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Abstract

Testing of antioxidants’ activity in polyolefin is considered. It is proposed to substitute the conventional Long Term Heating Aging

(LTHA) test for the method of Differential Scanning Calorimetry (DSC). Values of the Oxidation Initial Temperature measured by the

DSC method (X data) are calibrated using the values of Oxidation Induction Period obtained in the LTHA tests (data Y). This data is

further processed applying both soft and hard modeling. The hard method is the Non-Linear Regression approach with the traditional

confidence interval estimation. The soft method combines the Partial Least Squares regression and the method of Simple Interval

Calculation. We compare the results of soft and hard prediction based on the same data set and point out which approach is better in

various cases.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Testing the activity of antioxidants (AO) in polyolefin is

a long and costly process, which requires 1–3 months of

heating up the samples in an oven. This laborious procedure

is called Long Term Heating Aging (LTHA). This paper

considers an alternative chemometric approach that makes

the process of the AO development more effective. The

proposal to use the Differential Scanning Calorimetry

(DSC) method and to construct a calibration model that

can predict AO activity has been studied earlier [1,2]. These
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doi:10.1016/j.chemolab.2005.04.004

Abbreviations: AO(s), Antioxidant(s); CI(s), Confidence interval(s);

DSC, Differential Scanning Calorimetry; LTHA, Long Term Heating

Aging; MED, Maximum Error Deviation; NLR, Non-Linear Regression;

OIP, Oxidation Induction Period; OIT, Oxidation Initial Temperature; OSP,

Object Status Plot; PI(s), Prediction interval(s); PLS, Partial Least Squares;

PP, Polypropylene; RMSEC, Root Mean Square Error of Calibration;

RMSEP, Root Mean Square Error of Prediction; SIC, Simple Interval

Calculation.

* Corresponding author. Fax: +7 95 9397483.

E-mail address: forecast@chph.ras.ru (A.L. Pomerantsev).
works describe the hard (NLR) [1] and the soft (PLS) [2]

approaches to modeling, but use short data sets, different for

each case. In this paper we study a representative AO

sample set that enables us to explore two important issues.

The first one is a practical question regarding feasibility of

the suggested DSC alternative method. The second one is

the comparison of the hard and the soft modeling being

applied to the same data set.

The hard method is based on the Non-Linear Regression

(NLR) approach [4], while the soft method employs the

Projection on Latent Structures (PLS) technique [5]. Both

methods give point estimates for a predicted value. To make

the prediction more comprehensive for each predicted value

we provide an interval that represents the uncertainty in

prediction. For the hard method it is a traditional confidence

interval calculated by statistical simulation. For the soft

method a novel approach called Simple Interval Calculation

(SIC) [6,7] is used. There are many alternative methods for

calculation of uncertainty in PLS [8,9] and the literature

references listed herein. Though these methods are still

under discussion, we neither criticize them, nor compare

them with the SIC approach. That might be an interesting
tory Systems 79 (2005) 73 – 83
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Fig. 1. Example of the DSC curve and the OIT value.
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Fig. 2. Scheme of data.
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topic for the future papers, but in the present work we

concentrate on comparison of the SIC method with the well-

known technique of the confidence estimators in the Non-

Linear Regression [10].

Antioxidant is a special additive which inhibits poly-

mers thermo-aging, protecting polymers from oxidation

during processing as well as at the end-use application.

Reacting with free radicals, AO terminates chains and

exhausts. The oxidation is completely suppressed as long

as the concentration of AO exceeds some critical value.

Therefore, it is very important to estimate Oxidation

Induction Period (OIP)—the time during which the

concentration of AO is high enough. The more effective

is an antioxidant the longer is the OIP. In practice, the AO

effectiveness is measured by the OIP value in days. A

generally adopted testing procedure involves keeping

polymer samples in ovens at a standard temperature like

140 -C for some time: from 1–2 days for poor AOs, up to

40 days for the AO of the best composition. Twice a day a

qualified tester examines the samples and checks for

apparent signs of degradation: brittleness, crumbling,

yellowing. Needless to say this type of testing is very

erratic and time-consuming.

