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Abstract

Many production processes are carried out in stages. At the end of each stage, the production engineer can analyze the intermediate results and
correct process parameters (variables) of the next stage. Both analysis of the process and correction to process parameters at next stage should be
performed regarding the foreseeable output property y, and with respect to an admissible range of correcting actions for the parameters of the next
stage. In this paper the basic principles of path modeling is presented. The mathematics is presented for processes having only one stage, having
two stages and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables
and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be
applied to estimate variables of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important
aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the
multi-variate variation in data.
© 2006 Published by Elsevier B.V.
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1. Introduction

In industry there is great interest for numerical methods that
can be used in process control of the production. There have
been developed numerous methods for process control. But
most of them are designed for situations, where there are
relatively few variables that are measured during the production
process. But conditions are changing. Now the companies are
measuring numerous variables and using different types of
measurement instruments. For instance, if an NIR (Near Infra-
Red) instrument is being used, it automatically generates typi-
cally 1056 values for each sample measured. A company using
NIR instruments for process control may have hundreds of
them.

An important trend today is that authorities are providing
recommendations or requirements concerning the process con-
trol with the purpose of securing the quality of the final product.
An example is FDA in USA that is setting up prescriptions for
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process control in order to secure quality of food and medical
products.

In recent years it has been successful to implement predictive
control. It means that models are used to predict some future
measurements. When the actual measurement is carried out, the
measured value is compared with the predicted one. If there are
too large differences between the measured and the predicted
ones, it indicates that something is wrong. When the operators
can see the predicted values for the future development, they
may decide that the values are not good and change the
conditions for the future values. The methods presented here are
provided with models that can be used for effective predictive
control.

Linear regression is a method that is often used, when pre-
dictions are needed. Instrumental data are collected in a matrix
X, and the output (quality or result-data) are collected in a
matrix Y. These data are used to estimate the parameters B in a
lines model, Y⁎=XB. When a new sample is available, x0, the
predictions are computed from the model y0⁎=B

Tx0. Although
this approach is often good, it is frequently not adequate. There
may be many reasons for this. The parameters B may change
with time or the linear model may not be adequate to provide
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good predictions. What is often needed is a more detailed
description of the production processes and models that reflect
the description.

An example is where the production is organized as batch
processes. Each batch can be organized in stages, where at each
stage a certain amount of variables is measured. The variables at
later stages are measured at a later time than at previous stages.
Thus, there are typically two time concepts. One is from sample
to sample and another is within a sample (a batch). This is
illustrated schematically in Fig. 1. The data matrix X can be
partitioned in parts as X=(X1 |X2|…|Xn). The measurements in
X1 are the ones found at stage 1 and similarly for the other parts.
When new values, x10, from the first stage are obtained, one
would like to know if these are good values. Can values at later
stages, x20,…,xn0, be adequately estimated from x10, and how
good can we expect the output results, y0, for this batch to be?
The methods presented here are designed to deal with this way
of structuring data.

The methods in this paper are based on the path modeling
methods developed in Ref. [1]. In this paper the basic methods
are shown. Thus the presentation in this paper supplements the
ones in Ref. [1]. The basic methods of path modeling are
concerned with a network of data blocks, where certain matrices
(data blocks) are defined as the instrumental data as input data
and some other as output data blocks, the Y's. Between the
input and output data blocks there can be any amount of data
blocks that make up the network. This paper is concerned with a
simple network, where a linear regression, X ⇒ Y, is extended
to X ⇒ Z1 ⇒ Z2 ⇒ … ⇒ Zn ⇒ Y. Regression coefficients for
this is developed. If Ye, Zne,…,Z1e denote the computed values,
the regression coefficients give Ye=ZnBy, Zne=Zn−1Bn,…,
Z2e=Z1B2 and Z1e=XB1, This means that when a new X-
sample, x0, is available, these regression coefficients are used to
compute the estimate for a Z1-sample, z10, Z2-sample, z20,…,
Zn-sample, zn0 and an Y-sample, y0. In Section 2 the ideas of
path modeling are considered more closely.

In Section 3 it is shown how modeling data that are collected
in batch processes fit within the present framework. It is
emphasized how the estimation procedure should be carried out,
what an overall criterion of the estimation should be and what
results are important for the analysis.

In Section 4 the case of only one data matrix X is considered.
The results and interpretation in this case are similar to the ones
in more general context. Also the basic formulae are the same as
in a general network of data blocks.
Fig. 1. Schematic illustration of two time concepts in batch processes.
In Section 5 the case of linear regression,X⇒Y, is treated. It
is shown how the optimization for one matrix extends to the
case of two matrices. Furthermore, it is shown how the results of
the optimization task are illustrated graphically.

The methods presented are of mathematical type. The same
algorithm is used for any number of matrices in a path. There-
fore, it has been chosen to present the basic formulae for one
and two data matrices. Once the algorithm has been understood
for these two cases it immediately follows the general formulae
for the arbitrary number of data matrices.

In Section 6 the case of three data matrices, X, Z and Y, is
considered, where the modeling task is X⇒ Z⇒ Y. It is shown
how the optimization task for two matrices extends naturally to
the case of three or more matrices. It is shown how the re-
gression coefficients are estimated and used to provide predic-
tions for later stages of the process.

The methods presented are based on the H-principle of
mathematical modeling [2]. It suggests that the modeling task
should be carried out in steps, where at each step the estimation
and precision aspect of the model should be balanced with the
purpose of obtaining optimal predictions. It is an important
aspect of the method presented that the same algorithm is used
for one, two, three or more matrices. In the case of one matrix X
the interpretation is based on X ⇒ X.

In Section 7 the methods are applied to the process data that
are presented in Section 3. It is shown how the modeling task of
X⇒ Z⇒ Y can be restructured in different ways depending on
which stage we are at. It is shown how graphic procedures can
be used to illustrate different features in the data.

In Ref. [1] the theory of path modeling is presented, which is
based on the H-principle. The present paper presents the theory
from a different point of view. The path modeling here is viewed
as extensions of modeling one data or two data blocks. It is
started with one data block and all measures, regression
coefficients and graphic procedures are developed. The
regression task is viewed as deriving the data X from itself.
This is extended to two data blocks, X ⇒ Y, such that the same
procedures are used. IfY is replaced byX, the results of one data
block are obtained. This approach makes it natural to extend the
procedures to three or more data blocks. If the data blocks are
organized in a path, for instance as Z1 ⇒ Z2 ⇒ … ⇒ Zn, the
procedures reduce to linear regression if n=2, and to one block if
n=1. Here it is argued that the data at different stages in a batch
process adequately can be viewed as data blocks in a path.
Furthermore, it is argued that the path modeling approach is the
natural approach to modeling the stages of the batch, where the
purpose of the modeling is the prediction of the final quality.

