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Abstract

The various methods of confidence intervals construction for nonlinear regression are considered. The new method named
Ž .by a method of associated simulation the AS-method is proposed. Using computerized simulation, it is shown on the exam-

ple that only two methods, the bootstrap and the AS-method, give a satisfactory accuracy. The advantage of the AS-method
is the speed. In comparison with the bootstrap, the prize is at least 10 000 times. This method may be applied when regres-
sion parameters estimates are obtained by the maximum likelihood method. It was proposed to use the AS-method when
extrapolation of complicated physico-chemical model is performed to predict the behavior of the model in the area far from
observation. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nonlinear regression is a popular tool for de-
scribing the behavior of complex physico-chemical

w xsystems 1 . It enables to create hard models, which
are based on the objective reasons about the investi-
gated processes. Only such models allow to predict
the value of response far from the area of observa-

w xtion 2 . The error of forecast is determined first of
all by extrapolation, and lesser by measurement er-
ror. Therefore, the estimation of forecasted value
solely is not enough, but the confidence interval
forecast is required. In this paper, the various ways

) Ž . Ž .Tel.: q7-95-939-7483 office , q7-95-283-4757 home ; fax:
Ž . Ž .q7-95-283-4757 home ; E-mail: polycert@chph.ras.ru office ,

Ž .al.pom@g23.relcom.ru home

of constructing such confidence intervals are investi-
gated.

The methods under consideration differ both in
complexity of execution and on accuracy that is a
closeness to the ‘true’ confidence interval. To check
the accuracy, we used a model example that will be
presented later. All the methods set forth here are
known, except one offered by the author. The new
method of confidence estimation named ‘associated
simulation’ is a variety of the Monte-Carlo method.

In the course of investigation of the confidence in-
tervals, the same variable frequently appears as a
random and as a determined one, being a realization
of this random variable. For convenience, all random
variables will be designated by Greek letters and de-
termined ones by Latin letters. The elimination was
made only for the variance of the normal law, which
is traditionally designated as s 2, and its estimate as
s2.
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Let:

hs f a,x q´ , 1Ž . Ž .
Ž . tbe a nonlinear regression, where as a , . . . ,a is1 p

the p-dimensional vector of unknown parameters, x
Žis the factor vector the dimension of x is not essen-

.tial to us , ´ is the error vector, which we suppose
to be distributed normally and independently with
zero mean and variance s 2. Let h be an experi-0

mental n-dimensional data set, which is obtained by
Ž .measurements in the points x gO for is1 . . . , n ,i

where O is an area of observations.
For searching the estimates a of parameters a, we

shall use least squares method, so:

a h sarg min Q h ,a , 2Ž . Ž . Ž .
a

Ž . w Ž .xtw Ž .xwhere Q h ,a s h y f a, x h y f a, x is the
sum of squares. The estimation of parameter s 2 will
be carried out by a traditional unbiased mode:

s2 sQ h ,a r nyp 3Ž . Ž . Ž .
Ž .Let g a be a differentiable scalar function of pa-

rameter vector a. Then, statistics:

gsg a sg a h 4Ž . Ž . Ž .Ž .
Ž . Ž .is an estimator of g a . The random variable g Pq

is an upper bound of one-sided confidence interval for
Ž .gsg a at reliability P, if:

Prob g P )g GP . 5� 4Ž . Ž .q

For simplicity, we shall consider only upper bound,
meaning that a low bound gy may be easily evalu-

Ž . Ž .ated as gy P sg 1yP . First of all, we shallq
Ž .consider the case when g a is the regression func-

Ž Ž ..tion itself Eq. 1 outside the area of observation
Ž . Ž .g a s f a, x , where x fO.0 0

Ž 2 .Let F z,a,s be a cumulative distribution func-
Ž .tion of statistics 2 , i.e.:

2 � 4F z ,a ,s sProb a-z , 6Ž . Ž .
Ž 2 . Ž .then the distribution G z,a,s of statistics 4 is:

2 � 4G z ,a ,s sProb g-zŽ .
E pF x,a ,s 2Ž .

s d x . . . d x .H...H 1 p
Ex . . . ExŽ .g a -z 1 p

7Ž .

