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Abstract

Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on
the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed
to employ the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect
of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that
proposes the correcting actions for the quality improvement in the course of production. The latter is an active quality optimization, which takes
into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control
(MSPC) as it also employs the historical process data as a basis for modeling. On the other hand, the presented concept aims more at the process
optimization than at the process control. Therefore, it is proposed to call such an approach as multivariate statistical process optimization (MSPO).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Multivariate statistical process control (MSPC) is nowadays a
very popular approach that helps to understand and to run real-
world technological processes [1–5]. In order to secure the
quality of final products, authorities in different countries
provide recommendations or requirements concerning the
process control. A good example is the PAT initiative [6] pre-
sented by US Food and Drug Administration as a draft guidance
for industry. MSPC combines the old-known statistical methods
such as statistical process control (SPC, e.g., the Sheward cards
[7]) with modern multivariate data analysis techniques (MDA,
e.g., PLS [8,9]) in order to produce new knowledge about the
process in question. This knowledge gives an easy way to
monitor and control the process, but it does not offer a method
to optimize the process performance. However, the general aim
of any statistical analysis of technology is to improve or
stabilize the final product quality or/and to reduce production
costs.
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The main MSPC concept is to apply historical data on
performance attributes (X matrix) for construction of a linear
(calibration) model, which explains how the final results (y-
vector) depend on the observed X variables and to verify that the
process is remaining in a ‘state of statistical control’. Studying
this model, one can suggest a program of actions that can
improve performance in general. However, this is a post factum
optimization, while the most important issue in production is an
in situ optimization, which prescribes immediate actions in the
course of production in order to correct its current state and to
improve the future. In the paper, the MSPC concept is extended
in order to develop an approach for the in-line process
optimization. This approach may be termed as multivariate
statistical process optimization (MSPO).

Two mathematical methods are implemented in this work.
The first one is the PLS regression [8,9] applied to build various
calibration models. The second technique is simple interval
calculation (SIC). This is a method of linear modeling that gives
the result of prediction directly in the interval form [10,11] and
also provides wide possibilities for the leverage-type object
status classification. In Section 2, we present a brief description
of these methods. Section 3 introduces a real-world data that are
collected in a batch process fit within the present framework. In
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Section 4, a method of passive optimization is considered. It is
performed using a series of the expanding PLS models
combined with the SIC interval estimation. Section 5 proposes
a method of active optimization. It is based on the block PLS
modeling and the SIC object status classification. We consider
different optimization strategies and illustrate the theory with a
case study, based on the batch process described in Section 3.

2. Mathematical methods

In this section, we present a brief description of mathematical
methods used in the paper. They are PLS regression and SIC
method.

2.1. PLS method

Two versions of PLS algorithm are employed in the paper.
They are: PLS1 that is used for the single-response regression
and its multi-response extension, known as PLS2 method.
There are numerous papers and tutorials on PLS published, e.g.,
see Refs. [8,9] and references cited herein.

Let us consider a linear regression model

y ¼ Xaþ ε ð1Þ
where y is the n-dimensional response vector, a is the p-
dimensional vector of unknown parameters, X is the (n×p)
predictor matrix, ε is an unknown error vector; ordinarily rank
of matrix X is less than p. The main PLS1 concept can be
presented as the simultaneous bilinear decomposition of matrix
X and vector y

X ¼ TPt þ E y ¼ Tqt þ f : ð2Þ
Here T is the (n×k) score matrix, P is the (p×κ) loading

matrix and q is the (k×1) loading vector; E and f are matrix and
vector of residuals; k denotes the number of PLS components
(PC), k≤p. In such a decomposition, the initial regression
problem (1) is projected onto a low-dimensional (k) subspace,
where the new problem (2) already has full rank.

In practice, the PLS principal components, i.e., score vectors
t1, t2, etc., are calculated using a recurring algorithm (known as
NIPALS [8]). At each step, one vector ti is obtained, as well as
the corresponding Y-score vector ui, calculated as ui=yqi.
Correlation between these vectors

ri ¼ corðti; uiÞ ð3Þ
serves as an important indicator showing that the PLS
decomposition is completed and a proper number of PLS
components, k, has already been achieved. This happens when
the value of ri essentially decreases in comparison with the
previous step. To verify the completeness of the PLS
decomposition, two additional characteristics are also used.
These are the explained X and Y variances that are calculated as
the mean squared residuals of models (2)

Ep ¼ 1−
P

E2
ijP

X 2
ij

Er ¼ 1−
P

f 2iP
y2i

: ð4Þ
The accuracy of calibration could also be characterized by the
residual response variance s2

s2 ¼ 1
n−k

Xn
i¼1

ðyi−y ̂iÞ2

where ŷ is the vector of predicted response values.
In the conventional calibration approach, a regression model

is constructed using calibration data set (X, y). Further on, it is
validated using either an independent test set or by means of the
cross-validation technique [8]. The square root of the residual
variance calculated at the validation stage is called the root
mean squared error of prediction (RMSEP), in contrast to the
root mean squared error of calibration (RMSEC), which is
calculated for the calibration data set.

It can be seen that initial regression problem given by Eq. (1)
has no intercept term and therefore y=0 at x=0. To agree a raw
data (Xraw, yraw) with the model, a conventional centering
transformation is applied

y ¼ yraw−m01; X ¼ Xraw−ðm11;m21;…;mp1Þ:
Here m0 is the mean value of response vector y, mi are the

mean values calculated for the columns of matrix Xraw and 1 is
the vector of units. It is also important to perform an appropriate
scaling of the raw data. The reason for this is that the strength of
relationship is measured by covariance matrices. If data are not
scaled, the results may depend on some variables that have a
large variance but weak modeling power. Scaling of data can
also be viewed as a way to obtain a stable PLS algorithm
solution [9].