The theory of path modeling is extensive, see Ref. [3]. The
presentation of path modeling in this paper is different fromwhat
is found in the literature. Most of the theory of path modeling in
the literature can be viewed as the analysis of the correlation
structure among the data blocks. It is also typically only con-
cerned with finding one latent vector (latent variable) for each
data block, see Refs. [3–7]. The papers in the literature are very
much focused on the estimation aspect in these types of models,
see Ref. [8]. Path modeling can be viewed as multi-block mod-
eling. In Ref. [9] there is a review and a framework for different
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methods to analyse multi-block data. It also contains extensive
references to literature on multi-block methods. The methods
presented here are different from the ones in the literature. The
focus here is to use the H-principle to secure optimal predictions
along the path, from the starting input data block to the prop-
agated values in the path.

2. Path modeling

Here some basic ideas of path modeling are reviewed. It is
assumed that there are given a collection of data matrices that
make a network of interconnected data. In a linear regression
there are given two data matrices, X ⇒ Y. When a new X-
sample, x0, is available, the linear model is used to estimate the
Y-sample, y0=B

Tx0. In case of three data blocks, X ⇒ Z ⇒ Y,
prediction is wanted for a Z-sample and a Y-sample, when X-
sample x0 is available, z0⁎=Bx

Tx0 and y0⁎=Bz
Tz0⁎. Path modeling

is concerned with a directed network of data blocks, which
means that each data block is connected to one or more data
blocks later in the network. There are given a number of input
data matrices Xi and some output matrices Yj. There is direction
in the network in the sense that each data matrix is supposed to
explain one or more data matrices later in the network. The
starting point is the input data matrices. The task is to establish
regression relationship between the data blocks such that when
the input samples become available, xi0, i=1,…,I, intermediate
and output samples can be estimated by regression relation-
ships. In this paper there is one input matrix, X, one output
matrix, Y, and a set of intermediate data blocks reflecting the
time sequence of the measurements, Z1,…,Zn. The path
considered is X ⇒ Z1 ⇒ … ⇒ Zn ⇒ Y.

The modeling follows the recommendations of the H-
principle. It suggests that the modeling should be carried out in
steps. At each step there should be applied a weighing
procedure that reflects the emphasis of the analysis. In the
present case at each step there should be found a weight vector
w such that the score vector t=Xw has some optimal properties.
The H-principle suggests that the estimation and the precision
aspect of the model should be determined such that the
prediction is optimized. In the path considered the score vector t
generates loading and score vector at later stages as given by

p1 ¼ ZT
1 t; t1 ¼ Z1p1; p2 ¼ ZT

2 t1; t2 ¼ Z2p2; N ; pn
¼ ZT

n tn−1; tn ¼ Znpn; q ¼ YTtn; u ¼ Yq: ð1Þ

This sequence of vectors is schematically illustrated in
Fig. 2. Each of the vectors has an interpretation as ‘the effect
of’. For instance, the projection of Z1 onto t is tp1

T/(tTt).
Fig. 2. Schematic illustration of the sequence of vectors of Eq. (1).
Thus p1 is proportional to coefficients of projecting Z1 onto
t. The H-principle suggests that the loading vector of the data
matrix, which is to be predicted, should be maximized. Here
the primary concern is the Y-matrix. Thus a weight vector
w should be found such that the size of the loading vector q
is maximized, max |q|, subject to |w| = 1. A weight vector
w chosen in this way secures best possible predictions of
new Y-samples in the present path. The predictions obtained
for the Zi-samples, zi0, may not be optimal for predicting Zi-
samples. But it is ‘the best’ for providing with good pre-
dictions for the Y-samples. When analyzing paths it may be
important to detect if some of the Zi's are not functioning
well. It might be that for instance Z2 is not good, either that
p2=Z2

Tt1 is close to zero or p3=Z3
Tt2 is zero. If p2 is zero, Z1

cannot describe Z2, and if p3 is zero Z2 cannot describe Z3.
It is important to understand the task of path modeling. We

are looking for a weight vectorw such that the predictions of the
Zi-samples ‘fit’ in the path and give good predictions of the Y-
samples. The operators get the ‘best’ estimates of the variables
at the intermediate stages and an optimal linear prediction of the
output. Note that it might be possible to get more precise
predictions of Y-samples, if only the X-data are used. The more
detailed path that is specified the more requirements are desired
for the data in order to get good predictions.

The sequence (1) is generated for each step. When the
sequence of vectors has been computed, the matrices (X, Z1,..,
Zn and Y) are adjusted appropriately before a new sequence is
found. An important aspect of the analysis is the possibility of
graphic analysis of the path. Plots of score vectors show the
changes of the samples along the path, and plot loadings the
changes in the correlation structure. If all matrices are equal,
X=Z1=…=Zn=Y, the score vectors (and loading vectors) will
be equal apart from a scaling constant. In the general case the
plot of score vectors can reveal changes that have occurred in
the data path.

The methods of this paper require appropriate scaling of all
data blocks. The reason is that the strength of relationship is
measured by the covariance matrices. If data are not scaled, the
results may depend on some variables that have large variance
but not very good modeling power. Another aspect is the case of
many variables. There it is necessary to scale the data in order to
secure numerical stability of the algorithm. When working with
industrial data we typically use reduced rank solutions be-
cause they show better prediction ability than full rank solutions.
Therefore, the procedure of scaling data is considered here briefly.

The scaling of variables of data (X,Y) amounts to mul-
tiplying by diagonal matrices. The scaled data are X1=XC1 and
Y1=YD1. The linear least squares solution is given by B=
(XTX)−1XTY. If it is computed for the scaled data, the result is
B1= (X1

TX1)
−1X1

TY1=C1
−1BD1. It gives B=C1B1D1

−1. This
shows that scaling of data can be viewed as a way to obtain a
stable least squares solution. In the procedures the solution is
computed in steps, where at each step a rank one contribution to
the solution is computed. In the analysis only A terms are used
in the solution. The same scaling is used for the rank A solution,
BA=C1B1,AD1

−1. All measures are computed for the scaled data.
Also, the graphic procedures are based on the scaled data.
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3. Batch process data

We consider a multi-stage continuous technological process
that is represented by 25 process variables x and one output
variable y, which is the final quality of the end-product. The
data represent the production of a well-known Russian strong
drink. The production cycle (see Fig. 3) is divided into seven
stages numbered by Roman numerals. At each stage there
certain variables are measured. Variables used on all previous
stages are treated as the input fixed variables, current variables
are the controlled ones, and variables that characterize next
stages are out of scope on the current stage. Moving along the
process, variables change their roles.

The first stage (I) is represented by six input variables (W1,
W2, W3 and S1, S2, S3) that stand for the properties of the raw
components S and W. At the second stage (II) component W is
refined and variables WR1 and WR2 characterize this process.
Variables CW1, CW2, and CW3 (Stage III) represent the
properties of the outcome product CW. The next stage (IV) is the
mixing of the raw component S and the refined component CW.
The result M is characterized by variables M1, M2, and M3.
Afterward, blend M is also refined (Stage V) with the process
characteristics MR1 and MR2, and the properties of outcome
CM are presented by variables CM1, CM2, and CM3 (Stage VI).
The last stage (VII) stands for the ultimate amendments, which
are done with additives A1,…, A6. The output variable (P=y) is
the final product quality. The data used are from 154 batches.