An alternative to the LTHA testing is the DSC

measurement and further data processing. Differential

Scanning Calorimetry is a method of testing in which a

sample is heated at a constant heating rate using special

instruments. The measured signal represents a heat flow as a

function of growing temperature T, Fig. 1. For a chemical

reaction with a thermal effect, the DSC signal is propor-

tional to the rate of the reaction. While the AO concentration

in a sample is sufficient, the signal remains constant; at

some specific temperature it starts growing. This tempera-

ture is called Oxydation Initial Temperature (OIT) and it is

used in our example here. The DSC approach has an

apparent advantage of being a fast and well-automated

method without strong requirements to the size and form of

specimens.
2. Experimental

The experiment is conducted using 25 AO samples

marked AO-1, . . . , AO-25. Some of them (e.g. AO-1, AO-2

and AO-3) are the standard additives used in production.

Other AOs are the trial agents that are expected to be

effective. All samples are added to polypropylene (PP)

powder in concentrations of 0.05% (500 ppm), 0.07%, and

0.1%. After blending the additive and the polymer, the

mixture is added to the pre-heated extruder at the

temperature of 250 -C. The product of extrusion is

converted into the 0.25 mm film, which serves as a base

material for the LTHA and the DSC testing.

The LTHA tests are performed at the temperature of 140

-C and result in a set of the corresponding OIP values (in

days). The DSC measurements are conducted at the

temperature range of 150 -C to 300 -C, where an

exothermic maximum related with polymer oxidization is

observed. We use five different heating rates: 2, 5, 10, 15,

20 (degree per min). The OIT values are calculated applying

Fitter software [3] to the raw DSC curves as it is explained

in Ref. [4].

The obtained data are shown sketchy in Fig. 2. X are the

OIT values resulting from the DSC experiment. They form a

3D block: 25 AO samples�3 AO concentrations�5

heating rates. Y are the OIP values obtained in the LTHA

tests. They form a 2D matrix: 25 AO samples�3 AO

concentrations.
3. Soft modeling

This dataset is processed using a soft approach that

combines the PLS method [5] for calibration and the SIC

method [6] for an interval prediction, which is explained

bellow.

The raw X data are unfolded over five heating rates as it

is shown in Fig. 3. This simple method of a 3-way data

modeling was applied for the reason that more complicated

approaches (i.e. PARAFAC [11]) did not provide us with an
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essential gain. It is important that the variance of the OIP

value is not a constant; it grows with OIP. This could be

explained by two reasons. The first one is the above-

mentioned method of visual inspection that provides a lower

accuracy for more stable (and thus, the long-lived) AOs.

The second reason is the sample preparation procedure,

which implies that a small quantity of AO powder is mixed

with a large amount of PP powder. It causes a certain

unavoidable mixing inhomogeneity of AO in PP. To

compensate for this heteroscedasticity we perform the

square root transformation of the OIP values. Both X and

Y are centered at the PLS modeling.

The whole data set is divided into two sample subsets. A

calibration set consists of 18 samples (AO-1–AO-18); this

set is used for modeling. The second set, which is the test

set (AO-19–AO-25), consists of seven samples and is used

for validation. For each initial AO concentration value A0, a

separate PLS1 model with two principal components is

employed. Some general characteristics of the PLS models

are presented in Table 1. This table shows the explained X

and Y variances, the Root Mean Square Error of Calibration,

the correlation coefficients for the calibration and the test

sets (for prediction vs. measurement dependence). The last

column represents the SIC error of calibration that is

explained below.

Using PLS, we obtain a point estimate of the OIP value.

An interval estimate is obtained using the SIC method. The

SIC approach is based on a single assumption that all errors

e involved in a linear calibration problem y =xta + e, are
Table 1

General characteristics of the PLS models for the different initial AO

concentrations

A0 Xexpl (%) Yexpl (%) RMSEC r2 (cal) r2 (test) b

0.05 99 92 0.287 0.96 0.99 0.84

0.07 99 88 0.342 0.93 0.99 1.02

0.10 99 84 0.395 0.91 0.97 1.20
limited (sampling errors, measurement errors, modeling

errors, etc.), which appears to be a reasonable supposition in

many practical applications. This assumption means that

there exists a positive b value (initially unknown), such that

Prob jej > bf g ¼ 0;

and for any 0 < b < � Probfjej > bg > 0 ð1Þ

where Prob{&} denotes the probability that an event occurs.