PLS2 method is a natural extension of the conventional PLS
method (which will be termed below as PLS1) to the multi-
response regression. In this case, a regression model is
presented as

Y ¼ XD þ E

where Y is the (n×q)-dimensional response matrix, D is the
(p×q)-dimensional matrix of unknown parameters, X is the
(n×p) predictor matrix and E is an unknown error matrix. The
related PLS2 decomposition may be written as

X ¼ TPt þ E Y ¼ UQt þ F

Therefore, PLS2 gives one set of X and Y scores (T and U) and
one set of X and Y loadings (P and Q), which are valid for all Y
variables simultaneously.
2.2. Simple interval calculation

The SIC approach is based on a single assumption that all
errors involved in calibration problem (1) are limited (mea-
surement errors, modeling errors, etc.) [14]. The error finiteness
means that there exists a maximum error deviation (MED) of
error ε, which equals β, i.e.

abN0 ProbfjejNbg ¼ 0 and

for any 0bbbb ProbfjejNbN0g ð5Þ
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where Prob{•} denotes probability that an event occurs.
Relying on assumption in Eq. (5) and employing given
calibration data set (X, y) with n samples, it is possible to
build the entire system of inequalities regarding the unknown
regression parameters a,

A ¼ aaRp : y−bXabyþf g; where y−i ¼ yi−b; yþi ¼ yi þ b

ð6Þ
A is a closed convex set in the parameters' space; it is called
the region of possible (parameter) values (RPV). This is a
volumetric analogue of the conventional parameter point
estimates vector â, which is calculated by some traditional
regression method, e.g., PLS.

Using the obtained RPV, it is possible to solve a prediction
problem for any given predictor vector x (e.g., a new spectrum
or similar). If parameter a varies over A, it is clear that the
predicted value y=xta belongs to the interval

V ¼ ½v−; vþ�; where v− ¼ min
aaA

ðxtaÞ; vþ ¼ max
aaA

ðx taÞ: ð7Þ

The interval V is the result of SIC prediction. To find this
interval, it is not necessary to present RPV explicitly, as the
solutions of Eq. (7) may be obtained by linear programming
methods [12], which are commonly used to find the optima of a
linear function on a convex set. However, the limited solutions
of a linear programming problem can be found if and only if the
set A is bounded, i.e., X is a full-rank matrix [13]. In the
opposite case, it is necessary to apply a regularization
procedure, e.g., the PLS projection and further on use a score
matrix T instead of X in the SIC method.

Usually, MED value is unknown and some estimate b is used
instead of β. In the present work, we use two β estimates.
Estimator bmin is defined as follows

bmin ¼ min b; AðbÞpFf g: ð8Þ
This is a consistent but biased (bmin≤β) estimate and bmin is

the low limit of all possible β values. To estimate the upper limit
of β, we apply a traditional statistical approach [18] to the
regression residuals e=ŷ−y. Therefore, it is possible to find an
estimator bSIC such that Prob{bSICNβ}N0.90 and bSIC is as
close to β as possible. This enhanced estimator, bSIC, can be
calculated by formula [14]

bSIC ¼ bmaxCðn; s2Þ: ð9Þ
Here bmax=max(|e1|,…,|en|) and empirical function C(n, s2)

depend on n that stands for the number of objects in the
calibration set and on the residual variance s2.

The calculation of different β estimators is rather compre-
hensive and is outside the scope of this paper. However, we can
present a rule of thumb that helps to evaluate the estimators
roughly. This could be termed the ‘1-2-3-4 sigma rule’. Let sc be
the root mean square error of calibration (RMSEC), then
bmin≈2sc, bmax≈3sc and bSIC≈4sc. Certainly, this rule
represents only a tendency, which also depends on the number
of samples in the calibration set. Nevertheless, our experience in
application to numerous examples shows that this rule
appropriately characterizes the situation. Below, we will
confirm this claim using Table 2 in Section 4.2.

To quantify a quality of SIC prediction, two measures are
used [14]. The SIC residual is the difference between the center
of the prediction interval (7) and the reference value y (scaled by
β), so this is a characteristic of the bias:

r x; yð Þ ¼ 1
b

y−
vþðxÞ þ v−ðxÞ

2

� �
: ð10Þ

The SIC leverage is calculated as the width of the prediction
interval, divided by MED β, so it has the character of β-
normalized precision:

h xð Þ ¼ 1
b

vþðxÞ−v−ðxÞ
2

� �
: ð11Þ

In paper [10], a new object status classification (OSClas)
concept was proposed. To understand this classification, it could
be useful to interpret calibration/prediction as a continuous
process of new sample treatment. Let us imagine a sequence of
new objects (xi, yi), i=n+1,…, that enter the calibration model,
which was primary evaluated with n samples. The new samples
can be considered in two different ways. Firstly, the model can
be fixed at these n previous calibration objects so the incoming
samples are considered as the unknown objects for prediction.
This is a prediction point of view. Secondly, the model can be
considered as an open system, which is replenished with the
incoming objects and then recalibrated. This is a calibration
point of view. It is evident that the addition of a new sample
(xi+1, yi+1) to the calibration set could modify RPV (6) in only
one of the following ways: (i) RPV does not change, i.e.,
An+1=An; (ii) RPV shrinks, i.e., An+1⊂An; (iii) RPV
disappears, i.e., An+1=∅. The first case (i) corresponds to a
sample, which is termed insider. In the second case (ii), such
object is termed outsider. The third case (iii) corresponds to
outlier in every sense of the term.

Looking at the objects from the prediction point of view, we
can claim that the insiders are trusted absolutely as they agree
completely with the model. Outsiders are less than perfect.
There may be two reasons for this. Either the width of the
prediction interval (that is the SIC leverage) is greater than the
calibration error or there is a bias (characterized by the SIC
residual). Outliers are the worst case and they cannot be used in
prediction at all. From the calibration point of view, the object
status interpretation is rather different. Insiders are then the
worst objects, as they do not change the model but increase the
experiment costs with redundant measurements. Outsiders are
the most desirable objects as they improve the calibration
accuracy and expand the domain of applicability. Outliers are
dubious objects in the calibration. If the case the outrage
mistake is excluded, such objects are very valuable in
calibration as they outline the limits of prediction.