At the end of each stage, the production engineer could
analyze the intermediate results and correct process parameters
(variables) of the next stage. Both analysis and correction
should be performed regarding the foreseeable output property
y, and with respect to the admissible range of correcting actions
for the next stage.

4. One data block

Assume that there is given one data block, X an N × K
matrix, X=(x1,…,xK). xk is the kth column of X and xn the nth
Fig. 3. Product
row of X. We shall start by looking at the decomposition of X.
Then it is considered how we can report from the decomposition
procedure.

4.1. Decomposition of X. Weighing variables

4.1.1. General decomposition procedure
The H-principle suggests that the modeling task should be

carried out in steps. The reason for this is that in practice data
have their own ‘identity’. There may be reduced dimension in
data; there may appear unexpected non-linearity or unforeseen
grouping of the samples. It is important to detect, when data
says ‘stop’. At each step we are looking for a good score vector
t, which is computed by

t ¼ Xw ¼ w1x1 þ N þ wKxK : ð2Þ

Between steps the matrix X is reduced. The reduction is
carried out by

XpX−d t pT;with p ¼ XTt and d ¼ 1=ðtTtÞ ð3Þ

The vectors involved at each step are schematically illus-
trated in Fig. 4. The matrix X in Eq. (2) will typically be the
reduced one, X=X(A),

XðAÞ ¼ X− d1 t1 p
T
1 þ N þ dA tA p

T
A

� �
: ð4Þ

The index A refers to the numerical step in the decom-
position and A can be any integer between 1 and min(N,K).
Note that (d t pT) in Eq. (3) can be viewed as the projection
of X onto t. Thus the score vectors will be orthogonal
independent of the choice of weight vectors, w's. In order to
simplify the notation the index is often dropped, like in Eq.
(3), when there is no risk of misunderstanding. At each step
there are generated vectors, w, t and p. These vectors are
collected in matrices W=(w1,…,wA), T=(t1,…,tA), P=(p1,…,
ion cycle.
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pA). Besides these vectors there are needed the r-vectors.
They are generated by the formula,

rA ¼ wA− wT
Ap1

� �
r1 þ N wT

ApA−1
� �

rA−1
� �

r1 ¼ w1ð Þ: ð5Þ

They are generated from the property,

tA ¼ XrA; ð6Þ

where X is the original data matrix. The matrix R=(r1,…,rA)
satisfies

RTP ¼ D−1; ð7Þ

where D is the diagonal matrix with dA in the diagonal, see
Ref. [2]. Eq. (5) uses X(A) =X(A−1)(I − dAwApA

T)=X(I − d1w1p1
T)

×… × (I − dAwApA
T). Thus it is easy to show that Eq. (5) does not

depend on the way the p-vectors are given. This property of
Eq. (5) is used in later sections, when computing the regression
coefficients between data blocks.

4.1.2. Interpretation of the vectors

4.1.2.1. wA, the weight vector. The weight vector is found
from the task in question. There is no restriction on wA except
that the resulting score vector t may not be the zero vector. For
any such choice of wA, Eqs. (2)–(7) are valid. Usually, the
weight vector is scaled to unit length.

4.1.2.2. tA, the score vector. It is the result of weighing of the
variables, which represent the ‘profile’ in data at this step. It is
sometimes said that the score matrix T represent the latent
structure in data. Often the aim of the analysis is to obtain a
score vector having some properties. E.g., in Principal Com-
ponent Analysis, PCA, the task is to find a score vector wA such
that the resulting score vector tA has as large size as possible.
The reduction of X, Eq. (3), at each step implies that the score
vectors are always mutually orthogonal whatever choices of the
weight vectors there have been made.
Fig. 4. Schematic illustration of vectors.
4.1.2.3. pA, the loading vector. It has the interpretation of
being proportional to the correlation coefficients between the
Kx-variables and the score vector tA. Therefore, it is often
useful to study scatter plots of two loading vectors, because
these plots show how the x-variables ‘contribute’ to the score
vectors.

4.1.2.4. rA, the transformation vector. It has the interpretation
(Eq. (6)) or T=XR, or P=XTXR, where X is the original data
matrix. The rA-vectors are used to study how the values of the
score vectors are derived from the original data. They are also
used to study how the loading vectors are derived from the
correlation matrix.

4.1.2.5. dA, the scaling constant. It has an interpretation of a
variance. In case of PCA, dA=1 / λA, where λA is the eigen value
from XTXw=λw. The scaling constants can be absorbed into
either T or P. They are computed separately to secure numerical
stability.

4.1.3. The mathematical decomposition of X and X+

Assume that there are more samples than variables, K b N.
The decomposition of X given by Eqs. (2)–(5) can be written as

X ¼ d1t1p1Tþ N þ dAtAp
T
A þ N þ dK tKpKT ¼ TDPT ð8Þ

Xþ ¼ d1r1t
T
1 þ N þ dArAt

T
A þ N þ dKrKt

T
K ¼ RDTT: ð9Þ

The matrix X+ is the generalized inverse of X, X=XX+X.
This follows from (7). If XA and XA

+ are the truncated ver-
sions, XA=d1t1p1

T+…+dAtApA
T, XA

+ is also the generalized in-
verse of XA, XA=XAXA

+XA. Usually only A terms are used in
Eqs. (8) and (9) since further terms do not improve the mod-
eling of X.
4.1.4. Regression coefficients
It is useful to apply the notation and concepts of the well-

known regression analysis. If

BA ¼ d1r1p
T
1 þ N þ dArAp

T
A ¼ RADAP

T
A; ð10Þ

we can write XA=XBA. The estimate of X is given by XA and
the regression equation by XBA.
4.2. Decomposition of X. Weighing samples

The above shows the results of decomposing X, when the
variables have been weighted. This approach is appropriate,
when the rows are repeated samples or objects, where the same
type of measurements is carried out. It is also common to see
data where this interpretation is not suitable. An example is the
situation of rating food by tasting samples of food. The
variables of columns of X may represent the types of food,
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while the rows are the persons tasting the food. The persons
may be different and their rating may not be considered as
repeated samples. In fact it may be natural to consider the
persons as variables. The decomposition above can be applied
to the case of weighing rows (samples) of X by considering the
transpose of the formulae above. But for later purpose it will
be natural in this case to change the notation. Let v be the
weight vector for the rows. It is used to compute the loading
vector p,

p ¼ XTv ¼ v1x
1 þ N þ vNx

N :

Here x1 is the first row of X and similarly for the other rows.
The adjustment of X at each step is carried out as

XpX−d t pT; with t ¼ Xp and d ¼ 1= pTp
� �

:

This way of adjusting X secures that the matrix PA=(p1,…,
pA) will have orthogonal columns. Like above (in the case of r-
vectors) there are needed the s-vectors. They are generated by
the formula,

sA ¼ vA− vTAt1
� �

s1 þ N þ vTAtA−1
� �

sA−1
� � ð11Þ

The matrix SA=(s1,…,sA) is computed such that

PA ¼ XTSA; ð12Þ

where X here is the original matrix. This corresponds to Eq. (6).
Similar to Eq. (7) it can be shown that SA

TTA=DA
− 1. Eq. (8) will

look the same, while for Eq. (9), we now have

Xþ ¼ d1p1s
T
1 þ N þ dKpKs

T
K ¼ PDST ð13Þ

Both X+ and the truncated version XA
+ will be the generalized

inverses of X and XA resp. The vectors involved, when de-
composing X according to rows, are schematically shown in
Fig. 5.

