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Abstract

The successive estimation of regression parameters is an effective technique applied in nonlinear regression analysis. In the

paper, this method is used for obtaining kinetic information from spectral data without any pure component spectra. In order to

study the way kinetics may be determined by ‘hard’ model without separate calibration, the simulated example of a two-step

reaction was constructed. With the help of real-world example, this approach is compared with known methods of kinetic

modelling. All calculations have been performed with the help of new nonlinear regression software, Fitter. Such approach is

valuable in case the concentrations of pure components are not available or if ‘soft’ calibration methods are inexact or time

consuming.
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1. Introduction

Nowadays, spectral data are often used to deter-

mine the kinetic parameters. Computerized spectro-

scopy provided us with a rapid on-line method of

measurements. These spectra contain relevant infor-

mation of the kinetics, thus challenging us to develop

a complex method for obtaining that information

from the spectral data. There are many methods

available to solve this problem [1–7] where the

employed approach consists of performing separate

‘‘soft’’ calibration between spectra and concentration

units. The calibrated concentration values are used

further for the ‘‘hard’’ parameters’ fitting. Sometimes,

‘‘soft’’ methods fail to provide the proper accuracy of

results. On the other hand, ‘‘hard’’ kinetic models

built on the main principles of chemical physics give

the strong basement for data analysis. Such methods

can be easily applied when spectra of pure compo-

nents are known. However, when they are unknown,

some essential problems arise. In this work, we

suggest a new way of ‘‘hard’’ analysis of spectral

data, which is suitable even in cases when pure

component spectra are unknown. Successive Baye-

sian estimation (SBE) technique [8] is known to be

helpful for complex large dimension nonlinear regres-

sion systems [9]. This method converts the whole

problem to a sequence of regressions that have

smaller dimensions. Now it is implemented for esti-

mation of reaction rate constants from spectral data,

and the results are reported here.
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There are two main aims in the paper. The first one

is to show the feasibility of SBE in application to the

spectral data. The second aim is to demonstrate that

this algorithm can be easily carried out with the help

of Fitter software [9,10], designed for nonlinear

regression analysis. To show all the advantages of

the suggested method, both simulated and real-world

data are used. Simulated data let us compare all

predicted values with known ‘true’ values, and thus

validation of the proposed SBE method becomes

absolutely clear. Real-world data let us compare this

approach with well-known methods of kinetic con-

stants estimation.

2. Experimental. Simulated data

The model for the kinetics of spectral data may be

expressed as a function of time t and wavelength x

depending on unknown kinetic rate constants k

yðt; x; kÞ ¼
Xl

i¼1

ciðt; kÞpiðxÞ: ð1Þ

Here, y is a spectral signal, ci are component concen-

trations, pi are pure component spectra, and l is the

number of reaction components. In discrete case,

when the spectra are separated into m wavelengths

and time is presented by n points, the matrix notation

for this equation can be used

Y ¼ CP þ E: ð2Þ

Here, Y is the (n�m) measured data matrix, C is the

(n� l) concentration matrix depending on unknown

kinetic parameters, and P is the (l�m) unknown

matrix of pure component spectra. Besides, the

(n�m) error matrix E is involved in model (2). Of

course, Eq. (1) is valid only in ideal cases. In

practice, the spectra contain drifts, baseline errors,

interactions between species, etc. Sometimes, these

errors can be corrected by suitable spectral pretreat-

ment methods, but not always. In general, the SBE

method does not utilize the linearity in Eq. (2) and

therefore may be applied to more complicated non-

ideal models.

2.1. Concentration matrix C

This matrix can be obtained as a solution to a

kinetic model. In this work, we consider an example

of two-step kinetics

A!k1 B!k2 C; ð3Þ

which may be presented as a system of ordinary

differential equations

dA

dt
¼ �k1A; Að0Þ ¼ A0

dB

dt
¼ k1A� k2B; Bð0Þ ¼ B0

dC

dt
¼ k2B; Cð0Þ ¼ C0

ð4Þ

This system has analytical solution

A ¼ A0expð�k1tÞ

B ¼ k1A0

k1 � k2
½expð�k2tÞ � expð�k1tÞ	 þ B0expð�k2tÞ

C ¼ A0 þ B0 þ C0 þ
A0

k1 � k2
½k2expð�k1tÞ

� k1expð�k2tÞ	 � B0expð�k2tÞ ð5Þ

Here we use the same notation for reaction compo-

nents A, B, C as well as for their concentration values

[A] =A, [B] =B, [C] =C. This notation is not accurate

but easier to write.