This value, b, is called Maximum Error Deviation (MED)

and it characterizes the calibration error. An estimate of b
can be found using the conventional statistic methods [6],

which are applied to the regression residuals. The MED

values calculated for our data are presented in the last

column of Table 1.

Relying on assumption in Eq. (1), and employing a given

calibration data set X, y with n samples, it is possible to

build the entire system of inequalities regarding the

unknown regression parameters a,

A ¼ aaRp : y� < Xa < yþf g:

Here yj
�=yj�b, yj

+=yj+b, j =1,. . .,n. A is a closed convex

set in the parameters’ space; it is called the Region of

Possible (parameter) Values (RPV). This is a volumetric

analogue of the conventional parameter point estimates

vector â, which is calculated with the help of any traditional

regression method, e.g. PLS.

Using the obtained RPV it is possible to solve the

prediction problem for any given predictor vector x (e.g. a

new spectrum or similar). It is clear that when parameter a

varies over RPV A, the corresponding predicted value

ŷ =xta belongs to an interval

V ¼ v�; vþ½ � ð2Þ

where

v� ¼ min
aaA

xtað Þ; vþ ¼ max
aaA

xtað Þ:
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These equations represent a standard linear program-

ming problem [12]. It is known that an extreme of bilinear

form xta is achieved at one of the vertices of convex set A.

A standard numerical analysis technique (Simplex algo-

rithm) helps us to move from one vertex to another in the

direction of maximum change (increase or decrease) of the

form, and enables to perform the optimization in such a

way that there is no need to construct RPV explicitly.

However, the limited solutions of a linear programming

problem can be found if and only if (iff) the set A is

bounded. It is known that A is bounded iff X is a full-rank

matrix [12]. In the opposite case it is necessary to apply a

regularization procedure, e.g. the PLS projection, and use a

score matrix T instead of X in the SIC method further on.

The SIC prediction interval (PI) V stands in contrast to the

more traditional CI (confidence interval) estimators that are

based on the theoretical error distributional model assump-

tions. The plausibility of using the latter for practical data

analysis of real-world technological and natural systems is

often put into doubt. Theoretical study of the CI/PI

relations has been started in Ref [6,7]. The present paper

draws attention to a case study that demonstrates the

reasonable interrelations between CIs and PIs for a real

world example.

Fig. 4 presents the results of the PLS/SIC prediction

applied to the data in question. There predicted OIP values

are plotted against the corresponding measured reference

values in the square root transformed coordinates. Each

sample (open dots are the calibration samples and black dots
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are the test samples) is shown together with two error bars.

Horizontal bars represent the error intervals for the

measured values; these intervals are equal to the doubled

MED value, b, for all samples. Vertical bars correspond to

PIs (Eq. (2)); they are different for different samples. It is

worth to mention that every PI is less than, or equal to the

MED interval for each calibration sample. This follows

from the general SIC theory (see Eq. (1)).
4. Hard modeling

The hard models for the OIP prediction are constructed

for each AO individually. The calibration procedure consists

of two steps. At the first step a model that describes AO

consumption in the course of the DSC testing is built. It is

an implicit function of OIT value T, initial AO concentration

A0, and heating rate v. This function nonlinearly depends on

the unknown parameters that are estimated using NLR. At

the second step a model for the AO consumption during the

LTHA tests is built. The model predicts the OIP value as an

explicit function of the exposition temperature T and the

initial AO concentration A0. This function depends on the

same parameters that have been estimated at the first step, so

a special error propagation procedure is applied to obtain the

uncertainty of the predicted OIP.