It was shown in [10] that OSClas could easily be performed
without the explicit construction of the complex RPV in the
parameter space. It is instead based on the following statements.

An object (x, y) is an insider iff |r(x, y)|≤1−h(x); it
is an outsider iff |r(x, y)|N1−h(x); an object is an outlier,



Fig. 1. Object status plot. (i) Insiders (○), (ii) outsiders (■), (iia) abs. outsiders
(▲), (iii) outliers (♦).

168 A. Pomerantsev et al. / Chemometrics and Intelligent Laboratory Systems 81 (2006) 165–179
iff |r(x, y)|N1+h(x); and an object (x, y) is an absolute
outsider for any y iff h(x)N1. Using these statements, one
can construct an object status plot (OSP) [10], the archetype
of which is shown as Fig. 1. This OSP has the same
appearance for any dimensionality of the initial data (X, y)
and for any number of model parameters, which makes it a
very powerful tool. OSP plane may be divided into three
areas, each corresponding to one of the three object
categories: insiders (area i in Fig. 1), outsiders (area ii)
and outliers (area iii).

3. Real world data

We consider a multi-stage technological process that is
represented by 25 process variables x and one output variable y,
which is the final quality of the end-product. The food process
under consideration is the well-known Russian strong drink
manufacture. We consider the process more precisely in [15].
The production cycle (see Fig. 2) is divided into seven stages
numbered by the Roman numerals. Each stage may be
described by the input, current and further variables. Variables
S1 S2 S3

M1 M2 M

W1 W2 W3 CW1 CW2 CW3

WR1
WR2

S

W CW

M

I
6

II
6+2=8

III
8+3=11

IV
11+3=14

Fig. 2. Produc
used in all previous stages are fixed input variables, current
variables are the controlled ones, and the variables that
characterize the following production stages are out of scope
at the moment. Moving along the process, variables change
their roles.

The first stage (I) is represented by six input variables
(W1, W2, W3 and S1, S2, S3) that stand for the properties of
the raw components S and W. At the second stage (II), the
component W is refined and the process is characterized by
the variables WR1 and WR2. Variables CW1, CW2 and CW3
(stage III) represent the properties of the outcome product
CW. The next stage (IV) is mixing of the raw component S
and the refined component CW. The result M is characterized
by the variables M1, M2 and M3. Later on, the blend M is
also refined (stage V) with the process characteristics MR1
and MR2, and the properties of outcome CM are presented by
the variables CM1, CM2 and CM3 (stage VI). The last stage
(VII) stands for the ultimate improvements, which are done
with additives A1,…,A6. The output variable (P=y) is the
final product quality.

At the end of each stage, a production engineer could analyze
the intermediate results and correct the process attributes
(variables) of the next stage. Both the analysis and the
correction should be performed regarding the foreseeable
output property y and with respect to the admissible range of
correcting actions. Evidently, it is unreasonable to suggest
theoretically improving actions, which, however, cannot be
implemented in practice. The MSPC approach based on the real
historical production records is the appropriate tool that is able
to give the reasonable solution of this problem.

4. Process control

In this section, we will demonstrate how a process can be
controlled without attempts to interfere into it. This may be
called a passive optimization within the whole MSPO
framework. For this purpose, we apply a method of expanding
process modeling, which is based on the multi-block regression
concept [16].
3 CM1 CM2 CM3

MR1 
MR2 CM PA1 A2

A3 A4
A5 A6

V
14+2=16

VI
16+3=19

VII
19+6=25

tion cycle.
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4.1. Theory

Let us assume that there is a collection of actual historical
data measured for n samples that characterize a proper process
performance. Each sample corresponds to the entire production
cycle (batch); an example is shown in Fig. 2. The related row
vector consists of the values of instrumental variables x1, x2, …,
xp, and it also includes the quality variable y. The whole data set
(X, y) is divided vertically (by variables) into L blocks in
conformity with the stages:

X ¼ ðXI;XII; N ;XLÞ:

The last L+1 block consists of quality values Y=y.
In the example presented in Section 3, the data block XIV is

the (n×3) matrix, which includes three variables: M1, M2 and
M3. The notation X(M) will be used to represent a matrix that
is composed with the X data from all previous M stages. For
the process shown in Fig. 2, the block X(III) = (XI, XII, XIII) is
the (n×11) matrix. Applying this notation to the M-th stage of
the process, it can be seen that matrix X(M−1) presents the input
data and matrix XM stands for the controlled current data. At
the first stage (I), there are no input data and, at the last stage
L, X(L) =X. It is assumed that the data are centered and scaled
in such a way that each variable, including quality variable y,
varies within the range (−1, +1) and that all values outside this
interval are not valid. It is also supposed that the highest
product quality corresponds to y=+1, while the lowest one
corresponds to y=−1.

Using the whole data set, it is possible to build an overall
PLS1 regression model

XY : XZy ð12Þ

with k principal components. The notation XY is used here for an
operator that maps block X to vector y with the help of PLS1
regression.

It is also assumed that additional data scaling has already
been made with the X block. This scaling is performed by
multiplication of some X columns (X variables) by factor −1, in
order to make all estimates of the regression coefficients a in Eq.
(1) positive. Such a scaling is useful in the optimization
procedure described in Section 5. Scaling standardizes the
process reply, because after it the increase of any process
variable X will lead to the improvement of quality y. To make
the notation simpler, the same symbols X and y will be used for
the preprocessed data.

Using these data, we construct the following series of L−1
PLS1 regression models

XYI : XðIÞZy; XYII : XðIIÞZy; N ;

XYL−1 : XðL−1ÞZy: ð13Þ
Each model is denoted here by the operator XYM, which

maps the X block, X(M), to the Y block, y. In this series, the X
block is expanded through the process time. Each XY model
uses the same number of PLS principal components k that was
chosen in the overall model given in Eq. (12).
The main purpose of these models is the prediction of the
output quality variable y at each (M-th) stage of production
process. The predicted value could be further compared with
a desired quality level. Too large difference signalizes that
something is wrong and the process demands active
improvements at the next (M+1)-th stage. To verify these
corrections, a process engineer may try out various values of
the variables that characterize stage M+1. The corresponding
model XYM+1: X(M+1)⇒y can validate the solution. Therefore,
the system of models (13) serves as an “adviser” that helps
the engineer to make a decision. However, this adviser cannot
predict the future outcome y exactly. There is always some
uncertainty. To present it, the corresponding SIC models are
used. These models are built on the base of the relative PLS
models with a given number of principal components, k. The
maximum deviation value, β, is calculated as it is explained in
Section 2.2.