4.3. Decomposition of X. Weighing both variables and samples

It may be natural to weigh both columns and rows in cases
like mentioned, where both rows and columns can be viewed as
Fig. 5. Schematic illustration of vector, weighing of rows of X.
variables. In this case the there are weight vectors for columns,
w, and rows, v, that give

t ¼ Xw ¼ w1x1 þ N þ wKxK
p ¼ XTv ¼ v1x1 þ N þ vNxN :

The adjustment of X at each step is now carried out as

XpX−d t pT; with d ¼ 1= wT XTv
� �

:

Neither the t's nor the p's will in general be orthogonal. But
the adjustment will always give a rank one reduction of X. Thus
there will be at most min(N,K) number of steps in the modeling
ofX. The r-vectors are generated by Eq. (5) and the s-vectors by
Eq. (11). These vectors are generated to satisfy

T ¼ XR and P ¼ XTS;

with X as the original matrix. They have the property

RTP ¼ D−1 and STT ¼ D−1:

The decompositions of X and X+ have now the form,

X ¼ d1t1pT1 þ N þ dAtApTA þ N þ dK tKpTK ¼ TDPT

Xþ ¼ d1r1sT1 þ N þ dArAsTA þ N þ dKrKsTK ¼ RDST:

Both X+ and its truncated version, XA
+, are generalized

inverses of X and XA, resp. The vectors involved, when X is
decomposed according to both variables and samples, are
schematically illustrated in Fig. 6.

4.3.1. Algorithmic considerations
The same algorithm is used in all three cases treated above,

weighing columns, weighing rows and weighing both columns
and rows. If only columns are weighted, the weight vector v is
chosen as scaled t, v= t / |t|. In this case s becomes t, s= t. If only
rows are weighted, w is chosen as scaled p, w=p/|p|, and r
reduces to p, r=p. If both rows and columns are weighted, there
is the risk that the value of wTXTv will become close to zero, or
negative, which indicates a conflict between the way we want to
look at the columns and at the rows. This is often reflected by
that the reduced X increases in size although the rank is
diminished by one. In this case it may be necessary to switch to
either weighing only columns or only rows, depending on
which is giving ‘most’.

4.4. Interpretation and application of PCA

Here we shall consider an application of Principal Compo-
nent Analysis (PCA). It is an important aspect of PCA that it can
be considered as weighing columns, weighing rows or as
weighing both rows and columns. In fact PCA can be viewed as
a stepwise procedure, where at each step one of the following
equivalent tasks is solved.

a) Maximize |Xw|2, subject to |w| =1,
b) Maximize |XTv|2, subject to |v| =1,
c) Maximize (wTXTv), subject to |w| =1 and |v| =1.
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One can use this property of PCA to be inspired to
formulate different criteria that better fits to the data that are at
present. This property also motivates to view the results from
different decompositions in a similar way as in the case of
PCA.

The weight vector w is found as the eigen vector
associated with the largest eigen value of XTXw=λw. The
set of score vectors are orthogonal (because of a)), and so is
the set of loading vectors (because of b)). This property
characterizes PCA apart from rotation of score and loading
vectors.

4.4.1. Batch process data
These are process data. In case of process data we often

find reduced rank. Here there are 25 x-variables. Thus XTX is
a 25 × 25 matrix. The data are here auto-scaled. In case of
PCAwe find a weight vector w such that the score vector t has
maximal size, max |t| for |w| = 1. Therefore it is natural to plot
the size of |t| =√λ against the dimension. This is done in
Fig. 7. It shows that the size has become zero at dimension 12
or so. The next question is: What dimension should be used?
In analogy with regression analysis it is natural to consider the
expression.

f Að Þ ¼ jX−XAj2 1þ jXþ
A j2

� �

¼ jX−XAj2 1þ d1 þ N þ dAð Þ
¼ kAþ1 þ N þ k25ð Þ 1þ 1=k1 þ N þ 1=kAð Þ: ð14Þ

This expression can be viewed as the variance of a prediction
of a new sample. Here it is the ability of the regression matrix
BA to regenerate the sample.

In Fig. 8 the values of f(A) are shown. The way we look at
the figure is that we look for a minimum value or when f (A)
reaches zero. The figure suggests that dimension of 8 should be
used. The x-axis only goes to 11, because the score vectors are
almost zero for dimension 12 and later.

The score vector t is to ‘describe’ X as well as possible.
Following the H-principle we should look at the size of |tTX|2.
In the case of PCA there is the same information in |t|2 =λ as in
|tTX|2 =λ2. Therefore it is not shown here. The term |tTX|2 can
be written as |tTX|2 =wTXTXXTXw. It shows that the matrix
Fig. 6. Schematc illustration of vectors, weighing both columns and rows.
C=XTXXTX is important in describing the modeling steps.
The diagonal elements of this matrix is

Cii ¼ xTi x1
� �2þ N þ xTi x25

� �2
; i ¼ 1; N ; 25:

It is useful to look at the values of Cii before the analysis and
the results after dimension 8. In Fig. 9 the values of √Cii are
shown both before the analysis and after step 8. The figure
shows that the values of √Cii are practically zero after step 8.
Thus very little of the covariation in data is left, when step no.
8 has been completed. It can also be seen from the figure that the
last 6 variables show smaller covariance with the other variables
than the first 18 variables.
5. Two data blocks. Regression analysis

It is supposed here that there are given two data blocks X, an
N × K matrix, and Y, an N × M matrix.
Fig. 8. Plot of f(A), Eq. (14), versus dimension.



Fig. 9. Plot of √Cii versus variable number. Line: before analysis, …: after
dimension 8.
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5.1. Decomposition of X

When the modeling task is carried out in steps, we are
looking for a weight vector w such that the resulting score
vector, t=Xw, is good in describing the Y-data. There are many
ways to find w. In fact most standard regression analysis can be
formulated as special choices of w.

Having found the weight vector w, the score vector t=Xw is
computed and the matrices X and Y are adjusted for what has
been found,

XpX−d t pT; with p ¼ XTt and d ¼ 1= tTt
� �

:

YpY−d t qT; with q ¼ YTt:

This procedure is then repeated for the reduced matrices. The
steps are continued as long as the predictions derived from
the model are improved. Like in Eq. (11), X is projected onto
t, and the result is subtracted from X. Therefore, the score
vectors will be mutually orthogonal independently of the
weight vectors w's. Note that in a linear regression case, X ⇒
Y, both X and Y are adjusted by the score vectors that have
been found.