Let us consider the first step of modeling. In the course of

material aging AO is exhausted. OIP is defined as a moment

of time when the AO concentration reaches some critical
4

1
2

3
19

3 4 5

(OIP, days)
1

2

red values in the square root transformation for the data set with initial AO

?) are test samples. Horizontal bars show b (calibration) error, vertical bars
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value Ac, which depends on temperature by the Arrhenius

law [13]

Ac ¼ kcexp � Ec

RT

� �
ð3Þ

The heating consumption of AO can be expressed by a

kinetic equation

dA

dt
¼ � kA

A 0ð Þ ¼ A0 ð4Þ

where A=A(t) is the current AO concentration, A0 is the

initial AO concentration, k is the rate constant that also

depends on temperature by the Arrhenius law

k ¼ kaexp
� Ea

RT

� �
:

In the DSC experiment, the specimens are heated at a

constant heating rate v starting from the room temperature

T0=293 K, i.e.

T tð Þ ¼ T0 þ vt:

In such a case, the solution of Eq. (4) may be presented as

A tð Þ ¼ A0exp � k0Z tð Þð Þ ð5Þ
where function

Z tð Þ ¼
Z t

0

exp � Ea

R T0 þ vsð Þ ds
� �

may be expressed using the standard [14] integral expo-

nential function En(z), which is defined as

En zð Þ ¼
Z V

1

t�ne�ztdt; n ¼ 0; 1; 2; N ; z > 0:

It is convenient to represent Z as a function of

temperature T rather than time t

Z Tð Þ ¼ 1

v
TE2

Ea

RT

� �
� T0E2

Ea

RT0

� �� �
: ð6Þ

Substituting Eq. (6) into Eq. (5) and equating AO

concentration A(t) to the critical concentration Ac (see Eq.

(3)) one obtains an equation

A0exp � k0Z Tð Þð Þ ¼ kcexp � Ec

RT

� �
ð7Þ

that implicitly determines the value of OIT, T. A more

convenient form that is used for the parameter estimation

follows from taking the logarithm of Eq. (7) and after some

simplifications

exp að ÞE2

Ea

RT

� �
T þ v c� a� Ec

RT

� �
¼ 0; ð8Þ

where a =ln(ka), and c =ln(kc).
In this equation, T is a response (OIT); a, Ea, c, and Ec

are the unknown parameters; v (heating rate) and A0 (initial

concentration) are predictors. In data processing Eq. (8)

should be solved with respect to the response variable T

T ¼ T v;A0; a;Ea; c;Ecð Þ ð9Þ

repeatedly, at any given values of predictors v and A0. This

solution is used in the search for such values (the estimates)

of parameters a, Ea, c, and Ec that minimize the sum of least

squares

min
a;Ea;c;Ec

X
ij

Yij � T vj;A0i; a;Ea; c;Ec

� �	 
2
: ð10Þ

Here Yij are the experimental OIT values, index i stands for

the three initial AO concentrations A0, and index j

numerates five heating rates v.

The minimization of the sum (10) is connected with the

following problems. First of all, the regression function (9)

cannot be presented explicitly, or even expressed implicitly

using elementary functions. Secondly, Eq. (8) undoubtedly

represents a function that is non-linear with respect to its

unknown parameters. At last, minimization of sum (10) is a

stiff problem. The stiffness of fitting problem

min
q

S qð Þ; where S qð Þ ¼ y� f qð Þð Þ2;

(also called as multicollinearity) can be characterized via a

span of eigenvalues k of the Hesse matrix H

NA Hð Þ ¼ log10
kmax Hð Þ
kmin Hð Þ ; where

Hij ¼
B
2S qð Þ
BhiBhj

,2
Bf

�
q
�

Bhi

� �t
Bf qð Þ
Bhj

:

Here vector q denotes the set of parameters (a, Ea, c, Ec).

Matrix H is inverted repeatedly in the course of fitting. To

make an accurate inversion it is necessary to perform

computations with NA+2 true digits at least. If the model

is an implicit function f(q), two more true digits are required;

that results in NA+4 required true digits. Finally, if such a

method is applied, the numerical calculation of derivatives

flf(q) /flhi demands two true digits more, to a total of NA+6.

In our case stiffness NA equals 7 in the point of minimum and

it is about 15 in a distant starting point. Therefore, it is

necessary to retain some 13–20 true digits in calculations.