Ž .The confidence interval 5 can be constructed with
Ž .the help of statistics 4 as:

g P sGy1 P ,a ,s2 . 8Ž . Ž .Ž .q 0 0

y1 Ž .Here G is the function inverse to function 7 , i.e.,
w y1Ž . x 2G G P, . . . , . . . sP, a and s are realizations0 0

Ž . Ž .of estimates 2 and 3 , obtained in experiment, i.e.,
for hsh . Certainly, in arbitrary case, the distribu-0

Ž .tion 6 is unknown, therefore, for confidence inter-
ˆ ˆval construction, we use the distributions F and G,

Ž . Ž .which are approximations of distributions 6 and 7 .
Now we consider various modes of confidence inter-
vals construction.

2. Methods for confidence intervals construction

( )2.1. Stochastic approximation SA

w xIt is known 3 that for a linear normal regression,
Ž .the distribution 6 is Gaussian. In a nonlinear case,

this statement is correct only asymptotically when
number of observations is large. Nevertheless, it is
possible to construct a confidence interval basing on
this fact. Let us assume that:

ˆ 2 y1FsF a ,s A 9Ž . Ž .
where F is p-dimensional cumulative normal distri-
bution with the mean vector a and matrix of covari-

2 y1 Ž . Ž .ance s A . Expanding functions f a, x and g a
in a series at a point asa and using Gauss’ ap-0

w xproximation 3 for a Hesse matrix A we receive:

2 n1 E Q a E f a E f aŽ . Ž . Ž .0 0 0
A s f ;Ýi j 2 Ea Ea Ea Eai j j i1

i , js1, . . . , p. 10Ž .
ˆFor such approximation, the distribution G is also

Ž . Ž .Gaussian with parameters E g sg and D g s0
2 t y1 Ž . Ž .s z A z, where g sg a and zs=g a . From0 0 0

Ž .Eq. 8 we get:

g P sg qx s . 11Ž . Ž .q 0 P g

Here x is P-quantile of normal distribution andP

Ž(s s D g . In some cases for example, whenŽ .g

Ž . .g a G 0 , the confidence intervals may be con-
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structed much more precisely, if lognormal distribu-
ˆtion G is used. In this case, the expression for a con-

fidence interval will be:

g P sg e x P ug 12Ž . Ž .q 0

where:

22u s ln 0.5 1q 1q4 s rg .( Ž .g g 0ž /
It is easy to construct confidence interval in the form
Ž . Ž . Ž Ž ..11 or 12 , as the matrix Eq. 10 is always calcu-
lated during the search of regression parameters.
However, the accuracy of this method in a nonlinear
case is not enough.

( )2.2. Linearization L

Ž Ž ..In some cases, the regression model Eq. 1 can
be transformed to a linear one. Assume that there are

Ž . Ž . Ž .such maps: ysh y , asb a and xsw x , and˜ ˜ ˜
Ž Ž Ž ... t Ž Ž Ž .simultaneously h g b a s g a and h f b a ,˜ ˜

˜tŽ .. Ž .w x s f x a. Estimation of parameters a is then˜ ˜ ˜
converted to the search of a minimum of the squared

Ž . Ž . tŽ .functional Q h ,a s h y Ha h y Ha , where h˜ ˜ ˜ ˜ ˜ ˜ ˜
˜ ˜ tŽ . Ž Ž . Ž ..sh h and Hs f x , . . . , f x . In this case,˜ ˜1 n

Ž .the confidence interval 5 has the form:

g P shy1 g ta qx s 13Ž . Ž .˜ ˜ ˜ž /q 0 P g

t y 1 t 2 ˜Ž . Ž . wŽ Ž Ž .where a s H H H h h , s s Q h h ,˜ ˜0 0 g 0
.. Ž .x tŽ t .y1a r n y p g H H g , x is P-quantile of˜ ˜ ˜0 P

normal distribution.
Such mode of confidence interval construction is

w xvery widespread 4 . However, it is well known that
coordinate transformation of initial regression can
lead to serious bias in the estimates. Below we shall
see it on an example.

( )2.3. Bootstrap BS

The methods explicated above are based on the
vague approximation of the distributions of estimates

Ž .a and forecasted function g a . A very effective
method called ‘bootstrap’ does not have such short-
ages. Apparently, for the first time it was explained
and applied in out-of-the-way work of Chuev et al.
w x5 . Later it was independently offered and justified

w x w xby Efron 6,7 and Efron and Tibishirani 8 . The ba-
sic idea of this method is to simulate the distribution

Ž .of estimates of parameters 6 with the help of
Monte-Carlo method and then take a percentile of

Ž .distribution 7 as a confidence interval.
2 Ž .Let a and s be realizations of estimates 2 and0 0

Ž .3 , obtained in experiment, i.e., for hsh . Con-0

sider random variables a U and g
U :

a U sarg min Q hU ,a , 14Ž . Ž .
a

g
U sg a U . 15Ž . Ž .