For the simulation study, the data are created by

Eq. (5) for the following initial concentration values

A0 ¼ 1; B0 ¼ C0 ¼ 0:

The ‘true’ rate constant values are chosen as

k1 ¼ 1; k2 ¼ 0:5

and the sampling instances, i.e., the time points when

the spectra are ‘measured’, are taken as

t ¼ 0; 2; 4; 6; 8; 10:

Thus, number of the time points (n) is 6. Such small

number of points is chosen with the intention to

produce the maximum troubles in the estimation. It

is the minimum number of measurements when esti-

A.L. Pomerantsev / Chemometrics and Intelligent Laboratory Systems 66 (2003) 127–139128



mation of parameters from single wavelength kinetics

is possible. Corresponding kinetic curves are plotted

in Fig. 1.

2.2. Pure component spectra matrix P

This matrix is simulated in an ordinary way using

Gaussian overlapping spectral peaks. Each spectrum p

is normalized as max(p) = 1. These spectral curves for

all pure components of reactions (Eq. (3)) are plotted

in Fig. 2. Here are 53 (m) wavelengths. The actual

wavelength values x will never be used in the simu-

lated example; therefore, only conventional wave-

length values are denoted. These values are just the

numbers that correspond to the actual wavelength

values. They vary from 1 up to 53.

We consider that these spectra are rather complex.

They are constructed for the purpose of demonstrating

the possibilities of the proposed method even for

complicated spectral data. In this simulated example,

all spectra values are nonnegative and we use this

knowledge in processing.

2.3. Data matrix Y

This matrix is calculated by Eq. (2), where con-

centration matrix C is given by system Eq. (5). In

addition, white noise with a relative error of 3% is

added to the simulated data.

Corresponding values are plotted in Fig. 3, where

curves represent errorless values and points present

‘measured’ data calculated with random errors.

3. Method. Successive Bayesian estimation

Our goal is to find unknown kinetic constants

k=(k1, k2)
t from spectral data Y, which is the

(6� 53) matrix. If pure component spectra vectors

p, q, and r, which correspond to the components A, B,

and C accordingly, are known, we obtain a rather

simple OLS problem [11]—to minimize the sum of

the squares—

min
k

Xm
i¼1

Xn
j¼1

½Yij � piAðti; kÞ � qiBðti; kÞ � riCðti; kÞ	2;
ð6Þ

where functions A, B, and C are presented by Eq. (5)

and pi, qi, and ri are given values. However, if one or

more pure spectra vectors p, q, and r are unknown—

which is the usual case—the situation changes dra-

matically. Practically, it is very difficult to find theFig. 2. Simulated pure component spectra.

Fig. 1. Simulated concentration profiles.
Fig. 3. Simulated true kinetic spectra (curves) and corresponding

data with errors (points). t = 0 (1,x), t = 2 (2,n), t = 4 (3,E), t= 6

(4,.), t= 8 (5,o), t = 10 (6,5).
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minimum of the sum (Eq. (6)) with respect to 161

unknown parameters (2 stands for kinetics, plus 53

spectrum values at each of the 3 pure components)

owing to the problem with ill-posed matrices.

As model (2) is linear in spectrum parameters P,

they may be excluded from sum (Eq. (6)), so the

initial estimating problem reduces to

min
k

NY � CðCtCÞ�1CtYN2
:

Further improvement of this approach [5,6] leads to

the weighted curve resolution method (WCR), which

is discussed below.

Applying the SBE method, we do not exclude

spectrum parameters from problem (Eq. (6)), but

reduce its dimension in the other way. The full descrip-

tion of this technique may be found in Refs. [8,9] and

also in Appendix A, where some essential formulae are

presented. Here, just a brief summary is given. The

main concept of SBE is to split the whole data set into

several parts. Afterwards, estimation of parameters is

performed successively—fraction by fraction—with

maximum likelihood method (MLM). It is important

that results obtained on the previous step are used as a

priori values (in the Bayesian form) for the next part.