All these issues turn fitting into a rather complicated

problem. In order to solve it we apply a special tool, Fitter

software [3], because it has the features that allow solving

such kind of problems. Fitter employs a stable gradient

method for minimization that is based on the matrix

exponential technique [15]. The latter appears to be better

than the popular Levenberg–Marquardt algorithm [16].

Secondly, in Fitter it is possible to set a regression equation

in its ordinary algebraic form, which permits even implicit

expressions. For example, Eq. (8) is introduced in Fitter as it

is shown in Fig. 5. Here a standard built-in Fitter function
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ixp(x)=x�1E2(x) is used. From Fig. 5 one can see that the

Fitter representation of the model looks rather similar to a

standard mathematical notation given by Eq. (8). The third

important Fitter’s feature is that calculations of derivatives

are carried out automatically through a symbolic computing

that maintains a high precision of calculations. One example

of fitting is presented in Fig. 6, which plots the experimental

OIT values (dots) for AO-1 and the corresponding fitting

curves.

Now we consider the second step of modeling at which

we construct model that describes the AO consumption

during the LTHA test. The model is used for the OIP

prediction later on. This model depends on the same

parameter set q that has been estimated at the first step.

Solution of Eq. (4) at the constant conditions (T=Const,

therefore, k =Const, too) is

A tð Þ ¼ A0exp � ktð Þ:

To determine OIP value ti one has to equate current AO

concentration A(t) to a critical value Ac defined in Eq. (3).

Thus we obtain a formula for the OIP calculation

ti ¼
Ec

RTe
þ ln A0ð Þ � c

� �
exp

Ea

RTe
� a

� �
; ð11Þ

where Te is an exposition (aging) temperature. In our case it

is 140 -C, so Te=413 K.

In this equation, we use the parameter estimates q̂ =

(â, Êa, ĉ, Êc) found at the first step of calibration. In order
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to obtain not only the predicted OIP value, but also its

confidence limits, it is necessary to take into account the

uncertainties of these estimates. Unfortunately, the conven-

tional method of error propagation

var fð Þ ¼
Bf q̂q

� �t
Bq

cov q̂q;q̂q
� � Bf q̂q

� �
Bq

;

cannot be applied to Eq. (11) due to non-linearity of the

model.

The true confidence interval (CI) can be found using a

statistical simulation, namely the method of free simulation

[10]. In this method, the CI for the function f(q̂) is

calculated as a percentile of a sampling { f(q1), f(q2), . . .}.
Sampling values f(qi) are obtained by simulation of

parameters qi in accordance with normal distribution

N(q̂,cov(q̂,q̂ )). An example of the confidence prediction

constructed by such a technique for sample AO-18 is shown

in Fig. 7. The confidence probability is P=0.90. The CIs for

other AO samples are presented in Fig. 8.

It is important that no OIP reference values were

involved in the hard (NLR) modeling. Therefore they can

be used in validation, e.g. for calculation of the Root Mean

Square Error of Prediction (RMSEP), which are shown in
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Fig. 7. Prediction of OIP for the different initial AO concentrations by the

NLR method. Confidence intervals at probability P=0.90 are shown by the

grey boxes. Black squares (n) represent the point OIP estimates and open

dots (>) are the reference values. PP+AO-18.
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Table 2. At the same time, it is impossible to evaluate such a

traditional calibration error as RMSEC (the Root-Mean

Square Error of Calibration), inasmuch as at the first stage

of the NLR modeling not the OIP, but the OIT values were

calibrated as a function of v and A0. However, it is possible

to evaluate the residual sum of squares for each AO and

calculate the average variance in the OIT estimates

afterwards. The latter are shown in Table 2 in row 4.
5. Results and discussion

In the present section we compare the hard (NLR)

models and the soft (PLS) models, which have been

constructed based on the same data set. These models

employ data differently. There are 25 hard models con-

structed for each AO, and 3 soft models build for each initial

AO concentration value. In Fig. 8 the results obtained by

each method for samples with initial AO concentration of
Table 2

Statistical characteristics of prediction by the NLR and the PLS/SIC

methods

Initial AO

concentration

NLR (i =1, CIs) PLS/SIC (i =2, PIs)