4.2. Case study

Current section describes the application of the introduced
theory to the real world data presented in Section 3. There is a
set of historical data collected for 154 samples (batches). Seven
vertical blocksX=(XI,XII,…,XVII) represent the process stages
with 25 instrumental variables and the very last y block relates
to the final product quality, as it is shown in Fig. 2. The data are
centered and scaled all in accordance with procedure described
in the previous subsection.

For construction of the overall PLS regression model
(12), we use six PLS components. This number is chosen
with respect to the 10% out cross-validation analysis
performed with the whole data set. The results are shown
in Fig. 3 where the important characteristics of the model
are plotted for the different number of PCs. These
characteristics are: RMSEC, RMSEP; the rate of explained
X and Y data (Ep, Er, Eq. (4)); and the coefficient of
correlation r (Eq. (3)). Fig. 3a shows that six principal
components are enough for the PLS modeling. At this point,
correlation coefficient r has the maximum r=0.91. At six
PCs, there have been explained 89% of X-variance and 99%
of Y-variance. It also can be seen that at six PCs both
RMSEP and RMSEC have stabilized near value 0.026. We
suppose that a higher dimension, i.e., seven PCs, may result
in model over-fitting. Fig. 3b presents the plot of predicted y
values versus measured y data. It demonstrates that all points
are located close to the line with slope 45°. The correlation
coefficient, R, between the measured and the predicted y
values is R=0.99. The obtained RMSEP (which could also
be called RMSECV due to employed cross-validation
procedure) value 0.026 shows that, after the last stage
(VII), the response can be estimated with an uncertainty that
95% of cases is smaller than 2×0.026=0.052 and 99.99%
of cases is smaller than 4×0.026=0.104. Further, this
uncertainty limit will be compared with the β value
calculated in the SIC method.

The series of seven expanded PLS models given by Eq. (13)
is built with the obtained number of principal components, i.e.,
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for k=6. For each stage of the process, the X block consists of
variables accumulated by this stage, e.g.

XðIÞ ¼ XI ¼ ðS1; S2; S3;W1;W2;W3Þ
XðIIÞ ¼ ðXI;XIIÞ ¼ ðS1; S2; S3;W1;W2;W3;WR1;WR2Þ
etc. To validate the PLS models, each data block is divided
horizontally (by samples) in two parts: the calibration set (first
102 objects) and the test set (last 52 objects). The calibration set
is used for the PLS modeling, while the test set is utilized for the
prediction testing only. Some general characteristics of the
models are presented in Table 1.

Table 2 presents the important characteristics of the related
SIC models. Table 2 reads as follows. The first row, marked
b, represents the upper limit for value β, calculated by Eq. (9).
The next row, marked bmin, demonstrates the β values
calculated by Eq. (8). Both values decrease when the PLS
model is expanded. This agrees with a general concept that
modeling error should reduce when data set is enlarged. The
next two rows represent ratios b/sc and bmin/sc. It can be seen
that the first ratio is about 4.5, while the second one is about
2.5. This confirms the rule of thumb claimed in Section 2.2.
Row w contains the mean values of width of the SIC intervals
(Eq. (7)) obtained for the test set. They show that uncertainty
Table 1
General characteristics of the expanded PLS model (13)

Stage I II III IV V VI VII

Calibration Ep 1.00 0.99 1.00 1.00 0.99 0.99 0.97
Er 0.78 0.81 0.79 0.84 0.95 0.98 0.99
RMSEC 0.157 0.147 0.152 0.133 0.078 0.048 0.035

Validation Ep 1.00 0.99 0.99 0.99 0.99 0.99 0.95
Er 0.85 0.87 0.87 0.88 0.96 0.98 0.99
RMSEP 0.148 0.142 0.143 0.133 0.076 0.050 0.037
is reduced while the data set is enlarging. Row h represents
the mean values of the SIC leverages (Eq. (11)) in the test set.
It demonstrates a rather stable behavior along the process and
does not vary too much.

Fig. 4 represents the OSP constructed for the test set that is
predicted with overall PLS model given by Eq. (12). It might be
useful to match this plot with the OSP archetype shown in Fig.
1. Such comparison shows that among 52 test samples there are
24 insiders, which lie within the triangle, e.g., samples no. 10
and no. 52. The 28 residuary samples are outsiders, e.g.,
samples no. 46, no. 24 and no. 50. Among them, there are 11
absolute outsiders, e.g., sample no. 24. No outliers can be found
in the test set. The SIC leverage values are less than 1.5 with two
extreme samples no. 40 and no. 46 that are situated at the right
side of the plot.

For illustration purposes, we select five samples from the
test set. They are nos. 10, 16, 24, 50 and 52 that are marked
with the larger dots in Fig. 4. These samples represent the
most typical cases with respect to the product quality as well
as to the SIC status. The expanded PLS modeling (13) and
the correspondent SIC modeling for these selected samples
are presented in Fig. 5. Each plot demonstrates the results of
prediction of future quality y that are obtained at every
process stage. They are the PLS point estimates (black dots)
Table 2
General characteristics of the expanded SIC model (13)

Stage I II III IV V VI VII

b 0.85 0.83 0.80 0.55 0.37 0.22 0.15
bmin 0.51 0.47 0.51 0.30 0.21 0.12 0.08
b/sc 5.41 5.65 5.26 4.14 4.72 4.62 4.24
bmin/sc 3.25 3.20 3.36 2.26 2.68 2.52 2.26
w 0.68 0.68 0.67 0.46 0.33 0.19 0.13
h 0.80 0.82 0.83 0.84 0.89 0.87 0.84
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and the SIC intervals (gray bars). The actual y values (open
rhombus) obtained at the end of production are also shown.
The following results are clearly seen in Fig. 5. The SIC
prediction intervals decrease through the process, but the
reference value is always located inside the intervals. The
width of the SIC interval (i.e., the degree of uncertainty) is
smaller for the insiders (sample nos. 10 and 52) and it is the
largest for the absolute outsider (sample no. 24).