The first (initial) fraction is processed by the OLS

method without any a priori information. During this

procedure, the sequence of the parameter estimates is

produced and its last term is the ultimate estimate. For

linear regression, it was shown [8] that SBE gives the

same estimates as the traditional OLS approach, and

these values do not depend on the order of fractions (see

theorem in Appendix A). In nonlinear case, the sit-

uation is more difficult but all these properties are

asymptotically the same.

With respect to the problem in question, the

following algorithm presents the SBE method for

kinetic parameters k1 and k2 estimation.

Step 0 (Initiate stage). Several wavelengths x1,

x2,. . . (usually 3–6) are selected and corresponding

spectral data sets Y1, Y2,. . . are processed simulta-

neously by the OLS method (see Eqs. (9)–(12)).

Step 1. The results—kinetic parameter estimates,

covariance matrix, etc.—are transformed into a priori

information in accordance with Eqs. (28)–(31).

Step 2. A new single wavelength xi is selected and

corresponding spectral data set Yi is processed sepa-

rately by MLM with respect to the a priori informa-

tion, obtained at Step 1 (see Table 1).

Last Step. Steps 1 and 2 are repeated until all wave-

lengths are treated, and we obtain the ultimate results.

According to Appendix A, here we use a priori

information of first type as we know that the error

variance is the same at each wavelength. In addition,

parameters k1 and k2 are treated as common for all

wavelengths, while parameters pi, qi, and ri are

considered as partial.

4. Results. Simulated data

4.1. Problem of first step

The SBE algorithm needs an initiate stage, where

the kinetic data are processed without a priori infor-

mation. Sometimes this stage may bring difficulties.

In our example, fitting of single wavelength data set is

troublesome because those data have only six meas-

urements versus five unknown parameters. Only some

wavelengths are applicable, e.g., conventional wave-

length 16 (see Fig. 4).

However, we can get together several wavelengths

to obtain the initial estimates. In the investigated

example, it appears that the kinetic data sets of any

four wavelengths can solve the problem of the first

step. These data contain 24 measurements that are

fitted by 14 unknown parameters. Initial wavelengths

may be chosen arbitrarily. They could be the first, or

the last, or any random four wavelengths.

In Fig. 4, an example of the initial data is pre-

sented. These kinetic curves are used in the random

Fig. 4. Kinetic data used at the initiate stage with a random order of

conventional wavelengths: x= 5 (1,w), x = 8 (2,5), x = 16 (3,D),

x= 25 (4,o).
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successive procedure described in Section 4.2. The

initial a priori information is designed using the

results of this stage, and thereupon the SBE procedure

begins.

4.2. Kinetic rate constants estimation

In general, it is known that the order of series in the

successive algorithm affects the results of estimation

of nonlinear model. However, this effect is not essen-

tial for practical purposes. To demonstrate this, we

performed the successive estimation for different

orders of conventional wavelengths. These are the

direct order (i.e., 1, 2, 3, 4, 5,. . ., 53), the inverse order
(i.e., 53, 52, 51, 50, 49,. . . ,1), and the random order

(i.e., 16, 5, 29, 8, 41,. . .). The leading four numbers in

these sequences present the wavelengths that are used

at the initiate stage. The results are shown in Fig. 5,

plots (a–c).

Here, the solid curves represent the successive

estimates of the kinetic rate constants, and the shaded

areas represent the standard deviations added (sub-

tracted) to them to show the uncertainties. Each plot

contains both estimates; the upper is k1 estimate and

the lower is k2 estimate. The dashed lines show the

‘true’ values of the kinetic constants. All the data are

plotted versus numbers (the X-axis), which represent

conventional wavelengths in the order (from left to

right) as they are used in the successive procedure.

The first four points in each plot show the results of

the estimation at the initial stage.