The results of the regression analysis are the following
decompositions of X and Y,

X ¼ d1t1p
T
1 þ N þ dAtAp

T
A þ X0 ¼ TADAP

T
A þ X0 ð15Þ

Y ¼ d1t1q
T
1 þ N þ dAtAq

T
A þ Y0 ¼ TADAQ

T
A þ Y0 ð16Þ

where QA=(q1,…,qA) and q1=Y
Tt1,…,qA=Y

TtA. X0 is the part
of X that is not used, and Y0 is the unexplained part of Y. The
regression coefficients are given by

BA ¼ d1r1q
T
1 þ N þ dArAq

T
A ¼ RADAQ

T
A; ð17Þ
with RA generated from Eqs. (5) to (6). It gives, with YA=XBA

the estimated response values,

Y ¼ XBA þ Y0 ¼ YA þ Y0:

5.2. Optimal choice of weight vector w

It is an important issue how the weight vectors should be
chosen. The primary interest in industry is the variance or
uncertainty of predictions. If x0 is a new sample, the corre-
sponding response value, y0, is in linear regression computed as
y0=b

Tx0. In order to simplify the notation assume that there is
only one response variables, and the data can be described by a
normal distribution, y ∼ N(Xβ,σ2). Then the variance of y0 is
given by

Var y0ð Þis2 1þ xT0 XTX
� �−1

x0
� �

¼ yT I−X XTX
� �−1

XT
� �

y
h i

1þ xT0 XTX
� �−1

x0
� �

= N−Kð Þ:

Here the full model is assumed. We would like this variance
to be as small as possible. When the model is expanded and new
score vector is selected, one can show that

a) the residual variation,yT(I−X(XTX)− 1XT)y, always decreases
b) the model variation, x0

T(XTX)− 1x0, always increases.

The H-principle looks closer at these terms and suggests
optimizing a balance between the two terms. The conclusion is
that the size of YTt should be maximized, or

maximize jqj2 ¼ jYTXwj2; forw subject to jwj ¼ 1: ð18Þ

The solution to this task is to choose w as the eigen vector
associated with the largest eigen value of

XTYYTXw ¼ kw: ð19Þ

This choice of w gives PLS regression. The importance of
the H-principle is due to that, assuming normally distributed
data, the residual variation, YT(I − X(XTX)−1XT)Y, and the
precision, (XTX)−1, are stochastically independent. Therefore
both must be modeled in order to secure small variance of
predictions. This theory assumes that it is appropriate to use all
of X in the modeling task. Usually it is necessary to find the part
of X that should be used. But this is not considered closer here,
because this is an extensive topic.

Like in the case of PCA there are some equivalent forms of
maximization that can be used. An important one is to find a
weight vector w for X and a weight vector q for Y such that the
resulting score vectors have maximal covariance,

maximize tTu
� �

; for t ¼ Xw and u
¼ Yq; forw and q subject to jwj ¼ 1 and jqj ¼ 1: ð20Þ



Fig. 10. Vectors at each step in a regression analysis.

Fig. 12. Plot of f(A), (14), versus dimension.
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This interpretation is important. It indicates theoretical
closeness with Canonical Correlation Analysis. Also, the results
can be analyzed graphically by studying the scatter plot of the u-
vector against the t-vector. This plot should show a scatter that
approximately follows a straight line. If this is not the case, it is
time to stop modeling data.

Fig. 10 gives a schematic illustration of the vectors that are
computed in the regression analysis. Note, that u is only used
for graphical analysis and statistical testing for the significance
of the step.

5.3. Graphical analysis

The maximal covariance, max(tTu), obtainable at each step
is the largest eigen value λ in Eq. (19). It can be written as
λ= tTYYTt= |YTt|2. It is useful to report this value at each
iteration in order to see how much it decreases. This is shown in
Fig. 11 for the process data using all 25 variables. Data have
been auto-scaled before analysis. It shows that λ decreases
rapidly. From the figure we would consider the dimension to be
around 8. In Fig. 12 are shown the values of f (A) in Eq. (14) for
these data.

Fig. 12 suggests that the dimension should be 7 or 8. The
analysis of the dimension can be supplemented in different ways,
but that is not considered here.
Fig. 11. Plot of λ, Eq. (18), versus dimension.
It is useful to look at the diagonal elements of C=XTYYTX,
the matrix in Eq. (19),

Ckk ¼ xTk y1
� �2þ N þ xTk yM

� �2

¼ xTk y
� �2

; k ¼ 1; N ;K; M ¼ 1ð Þ:

A plot of the √Ckk values for the first 8 dimensions should be
looked at. There are two things that one is looking for. The first
is the figure, where all values of √Ckk seem to be zeros. If they
seem to be almost zeros on a graph, it indicates that the
modeling should stop at this dimension. The second thing one is
looking for is if there are many variables that do not show
covariance with the y-variables. If this is the case it is important
to remove them from the analysis. This is an important topic
because successful modeling is based on that the x-variables
contribute to the modeling task. But this is not considered closer
here.

There are two types of graphs that one should always look
at. The first type is the plot of observed y-values against the
computed y-values. There should also be a plot where the y-
values are computed by cross-validation. The other types of
plots are plots of the u-vector versus the corresponding t-
vector. This should be done for each step or dimension.
These plots are also important in the path modeling task. We
shall look at them as illustrations of the results from path
modeling.
6. Three data blocks

Consider now the task of modeling three data blocks. The
situation is illustrated in Fig. 13. The variables in X and Z may
be process data and those in Y are quality data. The primary
Fig. 13. Modeling three data blocks.



Fig. 15. Schematic illustration of matrices and vectors.
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objective may be to provide with predictions for new values of
Y-variables. But part of the process variables is available. This is
indicated in Fig. 13. The values associated with X may be
available, and it may be needed to predict both the Z-values and
the final quality, the Y-values. What are needed are ‘good’ Z-
values, z0, such that z0 give good predictions for the Y-values,
y0. Thus, we are not looking for good predictions of z0 per se,
but we want to estimate the values of z0 such that they are good
values for entering predictions of y0. This procedure is
sometimes called ‘path modeling’.

6.1. Criteria for modeling three data blocks as a path

It shall now be considered, how appropriate score and load-
ing vectors can be defined. It will also be shown how the criteria
(18) extend naturally to this setup.

Consider Fig. 14 closer. The task is to find a weight vector
w such that the derived score vector, t=Xw is good. The score
vector t generates a Z-loading vector p, p=ZTt, which is used to
produce a score vector s=Zp that is expected to be good in
predicting samples of Y. A score vector s is good if the resulting
loading vector q=YTs is large, cf Eq. (18).

Thus, the optimization task is

maximize jqj2; forw subject to jwj ¼ 1:

If the expression for q is expanded, the result is q=YTs=
YTZp=YTZZTt=YTZZTXw. The task is therefore,

maximize jYTZZTXwj2; forw subject to jwj ¼ 1:

Using Lagrange multiplier technique it can be shown that
w should be chosen as the eigen vector associated with the
largest eigen value of

XTZZT YYTZZTXw ¼ kw: ð21Þ

Whenw has been found, t is computed as t=Xw, p as p=ZTt,
s as s=Zp, q as q=YTs and u as u=Yq. The success of this
estimation is studied by looking at the scatter-plot of s against u.