0.05 0.07 0.10 0.05 0.07 0.10

1. RMSEP 0.242 0.246 0.272 0.239 0.251 0.336

2. Bias 0.087 0.058 0.040 0.011 0.004 0.002

3. Cor (ŷ1, ŷ2) 0.953 0.934 0.916 0.953 0.934 0.916

4. Average(X– X̂)2 0.224 0.286 0.286 0.286

5. Average(wi) 1.038 1.151 1.397 0.934 1.204 1.476

6. Cor (w1, w2) 0.202 0.007 0.028 0.202 0.007 0.028

7. Cor (y, wi) 0.815 0.846 0.836 �0.184 �0.161 �0.113
0.05 are combined. This plot shows the results of the NLR

(hard) prediction (black dots and grey CI bars for

confidence probability 0.90); the results of the PLS/SIC

(soft) prediction (open squares and black PI bars); and the

reference values (open dots) with error bars that show the

MED value b (calibration error). To make the comparison of

the methods clearer all values are plotted in the square root

transformed OIP coordinate. Analogous plots can be

constructed for other data subsets with initial concentrations

of 0.07 and 0.10; they look rather similar to Fig. 8.

Table 2 presents some general statistical characteristics of

the NLR and the PLS/SIC prediction results. Here the

following notations for measured and predicted the X (OIT)

and the Y (OIP) values are used. X and X̂ are the measured

and the predicted OIT values, respectively; y ¼
ffiffiffiffiffiffiffiffi
OIP

p
is the

square root transformed vector of the measured (reference)

OIP values; ŷi are the corresponding vectors of the square

root transformed point estimates of OIP obtained by the

NLR (i=1) and by the PLS/SIC (i=2) methods; wi are the

vectors of the widths of CIs (NLR, i =1) and the widths of

PIs (PLS/SIC, i=2); all intervals are also square root

transformed.

Exploring Table 2 and Fig. 8 the following conclusions

can be drawn out. Both methods give a similar accuracy (see

row 1 in Table 2) and bias (row 2). The quality of prediction

becomes worse when initial AO concentration increases. In

general, the PLS/SIC prediction gives better results for the

small initial AO concentration, while NLR is better for the

large concentrations. However, the point estimates are close

on average (row 3). Both the NLR and the PLS methods

explain the X data (i.e. the OIT values) rather similar, but

NLR is slightly better (row 4).
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The interval estimates are also very similar on average

(row 5), but the NLR intervals (CIs) and the SIC intervals

(PIs) are quite different for the individual samples (row 6).

The last row of Table 2 shows that the width of the CIs

increases with predicted value for all initial AO concentra-

tions, while the width of the PIs does not depend on y. This

testifies that the employed response transformation y ¼ffiffiffiffiffiffiffiffi
OIP

p
yielded the expected result in the PLS/SIC modeling,

but could not straighten the NLR prediction.

The fact that the width of all intervals grows with initial

AO concentration A0 is clearly seen from the hard model

formula (Eq. (11)), which represents OIP value t in

dependence of A0. On the other hand, in the soft PLS model

one could not foresee this by any means. Nevertheless, this is

obviously a fundamental feature of the explored polymeric

system; i.e. the more AO is added to a sample initially, the

more its OIP, and the worse is the prediction. This

demonstrates that with respect to this general aspect both

the soft and the hard approaches are similar in our example.

Simultaneously, one can observe that the soft and the

hard prediction results differ for the individual samples.

From Fig. 8 it can be seen that for some samples (e.g. AO-5,

6, 10, 11, . . .) the CIs are less than the PIs, while for the

other samples (e.g. AO-1, 2, 3, . . .) the opposite is true. It is
interesting to consider why the individual NLR and SIC

intervals are so different. Fig. 9 demonstrates the PLS score

plot for the samples with initial AO concentration of 0.05.