The plots demonstrate that while different orders

of wavelengths produce different intermediate values

of estimates, the ultimate results are rather close. The

Fig. 5. Results of the successive estimation of kinetic rate constants depending on wavelength order: (a–c) and the 0.95 confidence ellipses of

the final estimates (d). In plots (a–c), solid curves present estimates of k1 (1) and k2 (2); thin curves (1a, 1b, 2a, 2b) show borders of standard

deviation regions; dashed lines (1c, 2c) mark the ‘true’ values of constants. In plot (d), ellipses and points present: direct (1,n), inverse (2,x),
and random (3,.) order of wavelengths; point (4,E) shows the ‘true’ values of constants.
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last plot (d) in Fig. 5 illustrates this idea. Here are the

0.95 confidence ellipses for all the ultimate estimates.

Each ellipse and the mark in its center present the

results of SBE with a corresponding order of wave-

lengths. Comparing the trajectories for the different

arranges, one can see that the intermediate estimates,

as well as their uncertainties, really depend on the

wavelength order. It seems that the best is the direct

order, where both estimates and deviations vary rather

smoothly and slowly without large jumps. Another

interesting result can be seen in plot (b), where

estimation with the inverse order of wavelengths is

presented. The initial stage yields very bad estimate

of k1 parameter. Afterwards, uncertainty falls down.

However, these values are far from the concluding

results yet. Just the last wavelengths 2 and 1 make the

estimate and the deviation closer to the common

ultimate values.

4.3. Spectral parameters estimation

As soon as the common kinetic rate constants k1
and k2 have been estimated, it is natural to find partial

spectral parameters p, q, and r. Of course, it can be

done rather easily. If the rate constants are fixed on

their estimated values, the set of spectral parameters

pi, qi, and ri can be obtained for each wavelength i by

the OLS method. However, the uncertainties of these

estimates will be calculated wrong because the OLS

approach cannot take into account the uncertainties of

fixed kinetic constants.

We suggest applying the SBE approach again. At

the last step of the kinetic constants estimation, the

resulting a posteriori information can be created and

then transformed into the truncated a priori informa-

tion (see Eq. (28)), which concerns the kinetic con-

stants only. This should be used as a priori information

of the second type (see Appendix A) for each wave-

length iwhen the set of spectral parameters pi, qi, and ri
is estimated. Of course estimating should be performed

under the additional constrains that kinetic parameters

have already been found and therefore they are not

estimated again. In practice, we assign the zero values

to the elements of matrix V (Eq. (10)), which corre-

spond to kinetic parameters.

The results are presented in Fig. 6. Each plot shows

the ‘true’ simulated pure component spectra (solid

curve 1, left Y-axis). The results of the estimation are

presented as the difference between the estimated and

the ‘true’ spectra (point 2). Also, the tripled standard

deviation regions (shaded areas 2a and 2b) are shown.

These data are plotted to the right Y-axis. It can be

seen that obtained estimates are rather accurate, par-

ticularly for components A and C.

Fig. 6. Simulated pure component spectra (solid curves, 1, left Y-

axis). Difference between spectrum estimate and ‘true’ spectra

(point 2, right Y-axis). Tripled standard deviation regions (shaded

areas 2a, 2b, right Y-axis).
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5. Discussion. Simulated data

The proposed method provides a new approach to

the identification of chemical kinetic models. To

demonstrate that this method is reliable, we perform

the following ‘validation test’. The simulated ‘exper-

imental’ data are processed by the OLS method,

where 161 parameters are estimated by minimizing

the sum of squares (Eq. (6)). The results of the test are

presented in Fig. 7. The points in the centers of

ellipsis show the estimates obtained with the help of

the OLS and the SBE methods. They are very close as

well as the corresponding confidence regions, which

are represented by the ellipses. Thus, the test confirms

the conclusions of the theorem (Appendix A); the

SBE estimates are asymptotically the OLS estimates.

However, we are not sure in the confidence regions. It

is known that covariance analysis of nonlinear models

is a hard problem. The linearization is valid only if the

model is ‘similar’ to the linear model. A measure of

this similarity is a coefficient of nonlinearity that was

proposed in Ref. [9].

The coefficient for the linear model is equal to 1.

The greater the coefficient, the more nonlinear the

model is. This coefficient is calculated for the given

example and it appears to be 1. This result shows that

this model is actually ‘linear-like’ so one can trust in

the constructed ellipses. The statistical simulation

technique [12] sustains this claim.