Let us have a closer look at the sample no. 24 after stage IV.
At stage V, the two instrumental variables MR1 andMR2 can be
adjusted in order to improve the future quality value y. Four
feasible solutions are shown in Fig. 6. Solution 0 is given here
as a control reference and represents the usage of the actual
historical MR1 and MR2 values. Solution 1 represents the
application of average values MR1 and MR2 that are zeros,
since X data are centered. Solution 2 corresponds to the PLS2
prediction X(IV)⇒XV, which will be viewed in details in
Section 5. Solutions 3 and 4 are arbitrary values that could be set
by an experienced production engineer. The forecasted quality
values for each solution, y, are shown in Fig. 6 with gray bars
that present the SIC intervals and with closed dots that stand for
the points of the PLS prediction. Horizontal line represents the
control quality level that was actually obtained for sample no.
24. It can be seen that solutions 1 and 2 do not improve quality,
while solutions 3 and 4 make it better. However, it may be
supposed that solution 4 is too drastic and so it might be
inadmissible. This problem will be considered in the next
section.

5. Process optimization

In this section, we shall explain how to find the optimal
correcting actions that could be performed at the end of each
stage, i.e., how to perform active optimization. Actually, this
means a proper choice of the controlled variables that become
the input variables for the next coming stage. This choice should
meet two crucial conditions. Firstly, it must improve the quality
of the end-product, i.e., to maximize y value. Secondly, the
choice must be performed within a range of acceptable bounds
of the controlled variables. The underlying theory is based on
the path modeling technique [17] and the SIC object status
concept [10]. This is the second approach within the proposed
MSPO concept.

5.1. Theory

Consider a task of modeling three data blocks. The situation
is illustrated in Fig. 7. Variables in blocks X and Z are available
historical process data and those in y are quality data, which are
also known. The primary objective is to provide with prediction
of quality for a new value of process variable (x, z). However,
some of these variable values are not available. They are
indicated by the row vector z in Fig. 7. Values in x associated
with X block are available, and they may be used to predict both
z and y values. It is necessary to find ‘an optimal’ z value, such
that z maximizes the prediction for value of y. Thus, we are not
looking for an apt prediction of z per se, but we want to find the
values of z such that they are good for entering predictions of y.

In order to find an appropriate z, two relevant PLS models
can be used. The first one is the overall PLS1 model that
predicts the response block y over the joint blocks X and Z, i.e.

XY : ðX;ZÞZy: ð14Þ
Let b and c be the raw regression coefficients obtained at

calibration of the historical data (X, Z, y) by the XY regression,
i.e.,

y ̂ ¼ XY ðX;ZÞ ¼ Xbþ Zc:

It should be mentioned that the joint coefficients b and c give
the coefficient vector a, defined in Eq. (1). Then the
optimization problem may be stated as

maximizeðxtbþ ztcÞ w:r:t: z; subject to zaLz ð15Þ
Here Lz is the region of acceptable z values. This area will be
defined bellow, whereas now it may be discussed in general
terms.

The main problem in linear optimization is not to find a
solution, but to restrict the area Lzwhere this solution is reached.
Optimization of a linear model in unreasonable region always
gives a senseless solution, where the optimized value goes out
of the feasible value range. At first, the restrictions for area Lz
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come from physical or technological meaning of the process
variables. Without loss of generality, these constraints may be
presented as follows:

jzijb1 for i ¼ 1; 2; N and jxtbþ ztcjb1
It is evident that, with respect to the additional scaling of X data
described in Section 4, the overall XY model has a feature that
an increase of any variable zi in vector z leads to the growth of
the quality value y. Therefore, the optimum is always reached at
the upper boundary of the related variable region. Consequently,
all that has to be done in the optimization is to define the
reasonable bounds. The rough limits come from data scaling.
However, bounds (−1, +1) are too wide and optimization
within this range gives the unrealistic result in prediction of
quality y, which becomes greater than +1, its upper scaled limit.
This happens due to the evident correlations between the
process variables, which make such combination of process
values as (+1, +1, …, +1) unavailable and impracticable.
Therefore, the area Lz should contain only such z values that do
not contradict the history of the process. This means that the
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allowable z values should lie within PLS model (14), which
describes the process. Here we could mention essential
resemblance in Lz definition to the known problem called
‘outliers in prediction’ [8,19,20]. Predicting a new unknown
object, it is important to verify whether it could be used in the
established calibration model, or whether the sample has any
abnormalities that make prediction doubtful or improper. As
long as the response value y is unavailable for a new object, the
detection of outliers in prediction is primarily based on the X
variables. Two manifest distance criteria are used for this
purpose. The first one is a leverage measure, which char-
acterizes the PLS spanned subspace distance to a new sample.
The second criterion is a transversal distance that represents the
unmodeled residuals in X data. Both measures are random
values so some statistical approach should be applied to these
criteria.

Let us give a formal definition of area Lz, using the SIC
object status classification. Let h be a vector of the SIC
leverages and let d be a vector

di ¼
ffiffiffiffiffiffiffi
etiei

q
; where eti ¼ xti−tiP

t ð16Þ

of the root mean squared X residuals that represent the object
distances to the PLS hyperplane. Vectors h and d could be
obtained at validation of the overall XY model (14) using an
independent test set (Xtest, Ztest) or by the cross-validation
method. However, they cannot be calculated at the calibration
stage, in which all SIC leverages are less than 1. Treating
vectors h and d as representative samplings, it is possible to find
their critical levels. For example, four limits might be set for
each criterion:

l0 ¼ mh; l1 ¼ mh þ sh; l2 ¼ mh þ 2sh; l3 ¼ mh þ 3sh;
r0 ¼ md ; r1 ¼ md þ sd ; r2 ¼ md þ 2sd; r3 ¼ md þ 3sd;

ð17Þ
where mh and md are the means, and sh and sd are the standard
deviations calculated from vectors h and d correspondingly.
These levels define the critical position of a new object
regarding the overall PLS model.