Eighteen calibration samples (AO-1, . . ., AO-18) are

presented by the open dots and six training samples (AO-

19, . . ., AO-25) are marked by the closed dots. It can be

seen that the test sample AO-25 is an evident outlier (or an

absolute outsider in the SIC object status classification [7]

terminology). The predicted value for AO-25 is rather close
C
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Fig. 9. PLS score plot for samples with initial AO concentration of 0.05. Open dot

Bold line separates the samples for which the NLR confidence intervals (CIs) are
to the measured value, but this sample is located very far

from the center of the model. Therefore the uncertainty in

prediction of AO-25 is high. This sample has the largest

SIC-interval (see Fig. 8) and it is the only test sample for

which the prediction error is worse than the calibration

MED error.

From this plot it also can be seen that all samples, for

which the NLR confidence intervals (CIs) are less than the

SIC prediction intervals (PIs), are located in the bottom part

of the plot, below the bold line. This line splits the samples

in two groups: CIs>PIs and CIs<PIs. This is a rather

surprising outcome. This could be expected discovering of

some score patterns, which are connected with the width of

prediction (confidence) intervals, while actually there has

been found a structure that distinguishes samples for which

the hard approach is better than the soft one, and vice versa.

In this case it is useful to explore another plot that represents

the NLR method, and to look whether the similar patterns

could be detected there.

Fig. 10 presents a plot that demonstrates correlation

between the NLR estimates of parameters Ec and c (see Eq.

(8)). It is worthy of mentioning that the parameter estimates

in both pairs: (a, Ea) and (c, Ec) in Eq. (8) are highly

correlated. It is usually the case in the Arrhenius model that

correlation between the estimates of the pre-exponential

factor and the corresponding activation energy is close to 1

[17]. In our case: cor(â, Êa)=0.995, cor (ĉ, Êc)=0.997. Fig.

10 gives another view on the problem in question. From this

plot it can be clearly seen that all samples for which the

NLR approach is better (CIs<PIs) are situated at the bottom

part of the plot, below the bold line, and vice versa. The

transition corresponds to critical AO concentration Ac (Eq.

(3)) that is equal to 0.013 at T=140 -C.
20 40

AO-7

AO-3

AO-2

AO-13

AO-1

AO-9

AO-15

AO-14

AO-4

AO-18

AO-6
AO-5

AO-17

AO-25

AO-24

AO-20

AO-19

PC1

C2

s (>) represent calibration sample and black dots (?) represent test samples.

less (greater) than the SIC prediction intervals (PIs).
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Fig. 11. Prediction of the OIP values at the different exposition

temperatures for AO-18 with initial concentration 0.04. Bold line represents

the mean value and the grey-shaded corridor shows the 0.95 confidence

intervals.

Fig. 10. Correlation between the estimates of pre-exponential c and corresponding activation energy Ec. in Eq. (3). Open dots (>) represent calibration samples

and black dots (?) represent test samples. Thin line shows the linear correlation trend. Bold line separates samples for which the NLR confidence intervals

(CIs) are less than the SIC prediction intervals (PIs).
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Score plot in Fig. 9 is constructed only for a single

sample subset, namely for the samples with initial AO

concentration A0=0.05. The score plots for the subsets with

A0=0.07, and A0=0.10 have a structure that is similar to

one in Fig. 9. On the other hand, the estimates of parameters

(c, Ec) were obtained in the hard modeling wherein all

samples with all initial AO concentrations are processed

together in each NLR model; so the plot in Fig. 10

represents the whole data set. This reason enables us to

claim the following conclusion, which is important for the

choice of the calibration method. Such property as: ‘‘the

NLR confidence interval (CI) is less/greater than the SIC

prediction interval (PI)’’ does not depend on the initial AO

concentration in a sample, but subjects to the critical AO

concentration, which is an internal characteristic of AO

itself.

Another important issue that could be considered in the

context of the methods comparison is the restriction of the

areas where these methods are valid and applicable. The

hard (NLR) approach has an evident advantage being

applicable to prediction of OIP at the various temperature

and concentration conditions. Fig. 11 presents a plot in

which OIP is predicted for the temperature range 80

-C<T <200 -C at initial AO concentration A0=0.04.