U Ž . UHere data set vector h s f a , x q´ and error0

vector ´ U are normally distributed with variance s2.0

The main assumption of this method is that the vari-
Ž . Ž . Ž . Ž .ates 14 and 15 are ‘similar’ to 2 and 4 corre-

spondingly. More precisely, it is supposed that there
Ž . Žis a monotone function r P its form is not impor-

. Ž . Ž . Ž U . Ž .tant , that r g y r g and r g y r g have0
w xidentical zero symmetric distribution 6 . If it is right,

the confidence interval for g can be obtained as a
sample percentile of distribution of the variate g

U.
Practically, it means the following algorithm:

Step 0. Obtain estimates a and s2 by initial data0 0

sample h ;0

Step 1. Construct a normal independent error vec-
U Ž 2 .tor ´ ;N 0, s I with the help of pseudoran-0

dom number generator;
U Ž .Step 2. Build the BS-data sample h s f a , x q0

´ U ;
Step 3. Estimate values a U and g

U by formulae
Ž . Ž .14 and 15 ;
Last step. Repeat independently steps 1–3 by N
times and gain the sample of values g

U , . . . ,g U.1 N

Then:

� U U 4g P sP-percentile g , . . . ,g . 16Ž . Ž .q 1 N

The experience shows that the BS-method gives
very exact values for confidence intervals. The only
shortage is a large expenditure of time for its realiza-
tion. It is obvious that the principal troubles are con-
nected with step 3. The time expended on one mini-

Ž .mization of the objective function 14 reaches 10 s
when a complicated model with large number of
nonlinear parameters is fitted. For the reliable fore-
cast, it is necessary to execute not less than Ns1000
recurrings that gives t)3 h of work.
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( )2.4. Free simulation FS

The inexactness in confidence intervals calculated
Ž . Ž . Ž .by formulae 11 , 12 and 13 can arise because of

Ž .an abnormality of distribution 6 , as well as non-lin-
Ž .earity of function 4 . Let us specify the confidence

Ž .interval 11 by taking into consideration a nonlinear
Ž .dependence of function g a . Consider a normal

vectorial variable a U and random variable g
U s

Ž U . Ug a , which is generated by a :

� U 4 2 y1Prob a -z sF z ,a ,s A , 17Ž .Ž .0 0

Ž .where F is defined by Eq. 9 and matrix A is de-
Ž .fined by Eq. 10 . If we accept the same assumption

about the equivalence g
U and g , as in the BS-

method, it is possible to construct a confidence inter-
val as a percentile of the simulated sample
g

U , . . . ,g U. To obtain this sample, it is necessary to1 N
U Žproduce the realizations of normal variate a Eq.

Ž ..17 multiple times. The easiest way to make it is to
w x y1use Choletsky’s expansion 9 for the matrix A s

B2, where B is triangular positive definite matrix.
U Ž .Then, a sa qs B´ , where ´;N 0, I .0 0

Since the stage of searching of estimations is ab-
sent, the time necessary for realization of this algo-
rithm is considerably less than at the BS-method.
However, the FS-method does not give quite exact
values that is connected, on our opinion, with the use

Ž .of normal distribution 17 for estimates of parame-
ters.

( )2.5. Associated simulation AS

We offer this method as the compromise between
the accuracy of the BS- and the speed of the FS-
methods. The main idea is that using parameters sim-
ulation instead of data simulation, we shall try to

Ž .specify the form of distribution 17 by approximat-
ing it to the real one.

Carrying out our researches, we were convinced
repeatedly that in spite of nonlinearity of a model,
distribution of random variable:

y2c a ss Q h ,a yQ h ,a 18Ž . Ž . Ž . Ž .0 0 0 0

is very close to the x 2 law with p df. For a linear
normal regression, the statement is true exactly be-

Ž . Ž . t y1Ž .cause c a s a y a A a y a . In nonlinear
case, the validity of it may be proved by central limit

w xtheorem 10 . The following algorithm that improves
the method of FS is based on this empirical fact.

w xStep 0. Divide the segment 0,1 on the m not
overlapped intervals by points P , which are 0sPk 0

- . . . -P s1. Then, with the help of function in-m
2 Žverse to the distribution x with p df P-quantile of

2 . w x mx , map this partition to semiaxis 0,` sj B so,1 k
� 2 4that Prob x gB sP yP .k k ky1

Step 1. Simulate the random variable a U by for-
Ž .mula 17 .