The initial stage is the main trouble of the proposed

method. In Fig. 5, one can see that the successful

choice of initial wavelengths can improve the estima-

tion (plot a) as well as a bad choice could decline it

(plot b). To make the choice of series order automatic,

we suggest a simple instrument.

It is clear that the kinetic curve with the largest

change is the most ‘informative’. In addition, the

nonmonotonic curves with extremes are good for

fitting. Summarizing these ideas, we introduce an

empirical criterion for evaluating the relative ‘infor-

mativeness’ of the kinetic curves. This is the follow-

ing expression

L ¼
Xn
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtj � tj�1Þ2 þ ðYj � Yj�1Þ2

q
� ðtm � t1Þ

where tj are the time (predictor) values, Yj are the

kinetic (response) values, and n is the number of

measurements. The main term in this expression is

the length of the curve. The larger the value of L,

the more ‘informative’ the kinetics is. The straight

line that is parallel to the t-axis has the ‘informa-

tiveness’ L= 0. Curves presented in Fig. 4 have the

following values: L(16) = 0.0476, L(5) = 0.0286,

L(29) = 0.0174, L(8) = 0.0007. If we range all wave-

lengths in accordance with this criterion, we can

expect the ‘optimal’ successive estimation. Fig. 8

sustains this idea.
Fig. 7. Results of estimation presented by the 0.95 confidence

ellipses SBE (1,n) and OLS (2,.) methods; true value (3,E).

Fig. 8. Results of successive estimation of kinetic rate constants for

the ‘optimal’ order of wavelengths. Solid curves present estimates

of k1 (1) and k2 (2); thin curves (1a, 1b, 2a, 2b) show borders of

doubled standard deviation regions; dotted lines (1c, 2c) mark the

‘true’ values of constants.
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6. Real-world example

6.1. Data

This example originates from Refs. [2] and [13].

The data set consists of SW-NIR spectra of 2,5-di-tert-

butyl-1,4-benzoquinone. The reaction of two-step

epoxidation was studied as an example of real exper-

imental process. The reagents, experimental setup,

and other details have been described in Ref. [2].

Raw experimental data may be found at Ref. [15].

There are 240 spectra with wavelength range 800–

1100 nm and interval of 1.0 nm. Total reaction time is

1200 s. The eight repeated individual batch processes

were recorded.

The raw spectral data are preprocessed in accord-

ance with a procedure described in Ref. [2]. Bellow, a

short summary is given. The fourth spectrum is used

as blank and is subtracted from all other spectra. The

second derivative spectra are calculated applying a

Savitzky–Golay filter with 15 data points window.

The small wavelength range 860–880 nm is used for

data processing.

6.2. Results

We have performed the processing of first data

batch with the direct and optimal successive proce-

dure. In this example, ‘spectral’ parameters p, q, and r

could be negative, thus no constrains are applied. The

results of direct procedure are presented in Fig. 9,

where the successive estimates of the rate constants are

plotted versus wavelengths. The setup of this plot is

similar to Fig. 5. The final values of estimates,

obtained on the last wavelength 880 nm, are k1 =

0.267F 0.015 (min� 1) and k2 = 0.095F 0.010

(min� 1). Here, standard deviations are also given.

Correlation coefficient is r =� 0.18. The optimal

SBE procedure gives the following values: k1 =

0.238F 0.015 (min� 1), k2 = 0.102F 0.010 (min� 1),

and r =� 0.22.

In order to compare the successive method with

other known approaches to kinetic constants estima-

tion, we have constructed Fig. 10. There, the results

of processing of this example with different methods

are shown. Each method is shown by its 0.95

confidence ellipse that was constructed using data

presented in Ref. [13]. All these methods are com-

pletely described in Ref. [13], so only a brief

summary is given here.

Classical curve resolution (CCR—ellipse 1) is the

successive two-step algorithm that utilizes the line-

arity of spectral parameters. This technique also gives

the OLS-solution as no constraints are used. Weighted

curve resolution (WCR—2) is a combination of a

‘soft’ method using singular value decomposition of

data matrix Y (Eq. (2)) and a ‘hard’ presentation of

concentration matrix C. The generalized rank annihi-

lation method (GRAM—3) is a ‘soft’ approach that

utilizes a simple equation

e�kt

e�kðtþsÞ ¼ eks
Fig. 9. Results for real-world example obtained with the direct SBE

algorithm. Solid curves present estimates of k1 (1) and k2 (2); shaded

areas (1a, 1b, 2a, 2b) show borders of standard deviation regions.