It should be emphasized that the task here is the modeling
between Z and Y with weights generated from X. This type of
modeling may be unsuccessful either because Z cannot modelY
or because X cannot adequately describe Z. In both cases it
might be that X is good in describing Y.

The procedure above shows howw is found, which generates
the further score and loading vectors, t, p, s, q and u. The
important question is: How should the next weight vector w be
Fig. 14. Schematic illustration of score and loading vectors in a path.
found and how should the score and loading vectors be
determined? In many industrial and business applications this
is not carried out. The path containing latent variables is often
only represented by one set of latent variables, one latent
variable for each data block. This is not satisfactory, because
more latent variables are usually needed in order to obtain
satisfactory modeling results.

In linear regression, X⇒ Y, both X and Yare adjusted by the
score vectors derived from X. When there is a given path, X ⇒
Z ⇒ Y, X and Z are adjusted by score vectors derived from X.
The pair of matrices, Z and Y, needs to be adjusted similarly.
This is explained in the following.

The weight vector w is found by maximizing the size
of YTZZTXw. If the matrix product is split into parts, we
get

t ¼ XwYZ; p ¼ ZTtYZT; s ¼ ZpYY:

Here the arrow → marks that the vector is to describe the
matrix, e.g., t is to describe Z. From an algorithmic point of
view it is natural to work with four matrices,

X1 ¼ X;X2 ¼ Z;X3 ¼ Z andX4 ¼ Y

The reason is that in a regressionmodel,X⇒Y, bothX andY
are adjusted by the X-score vectors. In the path case there are two
sets of regressions, X⇒ Z and Z⇒ Y. X and Z are adjusted by
the X-score vectors, and Z and Y are adjusted by the derived
vectors. The notation is changed slightly to conform to the four
matrices,

t1 ¼ X1w; p2 ¼ XT
2 t1; t3 ¼ X3p2; and p4 ¼ XT

4 t3:

These vectors are schematically illustrated in Fig. 15. Note
that the vector u (= X4p4), like in the case of linear regression, is
only used for studying the results of the modeling task. The
figure emphasizes that the vectors describe the succeeding
matrices,

t1YX2; p2YXT
3 ; t3YX4:

The adjustment now follows the rule of linear regression,

X1pX1−d1t1pT1 ;with p1 ¼ XT
1 t1; d1 ¼ 1= tT1 t1

� �
X2pX2−d1t1pT2 ;with p2 ¼ XT

2 t1; d1 ¼ 1= tT1 t1
� �

X3pX3−d2t3pT2 ;with t3 ¼ X3p2; d2 ¼ 1= pT2p2
� �

X4pX4−d3t3pT4 ;with p4 ¼ XT
4 t3; d3 ¼ 1= tT3 t3

� �
:

Note that t1-vectors are orthogonal, but this does not hold for
the other set of vectors. Thus, X1 is reduced by rank 1, while the



Fig. 16. Pair-wise plots of the first 8X-score vectors, tA, and Y-score vectors, uA. The first pair is the uppermost to the left, the next is the uppermost to the right and so on.
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others are not. Using the reduced matrices a new weight vector
is determined from Eq. (21), which is now

XT
1X2X

T
3 X4X

T
4X3X

T
2X1w ¼ kw:

When w has been found, the score vectors t1, t3, … and the
loading vectors p2, p4, … are computed and the Xi-matrices
adjusted. By appropriate identification of score and loading
vectors, we can write the part of the data block Xi that is used,
here Xi,A, as

Xi;A ¼ di;1 ti;1p
T
i;1 þ N þ di;A ti;Ap

T
i;A ¼ Ti;ADi;AP

T
i;A:

In order to compute the regression coefficients between the
data blocks, we need the R-matrices. They are computed using
the Eq. (5) or (11). Ri is computed by Eq. (11) for i=1,3, … and
by Eq. (5) for i=2,4, …. They are computed such that they
satisfy

Pi ¼ XT
i−1Ri; i ¼ 1; 3; N X0 ¼ X1ð Þ

Ti ¼ Xi−1 Ri; i ¼ 2; 4; N
:

In fact only Eq. (5) is used, because Eq. (11) is similar with
exchange of loading and score vectors. The matrices Ti, Pi, Di

and Ri each contains A vectors. Consider now the regression
Table 1
Cumulative percentage of X, Cum(X), and cumulative percentage of Y, Cum(Y), th

Dimension 1 2 3 4 5 6

Cum(X) 31.15 46.91 72.78 81.76 92.78 9
Cum(Y) 57.86 78.61 85.33 95.75 97.37 9
coefficients between the data blocks. They are computed as
shown in Eq. (10) or (17), as

Bi ¼ TiDiRT
i ; i ¼ 1; 3; N

Bi ¼ RiDiPT
i ; i ¼ 2; 4; N

:

For the regression between the data blocks we can write

Xi;A ¼ BiXi−1; i ¼ 1; 3; N X0 ¼ X1ð Þ ð22Þ

Xi;A ¼ Xi−1Bi; i ¼ 2; 4; N : ð23Þ

In terms of the original matrices (23) is

ZA ¼ XB2; YA ¼ ZB4: ð24Þ

Consider now how these regressions are used for predictions.
Here ZA is the estimate of Z based on A dimensions and
similarly YA is an estimate ofY. In terms of the samples Eq. (24)
can be written as

ziA
� �T¼ xi

� �T
B2; and yiA

� �T¼ zi
� �T

B4; i ¼ 1; 2; N ;N :

Here xi is the ith row of X, but treated as a column vector.
Similarly, zA

i and yA
i are the ith rows of ZA and YA, resp. When a
at is selected at each dimension

7 8 9 10 11

5.695 99.757 99.979 99.992 100.000 100.000
9.574 99.790 99.796 99.797 99.798 99.800



Fig. 18. Plot of observed versus cross-validated response values after step 7.
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new sample is available for X, x0, the estimated Z-sample is
computed as z0⁎=B2

Tx0. The prediction value for the Y-sample,
y0⁎, is computed as y0⁎=B4

Tz0⁎, where z0⁎ is the estimated Z-
sample.

The regression Eq. (22) is used to specify how much of a data
block is being used in the modeling task, and how the variables
contribute to the modeling task. In terms of the original matrices
we have

XA ¼ B1 X; ZA ¼ B3 Z:

In terms of the variables we get

xi;A ¼ B1 xi; i ¼ 1; N ;K; and zj;A ¼ B3 zj; j ¼ 1; N ; J :

These equations can be used to relate the data for the original
variable, xi, with the values actually used in the computations,
xi,A. Similarly for the z-variables.

7. Case study

The theory shall now be applied to the Batch process data of
Section 3. We start with an overall analysis of the data. Then the
results after stage 4 are analyzed closer. The results from the
path modeling procedure are then studied closer.