Having those historically confirmed boundaries, it is
possible to determine whether a new vector z is an admissible
solution for the process optimization. For that, two values hz and
dz are calculated for the joint row (x, z), and then they are
compared with the chosen limits lc and rc. If hzb lc, and dzb rc,
then z∈Lz. Employing various limits (e.g., given by Eq. (17)),
one may perform a variety of optimization strategies that may
be termed as cautious, bold, etc.

Now, let us consider the second relevant PLS2 regression
that predicts the response block Z over the predictors block X,
i.e.

XZ : XZZ ð18Þ
This model may be calibrated using the available historical data
set (X, Z), i.e., Ẑ =XX(X)=XD, where D is the corresponding
parameter matrix. Applying the model to a new row vector x, a
prediction for z can be found. This vector, ẑ =XX(x), is not a
solution for the optimization problem (15); however, ẑ is
obviously a feasible solution, which belongs to the area Lz.
During optimization, each component of ẑ could be changed
until new row vector z+ is within area Lz. This action can be
presented via operator G

Gðz ̂Þ ¼ zþ ð19Þ
that specifies a strategy of optimization. It is clear that, due to
additional scaling of X variables, the row vector G(z) has to be
greater than or equal to z. A unit operator

Gðz ̂Þ ¼ z ̂ ð20Þ
gives a trivial solution. In this case, no enlargement is exercised.
Other kinds of the enlarging operatorGwill be considered in the
next subsection.

5.2. Case study

Now the theory of process optimization will be illustrated
using the batch process presented in Section 3. Applying the
theory one can act in two ways. In the first case, each
component of z is arbitrary enlarged until the conditions z∈Lz
are violated. This, however, is a cumbersome tactics as all Z
variables are obviously correlated. The second way is more
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regular. It is proposed to choose some general method of z
optimization, to apply it systematically to the whole production
cycle, and then to verify that optimized values z+ agree with the
criteria (17). The second way was chosen as more interesting for
the theory exploration.

The series of the expanding PLS1 models given by Eq. (13)

XYI : XðIÞZy; XYII : XðIIÞZy; N ; XYL−1 : XðL−1ÞZy

has already been constructed in Section 4. These models
correspond to the model given in Eq. (14). There is also a series
of the PLS2 models corresponding to the model given in Eq.
(18).

XXI : XðIÞZXII; XXII : XðIIÞZXIII; N ;

XXVI : XðVIÞZXVII ð21Þ
These models predict a block of the future X variables (Z)
using the known block of the preceding X variables (X) and
they are constructed using the calibration set, as explained in
Section 4. Each model is denoted by an operator XXM that
maps the X(M) block to the XM+1 block. These models are of
different complexity, i.e., the number of PCs, the MED β, etc.
Some general characteristics are shown in Table 3. For
example, a model XXIII: X(III)→XIV predicts the forth block,
XIV, of variables (M1, M2 and M3) that is the (102×3)-
matrix, over the block X(III) of the first 11 variables
represented with the (102×11)-matrix, and it uses six PCs.
The X block was explained near 100%. Each response
variable, M1, M2 and M3, has its own PLS2 characteristics.
The responses, M1, M2 and M3, were explained as 99%,
100% and 98%, and the β values were estimated as b=0.12,
0.06 and 0.14, respectively. In comparison with RMSEC
values, sc=0.027, 0.015 and 0.033, they give the following
boundary ratios b/sc=4.40, 4.11 and 4.11.

Such approach implies the general concept of multivariate
data analysis, namely, that difference between predictors and
Table 3
General characteristics of PLS2 model (21)

Model PCs Ep Variable Er b sc b / sc

XXI: X(I)⇒XII 6 1.00 WR1 1.00 0.03 0.010 2.63
WR2 1.00 0.05 0.012 3.79

XXII: X(II)⇒XIII 6 1.00 CW1 1.00 0.03 0.008 3.70
CW2 1.00 0.05 0.011 4.16
CW3 1.00 0.02 0.005 4.30

XXIII: X(III)⇒XIV 6 1.00 M1 0.99 0.12 0.027 4.40
M2 1.00 0.06 0.015 4.11
M3 0.98 0.14 0.033 4.11

XXIV: X(IV)⇒XV 6 1.00 MR1 0.99 0.08 0.029 2.90
MR2 0.99 0.06 0.020 3.03

XXV: X(V)⇒XVI 7 1.00 CM1 1.00 0.06 0.014 4.14
CM2 1.00 0.03 0.006 4.28
CM3 1.00 0.01 0.002 4.13

XXVI: X(VI)⇒XVII 8 1.00 A1 1.00 0.05 0.012 3.84
A2 1.00 0.05 0.011 4.48
A3 1.00 0.05 0.009 4.96
A4 1.00 0.07 0.016 4.24
A5 1.00 0.08 0.017 4.42
A6 1.00 0.06 0.012 4.90
responses is very problem dependent [21]. This turns on one's
choice and intention, which data block is reckoned as the
predictor matrix or the response matrix in a given problem. In
application to the process example, model (21) gives the most
reasonable estimates of the future variables, which agree with
the historical experience collected at the actual production.
These models may be applied to any new process realization in
order to obtain the prediction of the expected blocks of X values.