Fig. 10. Results for real-world example obtained with different

methods. Each method is presented by the 0.95 confidence ellipse:

CCR (1), WCR (2), GRAM (4), LM-PAR (3), and SBE (5).
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showing that the reaction rate constants can be

extracted from the ratio of the nonshifted and shifted

exponentially decaying function. The Levenberg–

Marquardt algorithm and alternating least squares

steps of the PARAFAC model (LM-PAR—4) are a

‘soft’ method using iterative procedure that enhances

GRAM estimates. Both GRAM and LM-PAR method

can only be used for modelling pseudo first-order

kinetics.

The data for ellipse 5 (SBE), which corresponds to

the optimal SBE solution, have been given above.

One can compare the size and the shape of the

ellipses. From Fig. 10, it can be seen that ellipses 1

and 5 have the smallest size and roundest shape. This

means that the SBE method yields minimum devia-

tions and correlation among the observed methods,

and its results are again close to the OLS solution. The

optimality of the OLS estimators is well known [11],

although this method could be unreliable for the large

data sets. The properties of the SBE method (see

Appendix A) are similar to OLS but it is more stable.

7. Conclusions

In this paper, the successive Bayesian estimation

method has been presented in order to estimate

reaction rate constants from spectral measurements

of a reaction system when individual component

spectra are unknown. This method is of general nature

and it can be used for any kind of kinetic models. Its

feasibility was illustrated by the simulated and the

real-world example of two-step kinetics. Simulations

show that this algorithm can deal with a strong

spectral overlap and with an extremely small number

of time points. It was also demonstrated that SBE

agrees with OLS. From the real-world example, it can

be concluded that the successive method leads to

lower deviations and correlations of reaction rate

constants estimates in comparison with some known

methods. Moreover, it gives additional information

that is the trajectories of estimates in dependence on

wavelength, which can be used for a supplementary

study of data.

The SBE method is rather fast, but it is slower than

OLS. The ratio of computational times tSBE/tOLS may

be roughly estimated [14] by the formula [1+( p/l)]3,

where p is the number of kinetic constants and l is the

number of components. For a two-step reaction, the

ratio is equal to 4.6; however, in our examples, the

actual values were about 2.

It is of interest that the SBE method is Bayesian

only in its form but not in its concept. This means that

no subjective a priori data are actually used. Each a

priori information element yields from the experimen-

tal data processed at the previous step, and only the

way of its application is dictated by the Bayes

theorem. No extra assumptions (number of PCs,

time-shift, pseudo first-order) are needed for this

method implementation.

8. Software implementation

Fitter software [10] was used for modelling. Der-

ivation of spectra was done in the Unsrambler version

6.11 [16].
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Appendix A. The SBE Theory

The usual regression setup is considered

where a=(a1,. . .,ap)
t is the vector of unknown param-

eters and r2 is the unknown error variance. The proper

likelihood function (argument y is omitted) is given by

L0ða; r2Þ ¼ ð2pÞ�N=2r�Nexp � SðaÞ
2r2

� �
; ð7Þ

where

SðaÞ ¼
XN
i¼1

ðyi � fiÞ2 ð8Þ

yi ¼ f ðxi; aÞ þ ei; i ¼ 1; . . . ;N ; efNð0; r2IÞ;
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is the sum of squares. Applying maximum likelihood

principle to the function Eq. (7), one can find the

following values.

Parameters a estimates—

â ¼ argminSðaÞ ð9Þ

and the Fisher matrix A that characterizes the accuracy

of estimation—

A ¼ VtV; where Vai ¼
Bf ðxi; âÞ

Baa
;

a ¼ 1; . . . ; p; i ¼ 1; . . . ;N ð10Þ

This ( p� p) matrix A is the Hessian of S(a) in the

Gauss–Newton approximation [9], and if it is inver-

tible, then cov(â, â) = r2A� 1.