Ž U . Ž .Step 2. Calculate the value c a by Eq. 18 and
define what ‘basket’ B this value is put in.k

Step 3. If this ‘basket’ is already filled up to the
Ž .maximum level N P yP , go back to step 1, elsek ky1

U Ž .calculate the value g by Eq. 15 .
Last step. Independently repeating steps 1–3 until

all ‘baskets’ are filled up, and we obtain the simu-
lated sample of values g

U , . . . ,g U. Then the confi-1 N

dence interval is determined in accordance with rela-
Ž .tion 16 .

The experiment presented below shows that the
AS-method gives a rather satisfactory interval and the
time expenditure for its realization is increased not
more in a comparison with the FS-method.

The sense of an offered technique becomes trans-
parent if one takes into account that the expression
Ž . Ž U .18 for c a determines ‘the area of the indiffer-

w xence’ of parameter estimates 3 :

I C s a :Q h ,a yQ h ,a -C , 19� 4Ž . Ž . Ž . Ž .0 0 0

Ž . y nfor the likelihood function L h ,a s s exp-
w Ž . 2 xyQ h ,a r2 s . We suppose, that for C s

2 2Ž . 2Ž . 2s x P , where x P is the P-quantile of the x0 p p

distribution with p df , statement:

Prob ag I P GP , 20� 4Ž . Ž .
is fulfilled with a sufficient accuracy for nonlinear
models even for a small number of degrees of free-
dom.

3. Experimental

To compare the above-mentioned methods, we
used a model example. It was rather difficult to find
the system where distinction between different confi-
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dence intervals were essential. We have constructed
such an example using the model investigated for the

w xprediction of service life of rubber articles 11 . The
following model was used as the equation of regres-

Ž Ž ..sion Eq. 1 :
a1f a,x s1yexp y x exp a y1000 a rx .Ž . Ž .Ž .1 2 3 2

21Ž .
Ž .Here factor x is time h , and factor x is tempera-1 2

Ž .ture K . The parameter vector a has the following
sense: a is a scale, a is a preexponential, a is ac-1 2 3

tivation energy. This model is a result of simple scal-
ing transformation of the common kinetics model y

w Ž .a1 xs1yexp y kt with well known Arrhenius de-
Ž .pendence of constant rate k s k exp yErRT ,0

Ž .where a s ln k and a s0.001 ErR.2 0 3
Ž .The data see Fig. 1 include three series of mea-

surements conducted for values of the factor x equal2

accordingly to 383 K, 368 K and 353 K. The values
of the factor x have been varied with a step equals1

to 24 h. For simulation of the ‘real’ data, the follow-
Ž .ing values of parameters of function 21 were set

Ž .‘true’ values :

a s1.5, a s17, a s8, s 2 s0.005. 22Ž .1 2 3

Their estimates obtained in accordance with formu-
Ž . Ž .lae 2 and 3 , are:

a s1.3865, a s18.8578, a s8.6898,1 2 3

s2 s0.0067. 23Ž .
All necessary calculations were carried out using

w xintegrated computer system ‘Kinetic Trunk’ 12 on
the computer Pentium-100.

Ž . Ž .Fig. 1. Example: data and fitting. 1 B x s383 K, 2 v x s2 2
Ž .368 K, 3 l x s353 K.2

Ž .We took the result of extrapolation of function 21
to conditions x s8760 h and x s293 K as the1 2

function g. Thereby, we evaluated the confidence in-
terval for forecast of the response for 1 year at room

Ž . Ž .temperature g a s f a , 8760, 293 . The ‘true’
Ž .forecast, calculated for values 22 , is:

g 1.5, 17, 8 s0.1472, 24Ž . Ž .

Ž .and its estimate calculated for values 23 is g s0

0.0877.
How far is the extrapolation done? It is a very dif-

ficult question, since we have two different factors to
be extrapolated — x factor is changed from 120 to1

8760 and x factor is changed from 353 to 293.2

Moreover, all these values depend on the scale of di-
mensions. Our experience shows that the alteration of
response value y is more important. In the example

w xdata values h lay within the interval 0.06,1.07 and0

the ‘true’ value of forecast is equal to 0.1472. That is
why we can state that there is no extrapolation to the
response y. We have observed all the points y along

Ž .the curve y x at fixed x factor values and there is1 2

no extrapolation by factor x . In such case, we can1

consider the prediction as an extrapolation of the
Ž .whole curve y x by the temperature factor x from1 2

w xinterval 383,353 to the point x s293. Such issue2

arises when we need to predict the aging properties
of polymer materials. The results of so-called ‘accel-
erated aging tests’ performed at higher temperatures
Ž .stress conditions should be processed and extrapo-

Ž .lated to the lower temperature normal conditions . Of
course we should trust in the model we used. We be-
lieve in it because we have observed its form up to
the deep degrees of transformation at fixed tempera-
tures, and we believe in the Arrhenius law to be used
for the temperature extrapolation.