Needless to say that these conditions were not explored

during the experiments and the results are calculated just by

extrapolation of Eq. (9) to the setting. Certainly with the soft

(PLS) modeling such an outcome cannot be obtained by any

means. Incidentally, temperature T=200 -C is of great

importance as it is the PP processing temperature at which

the polymer is extruded. On the other hand it is rather risky

to apply the NLR model for a condition that is too far from

the experimental values. In particular the model cannot be
extrapolated to the room temperature, and therefore it is

impossible to forecast a long-term PP storage using the DSC

measurements. These cautious words actually mean that it is

impossible to fix the strict limits in which the NLR approach

is valid.

For the PLS/SIC approach the situation is quite

different. Here we can claim the proper limits of

applicability. Fig. 12 demonstrates the SIC Object Status

Plot (OSP) that is used for such a restraint. The complete

explanation of the OSP technique is given in Ref. [7], so

here we present only a short description. Each test sample

is plotted with its OSP coordinates that are as follows. The

SIC-residual is the difference between the center of the PI
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Fig. 12. SIC Object Status Plot (OSP) for the test samples with A0=0.07.
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and the reference value, scaled with b. The SIC-leverage is

the width of PI, also divided by b. The position of a test

(or a new) sample in OSP determines its applicability in

prediction. All samples that are located inside the triangle

(AO-21, . . ., AO-24) are called insiders. They agree with

the model completely; thus insiders can be mostly trusted

in prediction. The opposite case means that objects are

located outside the existing model, therefore they are

termed outsiders (samples AO-19 and AO-25). The

outsiders do not contradict the model but they are less-

than-perfect with respect to prediction. There may be two

reasons for this: either the width of PI is greater than the

calibration error (sample AO-25), or there is a bias (sample

AO-19). Hence using the OSP technique one can easily

classify a new sample and in that way strictly limits the

area in which the PLS/SIC approach is valid.

Discussing the conditions under which a method of

modeling is valid it is necessary to mention the different

nature of the areas of applicability. In the hard approach this

is the area of predictors (T and A0) wherein the model might

be extrapolated when applied to the same AO sample as

explored in the DSC experiment. In the soft approach this is

the area of new AOs for which the constructed soft model is

valid. Obviously, the predictor values, i.e. the initial AO

concentrations and the DSC heating rates should be equal to

those in the training set.

One more important issue is worth mentioning. Different

designs of experiments should be applied when a more

accurate model is to be acquired. In the case of the soft

modeling it is possible to improve the model and the

prediction accuracy by adding more samples to the

calibration set. In the case of the hard modeling it is

necessary to construct a special model for each AO,

meaning that the model can be improved by conducting

more experiments with various concentrations for a given

AO. Apparently this improves the model accuracy for a

given AO and has no influence on the prediction accuracy

for other AOs.
6. Conclusions

The research described in the present paper led to the

following conclusions.

1) It has been shown that a long and costly LTHA process

of the AO activity testing can be replaced with a fast

DSC technique with further data processing by the hard

(NLR) or by the soft (SIC/PLS) methods. Both calibra-

tion approaches give a satisfactory accuracy of the OIP

prediction that is not worse than the LTHA measurement

error. Therefore we could recommend these methods for

practical implementation.

2) Each calibration method has its own advantages and

disadvantages. The hard approach enables us to obtain

the prediction results extrapolated to the conditions

(temperature and concentration) beyond the area of the

experiments. However, it is impossible to restrict the

borders of such an extrapolation, and sometimes this

outcome is not trustworthy enough. On the contrary, the

soft method has a strict area of application that is outlined

with the help of the OSP technique. At the same time the

PLS/SIC approach cannot be applied to predict OIP at the

conditions that differ from the conditions used in the

calibration experiments.

3) Both calibration methods have a similar quality of

prediction and reveal a parallel behavior with respect to

the conditions of prediction, e.g. the greater the initial

AO concentration, the worse the accuracy of prediction.

However, the hard approach is better for AOs with a

lower value of the critical AO concentration, i.e. for AOs

with the small OIP values, while the soft method is better

in the opposite case. This is a fundamental inherent

feature of AOs that remains even at the change of the

initial AO concentration in a sample.

4) The application of the hard modeling is preferable when

the aim of investigation is the prediction of a given

polymer system behavior. In case a researcher wants to

compare the activity of different AOs, the soft model

approach meets the investigation goal better.
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