Variance r2 estimate is

s2 ¼ SðâÞ
Nf

ð11Þ

where Nf is the number of degrees of freedom (NDF)

for estimator Eq. (11)—

Nf ¼ N � p ð12Þ

Near the point of maximum, the likelihood function

can be approximated by

L0ða; r2Þcð2pÞ�N=2r�N

� exp � s2

2r2
ðða � âÞtAða � âÞ þ NÞ

� �
;

ð13Þ

Now, let us consider the case when there is a priori

information presented by some distribution h(a,r2).

Then the likelihood function is

Lða; r2Þ ¼ hða;r2ÞL0ða; r2Þ ð14Þ

Our aim is to construct the distribution h basing on the

available information that in fact consists of the

following items, which correspond to the values in

Eqs. (9)–(12).

(1) A priori parameter values

b ¼ ðb1; . . . ; bpÞt ð15Þ

(2) A priori information matrix

H ¼ fhabg; a; b ¼ 1; . . . ; p ð16Þ

(3) A priori variance value

s20 ð17Þ

(4) A priori value of NDF

N0 ð18Þ

A priori information that includes all four items is

referenced as of type 1. Sometimes, the two last items,

concerning variance and NDF, are absent. In this case,

information is called type 2.

In the Bayesian approach, a can be considered (see

Eq. (13)) as a normal random vector with the expect-

ation b and the accuracy matrix cH

afNðb; cHÞ ¼
ffiffiffiffiffi
cp

p
ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞp

p ffiffiffiffiffiffiffiffiffiffi
detH

p
exp

�
� c

2
RðaÞ

�

ð19Þ

where R(a) is a quadratic form

RðaÞ ¼ ða � bÞtHða � bÞ; ð20Þ

Factor c depends on the type of information, and it is

c = s0
2/r2 for type 1 and c = 1 for type 2.

A priori distribution of variance r2 can be written

using the v2 approach and values in Eqs. (17) and

(18)

r2f
ð2N0s

2
0Þ

N0
2

C
N0

2

� � r�N0�2exp �N0

s20
2r2

� �
: ð21Þ

Combining Eqs. (19) and (21) with Eq. (14), the

likelihood function with a priori information of type

1 can be presented as

Lða ; r2Þ ¼ C1r
�N�N0�2

� exp � 1

2r2
ðSðaÞ þ s20RðaÞ þ s20N0Þ

� �
;

ð22Þ
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and with a priori information of type 2 by

Lða; r2Þ ¼ C2r
�Nexp � 1

2

SðaÞ
r2

þ RðaÞ
� �� �

: ð23Þ

Factors C1 and C2 are out of interest because they do

not depend on a and r2.
The MLM estimate is the point where likelihood

function has a maximum. It is easy to see that this can

be found as a minimum of objective function Q(a).

Differentiating Eqs. (22) and (23), one can obtain that

for information of type 1, the objective function is

QðaÞ ¼ SðaÞ þ BðaÞ ð24Þ

and for type 2, it is

QðaÞ ¼ SðaÞBðaÞ ð25Þ

Here, B(a) is the Bayesian term of the form

BðaÞ ¼ s20½N0 þ RðaÞ	 ð26Þ

for information of type 1, and of the form

BðaÞ ¼ exp
RðaÞ
N

� �
ð27Þ

for information of type 2. In Table 1, some essential

statistics of MLM with a priori information are

presented.

In SBE, the whole data set is split into the parts,

which are processed successively. At each step

(except the first one), MLM is applied with a priori

information that originates from the results of the

previous step. Now we show how that information

is calculated.

Let us consider the results, which are obtained after

processing on the ith step (see Table 1). Obviously

they can be referenced as a posteriori information.

This information is similar to the items presented in

Eqs. (15)–(18), and it could naturally be used as a

priori information for the next (i + 1)th step. However,

there are some difficulties that require the additional

consideration.

It often occurs that each part of split data set is

fitted by its own regression function fi(x,ai), which

depends both on common parameters and on partial

parameters

ai ¼ ða1; . . . ; ar; arþ1; . . . ; apiÞ
t

Parameter subset a1,. . .,ar is called common because

each regression function fi, i= 1,. . .,M, depends on it

and the parameter subsets ar + 1,. . .,api are called

partial because each subset presents just in the single

model fi.