Applying all the methods determined above, the
Ž .one-sided confidence intervals g P for probabilityq

P varying from 0.001 up to 0.999 with step 0.001
have been constructed. The greatest distinctions were
observed in the area P)0.8, which is plotted in Fig.

Ž .2. Besides it, the ‘exact’ values points 6 in Fig. 2
of confidence interval for P s 0.8678, 0.9143,
0.9402, 0.9599, 0.9728, 0.9887, were determined by
the method described below. Hereafter, talking about
a confidence interval, we shall intend the whole curve

Ž .of g P , for all admissible values of probability P.q
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Fig. 2. Upper bounds of confidence intervals g vs. probability Pq
Ž . Ž . Ž .for various methods: 1 the SA-method, 2 the L-method, 3 the

Ž . Ž . Ž . Ž .BS-method, 4 the FS-method, 5 the AS-method, 6 B ‘ex-
act’ values.

Ž .The function 21 is nonnegative, therefore, confi-
dence interval of the SA method was calculated us-

Ž .ing formula 12 . These values are presented in Fig.
Ž .2 curve 1 . One can see that this interval lays much

below the ‘exact’ values.
w Ž .xBy simple transformations ys ln yln 1yy , x˜ ˜1

s ln x , x s 1rx , a s a , a s ya a , a s˜ ˜ ˜ ˜1 2 2 1 1 2 1 3 3
Ž .a a , it is possible to linearize function 21 and re-1 2

Ž̃ .duce it to the form f a, x s a x q a x q a .˜ ˜ ˜ ˜ ˜ ˜ ˜1 1 2 2 3

However, it is necessary to sacrifice two points
Ž . Ž .h 96,383 s 1.0698 and h 120,383 s 1.0584,

Ž .which are over hs1 see Fig. 1 . The confidence
Ž .interval constructed by formula 13 is already above

Ž .curve 2 in Fig. 2 , but still far from points 6.
For realization of the BS procedure, we accepted

2 Ž Ž ..estimates a and s Eq. 23 as initial values and0 0

have conducted Ns5000 recurrings. The obtained
Ž .confidence interval curve 3 is wonderfully agreed

with the ‘exact’ values. However, the expenditures of
time for realization of this algorithm were about 2 h
that seems to us unacceptable for such a simple re-
gression problem.

The method of FS conducted with Ns5000 re-
Ž .currings has brought the results curve 4 in Fig. 2 that

are overstated in correspondence with ‘exact’ values.
Ž .It is connected, apparently, with the distribution 17

that is too wide in a comparison with true distribu-
tion. Expenditure of time on a realization of the algo-
rithm was about 20 s.

For realization of the method of AS, the following
values were specified. Number of recurrings was N

s5000; number of ‘baskets’ was ms28. The first
nine intervals for construction the ‘baskets’ were

Ž .taken by size 0.1 from 0 up to 0.9 — volume 500 ;
Žthe next nine intervals had size 0.01 from 0.9 up to

.0.99 — volume 50 ; the last 10 intervals had size
Ž .0.001 from 0.99 up to 1.0 — volume 5 . The result

is represented by the curve 5 in Fig. 2. It differs from
the ‘exact’ values, but it does not seem essential to
us, since the distinction is not great and has the right

Ž .direction interval is overestimated . Expenditure of
time was about 25 s.

The quality of the x 2-distribution simulation was
checked together with construction of confidence in-
terval by the AS-algorithm. Besides it using an inde-

Žpendent series of simulation simultaneous with the
. Ž .BS procedure , the supposition that variate 18 is

subject to the x 2 law with ps3 df was verified. In
Fig. 3, the following values are represented:

d sc P yx 2 P curve 1 andŽ . Ž . Ž .ˆ1 3

d sc P yx 2 P curve 2 , 25Ž . Ž . Ž . Ž .˜2 3

where x 2 is P-quantile of x 2 distribution with 3 df ,3
Ž . Ž .c P is sample percentile of variate 18 in the BS-ˆ