7.1. An overall analysis

In Figs. 11 and 12 the plots of λA and f(A) were shown. Fig. 12
suggested that dimension 7 should be used. In order to illustrate
this closer it is useful to look at the plots of the score vectors, tA,
versus the Y-score vectors, uA. When there is only one response
variable, like here, the u-vectors are the reduced y-vector. The
equation is

u1 ¼ y1; uA ¼ uA−1− yTtA
� �

= tTAtA
� �

tA; A ¼ 2; 3; N :

A plot showing a pair-wise scatter plot of uA versus tA for
A=1,…,8 is shown in Fig. 16.
Fig. 17. Plot of observed versus computed response values after step 7.
The figure confirms that the dimension should be 7. The
correlation coefficient between t7 and u7 is 0.713, which is very
significant. But it should be observed that the response variable
varies between − 0.02 and 0.02. If these values are below the
precision of the y-values, the dimension 6 should be chosen.
The following table shows how much variation is selected at
each step or dimension.

From the Table 1 it can be seen that at dimension 7 there has
been selected 99.757% of X and 99.790% of Y. The 7th
component is selecting 4.1% ofX and 0.2% ofY. This is not very
much, but it is from a numerical point of view a significant
improvement compared to selecting only 6 dimensions. At
dimension 6 there is 2.9% ofX and 2.2%ofY selected. This is not
very much.When we look at Fig. 16 it can be seen that the simple
correlation coefficient between t6 and u6 is 0.916. It is a
disadvantage with PLS regression that a very high correlation can
be found at a step, where relatively little is being selected. It
indicates that an improvement can bemade by identifying the part
ofX that should be used in the modeling task. But it is not the aim
of this paper to identify optimal parts of X that should be used.

It is useful to look closer at the observed and computed
response values, when the dimension is 7. This is shown in
Figs. 17 and 18.

Fig. 17 shows that the points are located close to a line with a
slope of 45°. The explained variation is R2 =99.790% and the
residual standard deviation is s=0.0166. The cross-validated
response values are computed as follows. 10% of the samples,
here 15, are excluded from the analysis. The parameters are
estimated using 90%, here 139 samples. These parameters are
then used to estimate the 15 y-values that were excluded. This is
repeated 10 times, each time a different set of samples is
excluded. At the end of the analysis each cross-validated y-value
has been computed by using 90% of the samples. Thus the cross-
validated y-values represent the typical results, when the model
is used to estimate the response value of a new sample. The
simple correlation coefficient, r, between the observed and the
cross-validated y-value is r=0.9989, and the Q2 = (r)2 =0.9977.
Further, sc= [Σ(yi − yic)

2 / N]1 / 2 =0.017. Here (yi) is defined as
the original response values and (yic) the estimated cross-
validated response values. It shows that after the 7th stage the



Fig. 19. Observed values of the process variable x15 versus the computed value. Fig. 20. Plot of observed versus computed response values after stage 4, based
on model b).
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response values can be estimated with an uncertainty that in 95%
of the cases is smaller than around ± 2 × 0.017=± 0.034.

7.2. Actual models at stage 4

Here we shall consider the situation after stage 4 of the batch
process has been completed. The other stages are treated in the
same way. Note that there is only one response variable, y. If the
process has reached stage 4, there are several models of interest:

a) (X1, X2, X3, X4)= (x1,…,x14) ⇒ X5= (x15,x16)
How well can we predict the process variables at stage 5?

b) (X1, X2, X3, X4) ⇒ y
How well can the response variable be predicted from stage
4?

c) X5 ⇒ y
How well do process variables at stage 5, which only
describes y?

d) (X1, X2, X3, X4) ⇒ X5 ⇒ y
What would be a natural choice of process variables at stage
5 if the fit of expected y is as good as possible?

e) (X1, X2, X3, X4, X5) ⇒ y

From a) and c) ‘good’ guesses of process variables at stage 5
are known. How do these values fit to an overall model?

The results of these models shall be considered now.

a) (x1,…,x14) ⇒ X5= (x15,x16)

In Fig. 19 it is shown the observed values of the process
variable x15 versus the computed value. The method used is
PLS regression with 7 components. It shows a relatively good
fit, R2 = (0.9965)2=99.21%. A cross-validation that selects 90%
Table 2
R2 values and cross-validated residual standard deviation sc

Up to stage 1 2 3 4 5 6 7

R2 81.00% 87.32% 86.88% 90.90% 98.48% 99.62% 99.80%
sc 0.156 0.128 0.130 0.111 0.045 0.022 0.017
of the samples uniformly out of the 154 ones and is repeated 10
times gives a residual standard deviation of sc=0.045.

The results for x16 are not shown here, because they are
almost identical to the one for x15.

b) (x1,…,x14) ⇒ Y

Table 2 shows the R2 values and the cross-validated residual
standard deviation sc for modeling the response values after
each of the seven stages.

All analysis is based on PLS regression with 7 components
(the first stage uses 6). The table shows that it is first at stage 6
that a satisfactory prediction of the response variables is ob-
tained. Looking at sc the results of stage 3 do not improve the
results compared with stage 2. Fig. 20 shows the observed
values of the response variable versus the computed values at
stage 4. It shows a fairly good linear relationship, but a rather
large variation around the line of 45°. The variation seems to
be relatively homogenous around the line. Thus the model can
be used to estimate the response values, but there will be
relatively large uncertainty in the prediction, ± 2 × 0.111=±
0.222.

c) X5= (x15,x16) ⇒ Y

In Fig. 21 it is shown how well the two variables at stage 5
describe Y. The results are not very good, R2 =59.67% and
sc=0.228.

d) (X1, X2, X3, X4)⇒X5⇒y

Fig. 22 shows the plot of the values of the response variableY
against the first two score vectors from X5. The both show a
rather week relationship. In Fig. 23 is shown the plot of observed
versus computed response values from the path model. The
results are very close to the ones found in the previousmodel, see
Fig. 21. Here R2 =57.41% and sc=0.232. A further perspective
of this model is discussed in the summary below.

e) (x1,…,x16) ⇒ y



Fig. 21. Plot of observed response values versus computed, using variables x15, Fig. 23. Plot of observed versus computed response values resulted from
model d).
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In Fig. 24 it is shown the results of modeling after stage 5,
where the values of the first 16 variables are available. Here
R2 =98.48% and sc=0.045. Here the measured values of (x15,
x16) are used. But other values for (x15, x16) can be used, as
discussed below.

7.2.1. Summary
At the end of stage 4 the operator has from the operating

procedure certain values for the variables at stage 5, x15 and x16.
The values of x15 and x16 can be fairly well predicted from the
values known for x1,…,x14 as shown in Fig. 19. The predicted
values and the operating procedure values can be compared. The
values of x15 and x16 of stage 5 have a rather weak relationship to
the response variable. For a given value of x1,…,x14 the operator
can look at Fig. 20 to identify where the quality variable is now,
and Fig. 24 of what may be the expected results after stage 5,

and x16, based on model c).
Fig. 22. Plot of observed response variable ve
where either the predicted or operating procedure values of x15
and x16 have been used. The regression coefficients frommodel d)
can be used to compute the estimated value to adjust the values of
x15 and x16 in order to get improved results for the quality
variable. From a data analysis point of view it is important that the
operator selects values for x15 and x16 that are consistent with
model a), because these values are dependent on the previous
values as shown in Fig. 19. Thus, the recommendation is to adjust
the values of x15 and x16 using model d), but securing that the
values are consistent with model a). Model e) will show the
expected results on the quality variable. From data analysis point
of view any adjustment of x15 and x16 can be made as long as the
residual obtained from e) is within the limits shown in Fig. 24.
Thus we can use the residual standard deviation sc=0.045 to
decide howmuch the two variables can be adjusted. The adjusted
values should give in model e) residual within 2 × sc=0.09.
rsus the first two score vectors from X5.