When a priori information is constructed from a

posteriori one, it is essential to separate data relating

to the common and to the partial parameters.

Common information should be kept for further

usage, while partial one should be removed since

it does not coincide to the next portion of the data.

The a posteriori Fisher matrix A (step index i is

omitted for simplicity) can be represented by a

block matrix

A ¼
A00 A01

At
01 A11

2
4

3
5;

where A00 is the (r� r) square matrix corresponding

to the common parameters, A11 is the ( pi� r)�
( pi� r) square matrix corresponding to the partial

parameters, and A01 is the r� ( pi� r) matrix.

Table 1

Results of MLM estimation with a priori information of type 1 and

type 2

Statistics A priori

information

of type 1

A priori information

of type 2

Parameter

estimators

â = arg min Q(a),

Q(a) = S(a) +B(a)

â = arg min Q(a),

Q(a) = S(a)B(a)

The Fisher

matrix

A=V tV+ s0
2H

A ¼ exp
RðâÞ
N

� �

� VtV þ SðâÞ
N

H

� �

Variance

estimator s2 ¼ QðâÞ
Nf

s2 ¼ SðâÞ
Nf

NDF Nf =N+N0 Nf =N
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The a priori information matrix H is recalculated

from matrix A by the formula

H ¼ 1

s2

A00 � A01A�1
11 At

01 0

0 0

2
4

3
5 ð28Þ

where s2 is the a posteriori value of the error variance.

Matrix dimension should correspond to the number of

parameters in the next portion of data, i.e.,

( pi + 1)� ( pi + 1), so the matrix is completed with zero

values. A priori parameter values are transformed in

parallel

b a ¼
âa; 0 < aVr

0; r < aVpiþ1

8<
: ð29Þ

For information of type 1, a priori variance value is

equal to a posteriori value

s20 ¼ s2; ð30Þ

but NDF should be recalculated by

Nf ¼ Ni � N0 � pi þ r; ð31Þ

where Ni is the number of data and N0 is a posterior

NDF value in the ith portion of data. Now, Eqs. (28)–

(31) present the a priori information that is applied on

the next step of the SBE procedure.

Let us compare SBE and OLS methods. In OLS,

the objective function

Sða1; . . . ; aM Þ ¼ S1ða1Þ þ . . .þ SM ðaM Þ ð32Þ

is used. Here

Sjða jÞ ¼
XNj

i¼1

ðyji � fjðxji; ajÞÞ2; j ¼ 1; . . . ;M ð33Þ

is the partial sum of squares regarding to the jth

portion of data.

The OLS estimates of parameters a are

â ¼ ðâ1; . . . ; âM Þ ¼ argminSða1; . . . ; aM Þ; ð34Þ

and the estimate of error variance is

s2 ¼ Sðâ1; . . . ; âM Þ
N � p

; ð35Þ

Here, N =N1 + . . . +NM is the full number of all

measurements, and p = r + p1 + . . . + pM is the full

number of all parameters a.

The SBE estimates are presented by the following

algorithm.

(1) The whole data set is split into M subsets (parts).

(2) The first part is processed by OLS method (see

Eqs. (8)–(10)).

(3) A posteriori information is transformed to a priori

one (see Eqs. (28)–(31)).

(4) The next part is processed by MLM with a priori

information (see Table 1).

(5) Steps 3 and 4 are repeated until the last part of

data.

(6) The ultimate results are the SBE estimates.

In general, the SBE estimates depend on the

subsets order, which is applied in processing. How-

ever, in the linear case, the following properties of the

SBE method [8] can be proved.

Theorem. Let functions fj(x, aj), j = 1,. . .,M be linear

in parameters aj, and errors be homoscedastic, i.e.,

r1
2 = . . .= rM

2= r2, then the following OLS and SBE

outcomes coincide for any order of processing in the

SBE method:

(1) estimators of common parameters;

(2) covariance matrices of common parameters;

(3) estimators of error variance;

(4) numbers of degrees of freedom.

It can also be proved that in the nonlinear case,

these properties are achieved asymptotically.
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