Ž . Ž .algorithm and c P sample percentile of variate 18˜
in the AS-algorithm. The smallness of deviation d1

Ž .characterizes a conformity of our hypothesis 20 and
the smallness of deviation d characterizes the qual-2

ity of reproduction of x 2 distribution in the AS. From
Fig. 3, one can see that for P)0.75, ranges of devi-
ations d begin to increase. On the other hand, the1

Ž Ž .. ŽFig. 3. Deviations of sample percentiles Eq. 25 of values Eq.
Ž .. 2Ž .20 from quantiles x P for: 1 — the BS-method, 2 — the3

AS-method.
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Table 1
Number of failures in checking the confidence intervals con-
structed by methods: SA — stochastic approximation, AS — as-
sociated simulation

0 Ž .P Method Should be P g P1 q 1

SA AS Min Mean Max

0.99 182 35 21 31 40 0.989 0.995
0.97 279 84 77 93 108 0.973 0.926
0.95 344 124 134 155 174 0.960 0.817
0.93 410 185 193 217 239 0.940 0.720
0.9 470 265 281 309 336 0.914 0.598
0.85 569 409 431 464 496 0.868 0.434

Total number of attempts is 3093.

deviations d are small, therefore, the shape of dis-1
Ž . 2tribution of variate 18 is close to x . However, the3

sample estimate of the variance of x 2 distribution,˜3

obtained by the AS-method is equal to 6.3705,
whereas theoretically, it should be 6. Such difference
Ž .Ns5000 is essential for the significance equals to
0.001 and testifies that performing the idea of
‘baskets’ in the AS-algorithm, we construct the wider
distribution that is required. It agrees with data in Fig.
2.

Ž .In Fig. 2 the points 6 , ‘exact’ boundaries of the
confidence interval are represented and their confi-

Ž .dence regions horizontal lines are indicated. We
have received these data using the following algo-
rithm.

Ž .Step 0. Create data set hs f a, x q´ , where ´
Ž 2 . 2;N 0,s I using parameters a and s equal to

Ž .‘true’ values 22 ;
2 Ž .Step 1. Find estimates a and s by formulae 2

Ž .and 3 ;
Ž .Step 2. Construct confidence intervals g P byq

any method;
Step 3. Compare obtained values with a ‘true’

Ž .value of g calculated by Eq. 24 ;
ŽLast Step. Independently repeating steps 1–3 in an

.amount of N recurrings , obtain number of fail-
Ž Ž . .ures cases, when g P -g for each value of P.q

We have applied this algorithm for methods of SA
and AS at Ps0.99, 0.97, 0.95, 0.93, 0.9, 0.85 and
Ns3093. The outcomes are represented in Table 1.
In the first column, there are the values of confi-
dence probability P, in the 2nd and the 3rd are num-
bers of failures for the SA- and the AS-methods. In

the 4th column, there is a minimum, in the 5th is a
mean, and in the 6th is a maximum of theoretical
values of failures in correspondence with binomial
law for significance level 0.05. In the 7th column, the
evaluation of real confidence probability P is pre-1

sented. It was calculated as:

P P s1yN P rNŽ . Ž .1 1

Ž .where N P is a number of failures for the AS-1
Ž .method the 3rd column . Then the ‘exact’ values of

Žconfidence intervals for these probabilities the last
.column of Table 1 were determined by equation:

g 0 P sg P P , 26Ž . Ž . Ž .Ž .q 1 q 1

Ž .where g P is the appropriate boundary of the con-q
fidence interval obtained by the AS-method. These

Ž .values 26 are presented in Fig. 2 in points 6.

4. Conclusions

In this paper, the various methods of confidence
intervals construction for nonlinear regression were
considered. The new method named by a method of
AS is proposed. It is shown on the example that only
the BS and the AS method give a satisfactory accu-
racy. Advantage of the AS-method is the speed. In a
comparison with the BS, the prize is at least 10 000

Žtimes. The substantiation of the AS-method as well
.as other nonlinear regression methods is asymptotic.

This method may be applied when parameter estima-
tors are obtained by the MLM. The rather high accu-

Ž .racy in comparison with a method of SA may be
explained, in our opinion, by successful choice of

Ž .ranging statistics 18 , which distribution quickly
converges to x 2 even in a hardly nonlinear case. We
consider that the further refinement of the AS-method
is possible. So, in particular, we assume, that if in Eq.
Ž . w x 218 we use MLM-estimator 4 of variance s s
Ž . Ž .Q h ,a rn instead of estimator 3 , the exactitude of

the interval will be improved.
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