties was recently published in
paper [32]. The essential feature of ‘vatrushka’- type data is that all ob-
jects from the target class are located completely in the middle (filling),
while the alternatives occupy the periphery area (pastry).

4. Discussion

The reasons, which lead to abnormal development of the sperm, - or
its subsequent damage, - are very different. The manifestations of such
abnormalities vary widely also. The spectra acquired for the abnormal
spermatozoa are always different and they do not form an entire class. It
is illustrated in Fig. 7, where the average spectrum of the NN þ AN class
samples is presented as the black dotted curve. Additionally, the spectra
of four abnormal samples (NA1, AA1, AA2, and NA2 in Fig. 6) are shown
as the solid curves. It can be seen that sample NA1 (red) has a large band
in the region of 1045 cm�1, which is a marker of DNA damage according
to the literature [10], [18]. At the same time, the band of sample NA2
(green) is insignificant in this region, but prominent bands appear in the
regions of 1002 cm�1 and 1374 cm�1.

These findings clearly correspond to the locations of these samples in
the bi-plot (Fig. 6) – close to 1045 loadings point (NA1) and between the
loadings points 1002 and 1374 (NA2).

In general, plots in Figs. 6 and 7 explain the nature of the spectrally
176
normal and abnormal samples. The normal samples are very similar,
while the abnormal ones are very unlike and they, in fact, comprise
several subclasses with different loadings, which correspond to the bands
round 1045, 1445, etc cm�1. Basing on the information available in the
literature, we tried to match the specific Raman bands to the corre-
sponding bond vibrations in given functional groups of atoms (Table 1).

When analyzing a spectrum of the intact sperm nucleus, we distin-
guish the bands characteristic of DNA, 1092 cm�1 and 782 cm�1 (Figs. 1
and 5). Ellis et al. [33] showed that the 1092 cm�1 band is a marker of
B-DNA and Z-DNA. Normally it has a flat or horizontal shoulder in the
1045 cm�1 region, which is a characteristic of the nucleus with intact
DNA [10] [18]. The results of our study confirm this conclusion. The
band round the 782 cm�1 region corresponds to thymine and cytosine
vibrations, as well as to the DNA backbone. According to Huser et al.
[16], this band is a marker of protamine-DNA packaging. The triple band
in the 1420 cm�1, 1445 cm�1 and 1486 cm�1 regions is ladder-shaped,
with the highest part in the 1486 cm�1 region. The band round
1002 cm�1 characterizes the amino acid phenylalanine. It is stable and is
presented with different intensities in almost all charts.

Partitioning of the samples into the normal and abnormal ones by
their spectral characteristics is possible only employing the multivariate
analysis. The summary results obtained using the DD-SIMCA classifica-
tion are presented in Table 2.



Fig. 6. PCA projection for the NN þ AN data. Bi-plot (PC2 vs. PC1). The blue
dots represent scores for the training (NN þ AN) samples, the red squares show
scores for the predicted AA þ NA samples, the green crosses are loadings. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 1
Main CRS bands and the corresponding bond vibrations in given functional
groups of atoms [16] [19], [33–35].

Wavenumber,
cm�1

Nucleic acid Amino acid Lipids

748 U, C (ring stretch)
782 T, C (ring stretch)

DNA backbone
1002 Phenylalanine

(Phenyl ring)
1045 DNA damage marker
1092 PO2

� marker of B-
DNA and Z-DNA
(PO2 symmetric
stretch)

1251 A, C (ring stretch) N-H and C-H
amide III

PO2
� asymmetric

stretch
Phospholipids

1307 A (ring stretch) N-H and C-H
amide III

1341 G (ring stretch) N-H and C-H
amide III

1374 G (ring stretch)
1420 A (ring stretch)
1445 Methylene

deformation
(CH2δ)
(endogenous
lipids)

1486 G, A (ring stretch)
1576 G, A (ring stretch)
1663 T (C¼O stretch) C¼O amide I C¼C Unsaturated

lipid bonds
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Normal and abnormal spectra are present in both groups; however,
the normal spectra prevailed (82%) in group N, and abnormal spectra are
equal to normal in group A.

Studying the group of morphologically abnormal spermatozoa we did
not succeed in isolating the characteristic features inherent in the whole
class of anomalous spectra due to its heterogeneity. Apparently, this can
be explained by the fact that abnormality is an internal property deter-
mined by the multiple damages of the nuclear DNA, which manifests
itself not in the specific absorption bands but in the entire spectral range.
Thus, the separation of samples into normal and abnormal is a non-trivial
task that can only be solved by proper analysis of spectral data.

To clarify this issue we selected the spectral dataset that contains the
bands, which are primarily responsible for the DNA damage (thanks to
anonymous reviewer for this idea) – 780, 1090, and 1045 cm�1

– and
performed linear discriminant analysis on this data. The results
Fig. 7. Average Raman spectra of NN þ AN class samples (dotted li
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demonstrate that the spectrally normal (NN þ AN) and abnormal
(AA þ NA) classes are clearly separated with accuracy of 94%. This is an
indirect confirmation of our main idea that CRS is able to reveal the
spermatozoa with damaged DNA.

5. Conclusions

According to the literature [36–38], severe degrees of ter-
atozoospermia are associated not only with sperm aneuploidy, but also
with various amounts of nuclear DNA fragmentation. Therefore, the
sperm morphology is not an absolute predictor of the nuclear DNA sta-
bility. Rather, sperm morphology reflects a degree of probability of the
DNA breaks in the morphologically abnormal spermatozoa during frag-
mentation tests [39]. As a starting point, it was suggested that
ne) and spectra of four different abnormal samples (solid lines).
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Table 2
Relationship between sperm groups and normal and abnormal spectral classes.

Group Spectral
Class

Number of
spectra

Proportion,
%

Morphologically normal sperm
(group N)

Normal 102 82
Abnormal 23 18

Morphologically abnormal sperm
(group A)

Normal 17 47
Abnormal 19 53
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spermatozoa with normal morphology, in general, should have more
stable and intact genomes than those of morphologically abnormal
spermatozoa.

Investigating the whole collection of cells using CRS, we have found
out that Raman spectra provide an additional information to standard
microscope study:

(1) Separation samples into normal and abnormal using CRS is only
partially consistent with the results of standard light microscopy.

(2) Cells considered normal by both approaches, CRS and standard
light microscopy, compose a compact class. We can assume that
this class characterizes the nucleus with intact, unfragmented,
mature DNA. Using this class as a training set, we are able to
differentiate the normal spectra from abnormal in the group of
morphologically abnormal spermatozoa.

(3) Spectra that correspond to the abnormal cells have deviations due
to various defects in nuclear DNA. This conclusion is made based
on the previously published results presented by various labora-
tories. Of course, this is a preliminary assumption, which requires
direct DNA analysis.

We assembled a spectral library characterizing mature, undamaged
chromatin of spermatozoa with normal and abnormal morphology. It is
supposed that CRS can make differentiation of spermatozoa with an
intact nucleus from spermatozoa with fragmented and defective nuclear
DNA possible. However, further research is needed in this area, and the
accumulation of scientific data would assist in making objective con-
clusions. It may be interesting to use CRS for evaluating spectra from
living, unfixed spermatozoa, and to select the viable ones. This seems to
be a very promising direction for sperm selection in the ICSI procedure.
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