Fig. 24. Plot of observed response values versus computed from model e).
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Before the start of stage 5 there is proposal, xproposal= (x15,
x16), which the process engineer has from the operating manual.
Using model a) the engineer can estimate the values, xregression=
(x15,x16), based on the previous of the process variables, x1–x14,
for this batch. Using the model d) the engineer can use the
regression coefficients shown in Eq. (24) to estimate a new set
of values, xpath= (x15,x16), for the next stage. These values are
the ones, which for given values of x1–x14 give the best
prediction of the response variable. In model c) we can study
how (x15, x16) predict the response variable. In d) there is placed
a restriction on the model in terms of that there is given the past
values of x1–x14. The different suggested values for stage 5,
xproposal, xregression and xpath, can be combined with the values of
x1–x14 of the present batch and the model e) can be used to
estimate the response value. In this example the response
variable is a quality variable, where the higher value the better
product. The engineer can choose among the three sets of values
for (x15, x16), which gives the best quality.

The path model gives a proposal for the intermediate process
variables, when there already has been observed a part of the
batch. The proposal is aimed at predicting the response variable
as well as possible in the light of the values already obtained for
the process. This can be used to improve the process already
after the first stage. It is a basic problem for the process engineer
to improve the process during the batch. The path models give
proposals that the engineer can evaluate.

There is one practical issue, when path models are applied.
The predictions derived from X ⇒ Z ⇒ Y will always be worse
than ones derived from Z⇒ Y. Therefore, when path models are
applied, it may be useful to select Z carefully. In the present case
it was chosen as stage 5. It may be better to enlarge the in-
termediate period by both stage 5 and 6, because stage 5 is not
good in predicting the response values. But this is not considered
closer here.

The data is divided into blocks according to stages. Thus, we
can look at the data as multi-block data, which are used to
predict the quality variable. The first author has developed new
methods for multi-block data [10], which are natural extensions
of regression analysis for one X-block. These methods are good
to detect the role of each data block (stage) in predicting the
quality variable. The results of a multi-block regression analysis
are how the individual data blocks contribute to the modeling
task. This is different from path modeling, where the aim is to
estimate intermediate values, such that they, together with
known values, give as good predictions as possible.

The aim of the models presented here is to use the data to give
good regression models, which can predict the quality values
with sufficient precision. The residuals and sc-values from the
models show how good the models are. Adjustments of indi-
vidual process parameters can be done within the variation of the
residuals. For instance, change of variable x12 can be made such
that the variation of b12x12 is within the variation of the re-
siduals. More active control of the processes usually requires the
knowledge of the possible variation of each process parameters.
This can be carried out. In Ref. [11] both passive and active ways
of control are considered in details. The advantage of using the
models of the type presented here is that the models fit well to the
historical batches and they provide us with tools to improve the
process. Often the chemical processes are so complicated that
the company may be more interested in tools that assist the
engineer in improving the process than in methods that seek to
actively control the process, because this often requires detailed
knowledge of the chemistry and processes.

When the operators get training in using these models there
may appear new types of models that are interesting for the
operators. E.g., it might be useful to look at stages 5 and 6 as one
stage, or to estimate all remaining process parameters, when
stage 1 has been completed.

8. Conclusion

The methods of path modeling have been presented. The
importance of the methods is due to that they are natural
extensions of one data block (PCA type of analysis) and two
data blocks (regression type of analysis) to a sequence of data
blocks. An important aspect of these methods is the graphic
procedures. The same graphic procedures are used for analyzing
Zi−1 ⇒ Zi in a path … ⇒ Zi−1 ⇒ Zi ⇒ … as is done in a linear
regression analysis, X ⇒ Y.

It is suggested to use Eqs. (19) and (21) (and their extension
to multiple data blocks) as a criterion for finding good weight
vectors. But other criteria could be used, which better may
reflect a specific purpose of analysis.

Here only three stages have been modeled. It may have some
interest to model more stages. When the results from the first
stage are available, a path model for all 7 stages would give
regression coefficients between stages. Thus we could get es-
timates of the remaining variables and the response variable. If
this is done at each stage, it might give the operator training in
adjusting variables at the ‘next’ stage with the purpose of im-
proving the result of the quality variable.

As the operator gets more experience with the models, he
may ask for more extensive models and graphs. This may assist
him in finding at what stages it is important to get models for the
future stages.
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In this paper there has been presented a unified approach to
path modeling. The aim of the methods is to find best predictions
along a path. This theory can be applied to any situations, where
there are given a sequence of data blocks, where each data block
represents the values of a given number of variables. The
methods are based on well-defined optimization procedure to
find the weight vectors of the initial (input) data block. Other
optimization procedures can be used to find the weight vectors,
but the remaining computations would be the same.

Standard procedures in linear regression like e.g., cross-
validation, sensitivity analysis and others have natural exten-
sions to this way of carrying out path analysis. For instance, in
the case of cross-validation the corresponding samples are de-
leted from all the data blocks. Using the regression coefficients
the values of the last data block are estimated. When this is
repeated one can find out how well the model performs on the
present data.

In industry there are often measured many more variables
than are appropriate to use. In these cases it may be necessary to
select the variables that should be used in each data block. This
is easy to implement in the procedures presented here. But it
may be time consuming on the computer if all combination of
variables is investigated. It may be preferable to start with the
second to the last data block and eliminate the variables that
cannot describe the variables of the last data block then to
eliminate the variables in the third last data that do not con-
tribute to the modeling task that starts at the third last data block.
In this way a manageable procedure can be established for data
blocks that have many variables, like those that are obtained
from NIR instruments.

The path of data blocks considered here consists of serially
organized ones. There is one starting data block, input data
block, serially connected interconnected data blocks and one
ending data block, the output data block. The criterion (21) has
been extended to a network of data blocks with several input
data blocks and many output data blocks. In between the input
data blocks and output data blocks there can be any network of
data blocks. The regression Eqs. (22) and (23) have been ex-
tended to show how any data block are depending on data blocks
that lead to the given data block. By using the H-principle the
prediction aspect of the modeling task is optimized, when
estimating parameters. The importance of these new methods is
due to that they extend the standard methods of linear regression
analysis to an arbitrary network of data blocks with a given set of
input and output data blocks. The same algorithm handles any
number of data blocks. By using the software to work with one,
two or three data blocks one gets good training in working with a
network of data blocks.
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