Let us consider different solutions for optimization problem
given by Eq. (15). The test set consisting of 52 samples
represents a set of new samples; therefore, this set will be
termed now as the control set. There will be necessity to
compare different solutions with each other, as well as to
compare each solution with the control set results. For this
purpose, we use a sample distribution of quality variable y. To
construct it, the set of 52 y values was distributed over 10 bins,
which uniformly cover the range [−1.0, +1.0] and then the
frequencies were scaled with the number of samples. The
histogram obtained for the control set is shown in Fig. 8a. This
plot demonstrates a rather symmetrical distribution of quality
value y among the control set with the mean value, M=−0.10,
and the standard deviation value, S=0.38.

In application to the example, a general algorithm of the
batch process optimization can be described as follows. Let us
consider the process state after stage I, when a new-coming
block of X variables XII should be adjusted. The PLS2 model
XXI: XI⇒XII gives a block X̂II of predicted X values that could
be used as a base for the adjustment. To obtain an optimal
solution some enlarging operator G,G(X̂II)=XII

+ (see Eq. (19)) is
applied to this block. The result, XII

+, is then combined with
block XI and the joint block, X(II)

+ = (XI, XII
+), is used as the input

data for stage III. Block X(II)
+ is further processed in a similar

way, i.e.

XXIIðXþ
ðIIÞÞ ¼ X̂ III

GðX̂ IIIÞ ¼ Xþ
III

ðXþ
ðIIÞ;X

þ
IIIÞ ¼ Xþ

ðIIIÞ

Repeating the procedure for every stage, one can calculate a
set of adjusted X variables, X+ =(XI, XII

+, …, XVII
+ ), which may

be used at each stage of the process for prediction of the
quality values y. This can be done using the expanding PLS1
model (13)

yþM ¼ XY Xþ
ðMÞ

� �
; M ¼ II ; III ; N ;VIII

for the point prediction and the related SIC models for the
interval prediction as it is explained in Section 4.2.
This general algorithmwas implemented with three enlarging
operator G (see Eq. (19)) that represents the various strategies.
The first strategy employs unit operatorG. In this case, the PLS2
estimates calculated with the help of model (21) are used as the
optimized solutions. The result of this optimization is shown in
Fig. 8b. It may be seen that the histogram of quality value y
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predicted over the wholeX block, i.e., y+ =XY(X+) is very similar
to the distribution of the control values y.

The second optimization strategy presumes a more resolute
enlargement of the X variables. This is the addition of some
constant values to each of the adjusted variables. Let values g1,
g2, … be positive numbers. Then, the action of operator G on
each variable zi of the row vector z may be defined as

Gðz îÞ ¼ z î þ gi

We propose to chose g1, g2, … using the SIC concept of the
MED β, namely, to select them as gi=bi, where bi are the MED
values estimated for each Z variable.

In our example, these values are given in Table 3, column b.
For instance, a model XXI: X(I)⇒XII predicts the second block
XII of variables (WR1, WR2) that is the (102×2)-matrix, over
the block X(I) of the first six variables represented with the
(102×6)-matrix, and it uses six PCs. The related β values were
estimated as b=0.03 and 0.05. In this strategy, the expected
value x̂i is substituted with new value xi

+ = x̂i+bi. Such an
optimization is applied to each object from the control set of
our example and gives an evident gain (see Fig. 8c) expressed
in augmentation of the mean quality level M, namely, it is
0.23− (−0.10)=0.33 regarding the control set.

Following the main concepts of the SIC object status
classification, it is natural to examine the outermost type of the
X variables enlargement. This optimization can be done by the
following operator

Gðz îÞ ¼ z î þ bið1þ hiÞ;
where zi are the components of z, hi are the SIC leverages and bi
are the MED values estimated for each X variable related to the
block Z. The histogram of quality acquired by this optimization
is shown in Fig. 8d. It can be seen that there is a great gain with
respect to the control set, as the augmentation of the mean
quality is 0.55− (−0.10)=0.65.

Object status classification helps to select different strategies
of optimization and the underlying object status plot (OSP)
illustrates the idea of each strategy. It is unattainable to present
all OSPs but they look very similar. Fig. 9 represents the OSP
for predicted variable x7, named as WR1 in the PLS2 model
XXI: XI⇒XII. For calculation of the SIC residuals, the known
control values of variable WR1 are used as the reference
response values. Fig. 9a shows that the SIC residuals have a
rather widespread and the SIC leverages are less than 1.5. In
total, there are 23 insiders and 29 outsiders among 52 samples.
This is a rather typical appearance of the OSP for an ordinary
test set (compare with Fig. 4).

Fig. 9b demonstrates how the layout of the 52 control
samples is modified when we change the optimization
strategies. The OSP allows us to understand the status of each
adjusted sample variable, i.e., to understand whether it has a
strange or an ordinarily value regarding the historical data. Here
the SIC residuals are calculated with respect to the optimized
variables x7

+ that are regarded as the reference values (see Eq.
(10)). It should be mentioned that this is more a treatment of the
problem of outliers, which, however, should be considered as
the special new objects with known reference values equal to
the proposed optimal solutions. Applying the OSClas method,
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one can understand how far these solutions are from the average
historically predicted values.

For the first optimization strategy (squares on Fig. 9b), we
can indicate that the most of the adjusted variable values (35 of
52) are insiders (see Section 2.2). Therefore, the trivial
optimization given by the unit operator G (Eq. (20)) may be
termed as the insider type of optimization. This strategy,
however, gives no gain in quality; as such optimization merely
reproduces the historical experience with all its losses and gains.

For the second optimization strategy (diamonds in Fig. 9b),
one can see that all samples are outsiders (compare with Fig. 1).
Due to Section 2.2, such enlargements do not contradict the
model. The same disposition is repeated in the OSPs for other X
variables. Therefore, this approach may be termed as the
outsider type optimization.

The idea of the last optimization strategy becomes clear from
comparison the layout of adjusted samples (close dots in Fig.
9b) with the OSP archetype in Fig. 1. One can see that all
objects are located now on the border of the outliers region and
therefore this kind of optimization may be called the outlier
type.

Applying three optimization strategies for our example, we
yielded three data sets X+ that more or less enhance the
predicted quality with respect to the control ones. These sets
(strategies) were named insider, outsider and outlier types. It is
worthy of mentioning that such status definitions relate to the
Table 4
Distribution of the SIC leverages, h for the different optimization strategies. li
values are calculated by Eq. (17)

Optimization
strategy

h≤ l0 l0bh≤ l1 l1bh≤ l2 l2bh≤ l3 hN l3 mh sh

Control 26 19 5 2 0 0.835 0.261
Insiders 36 12 3 1 0 0.723 0.277
Outsiders 28 17 5 1 1 0.809 0.305
Outliers 26 11 10 5 0 0.854 0.385

Two last columns present the mean and the standard deviation values of h.
XX models defined in Eq. (21) and they do not concern the
overall XY model given in Eq. (12). This would be a great
disappointment if the sets of adjusted X variables X+ disagree
with the overall XYmodel calibrated over the block X=X(VII) of
the historical, control X values. Such a case would mean that the
crucial claim for z∈Lz (see Eq. (15)) has been broken and the
adjusted X+ values are unacceptable. Therefore, it is necessary
to check through the sets X+ whether they agree with criteria
given by Eq. (17). In that way, we verify that the optimized
variable sets are situated not very far along the overall PLS
model subspace and that their transversal distances to this
hyperplane are not too large as well. Table 4 presents the
distribution of the SIC leverages h calculated for the control set
X and, for three sets of adjusted X variables, X+. Also, the mean
values (mh) and the standard deviations (sh) of h for each
optimization strategy are presented.

Table 5 shows the similar results for the root mean squared X
residuals d (Eq. (16)). Studying Tables 4 and 5, one can
conclude that all adjusted X+ sets agree with crucial claim for
X+∈Lz, in general. This can also be confirmed by comparisons
of the mean values for each type of optimization. However,
from Table 5, it could be seen that optimization of the outlier
type is more drastic than the outsider one and the application of
the outlier strategy should be done with caution.

Application of the OSClas theory gives us the instrument for
understanding what is good or bad strategy and how to choose
Table 5
Distribution of the root mean squared X residuals, d for the different
optimization strategies. ri values are calculated by Eq. (17)

Optimization
strategy

d≤ r0 r0bd≤ r1 r1bd≤ r2 r2bd≤ r3 dN r3 md sd

Control 26 17 9 0 0 0.052 0.031
Insiders 35 10 3 4 0 0.047 0.030
Outsiders 19 25 5 3 0 0.068 0.024
Outliers 0 9 29 10 4 0.105 0.027

Two last columns present the mean and the standard deviation values of d.
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the enlargement operator G. For this purpose, we use the
corresponding object status plots (OSPs) that are constructed for
all PLS2 models XXM given by Eq. (21). The position of the
adjusted X variables xi

+ in these plots explains the strategy as
follows:

1. No improvement in quality will be obtained if the adjusted
variables xi

+ are located in the insiders' area (area i in Fig. 1).
2. If we want to yield a considerable improvement of quality

variable y, then optimized variable values xi
+ should be
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presented in Fig. 5, with the corresponding plots obtained for
the optimized X+ values. They are shown in Fig. 10 for the
outlier type of optimization.

The layout of these plots is similar to those plots in Fig. 5.
The single difference are the open dots that represent the PLS
prediction points for the control set. It is clear that this
optimization actually, more or less, improves the output
quality. It also can be seen that the intermediate y evaluation at
stage II predicts the reduction of quality for all samples. This
results from the partial block model XYII: X(II)⇒y that has the
negative regression coefficients at variables WR1 and WR2,
while in the overall model XY: X⇒y all the coefficients are
positive. There can be seen some differences between the
optimization performed with respect to the overall regression
model (12) and the optimization regarded with the partial
block model (13). These may be considered as two objects of
optimization that could be termed as the global and the local
style. In the first case, all the variables are undoubtedly
increased at every other stage, while in the second case the
variables that are associated with the negative regression
coefficients of the current block model (13) are conversely
decreased. The global style follows from the overall PLS
model (12) that has the positive regression coefficients due to
additional X scaling, as presented in the paper. An alternative
style is to optimize the quality variable y with respect to each
partial local model (13), where some regression coefficients
may be negative. The local style of optimization has also been
applied to the example process and there were rather small
differences in the ultimate results. At the moment, we cannot
explain this effect, but it obviously demonstrates a stability of
the proposed optimization procedure.

6. Conclusions

This paper presents methods of process control and
optimization and duly illustrates them with a real world
example. The optimization methods are based on the PLS
block modeling as well as on the simple interval calculation
methods of interval prediction and object status classification. It
is proposed to employ the series of expanding PLS/SIC model
(13) in order to support the on-line process improvements. This
method helps to predict the effect of planned actions on the
product quality and thus enables passive quality control. We
have also considered an optimization approach that proposes the
correcting actions for the quality improvement in the course of
production. The latter is an active quality optimization, which
takes into account the actual history of the process and finds
available adjustments that can be made during the production
cycle. Active optimization is based on the object status
classification that is an ensuing consequence of the SIC method.

This approach is allied to the conventional method of
multivariate statistical process control (MSPC) as it also
employs the historical process data as a basis for modeling.
On the other hand, the presented concept aims more at the
process optimization than at the process control. Therefore, it
was proposed to call such an approach as multivariate statistical
process optimization (MSPO).
In conclusion, we would like to discuss some specific
problems connected to the proposed optimization procedure. It is
worthy of mentioning that it is possible to conduct optimization
with respect to other aims than maximization. For example, it is
possible to look for the correcting actions that tend quality
measure y to its mean, zero value, instead of maximum. The
exciting item is the selection of actual data records that represent
the historical knowledge about the process. This data set serves
as a basis for regressions, imposes restrictions on correcting
action and, as a matter of fact, determines the ultimate result of
optimization. In the explored process, this selection was done
with respect to the following considerations. All failure
realizations, as well as the records, characterized by the
experienced production engineer as atypical or incidental,
were declined. Generally speaking, we made there nothing
except the conventional data pretreatment including outlier
detection and explanatory analysis. However, this issue is not
properly investigated yet and requires further revisions.
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