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Various regression methods and new interval approach are two different manners for solution of
multivariate calibration problems. Both of these techniques aim to construct a model that associates
multiple predictor variables with response and to predict the unknown response value for new predictors.
When applied to the same data set both methods provide a researcher with reach information and results

that supplement each other, despite the fact that different assumptions regarding the nature of error stand
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behind the two approaches and different mathematical techniques are applied. The goal of this work is to
draw the attention of analysts to the outcomes that may be obtained under the assumption of error
finiteness and to compare the results, provided by the interval approach with those yielded by regression

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Ordinary multivariate calibration (MVC) methods provide predic-
tion result as a point estimate supplemented with some average
prediction uncertainty common for all new objects. At the same time
prediction with individual uncertainty interval is sometimes more
useful for a practical application. This interval should account for all
kinds of uncertainties: errors in predictors, errors in response, errors
in calibration data, and errors in future prediction data. There are
numerous technical methods on how to manage this [1-5], but
generally accepted approach still does not exist. The conventional
statistical technique is extremely complex [1], while the simulation
methods are too time consuming [6]. At the same time, as it is marked
in [7] there is more and more conviction that multivariate models
should generate quantitative predictions and indicate their level of
uncertainty. Application of the fuzzy regression model for the analysis
of the uncertainties is presented in [8]. For construction of the robust
and reliable models a number of various MVC procedures are designed
[9-11].

An alternative to regression analysis is interval approach. In
conventional regression analysis the estimates are the values of
unknown parameters, which agree with the experimental data in the
best way. In the interval method any parameter value that does not
contradict experimental data is accepted as a feasible estimate.
Apparently, Kantorovich [12] was the first who proposed this idea,
but it was neither accepted nor widely used at that time. The benefits
of the interval approach have been demonstrated for the kinetic
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parameter estimation [13], in the applied spectroscopy [14], for the
instrument calibration [15] and signal processing and automatic
control [16]. In this paper a Simple Interval Calculation (SIC) method,
i.e. the approach within the interval framework, is described. This
method returns the results of prediction directly in the interval form
[17]. Furthermore, the SIC approach provides wide possibilities for
object status classification, i.e. assess the relative importance of
samples with respect to the constructed calibration model. The
advantages of the SIC application are shown for numerous real-world
data [18-21]. At the same time it must be emphasized that the SIC
method has little in common with the ‘interval mathematics' [22].
However, the SIC approach differs from traditional chemometric
methods used for MVC [23-25]. It is unusual for analysts to yield the
result of prediction/modeling not as a point estimate but directly in
the interval form. Moreover, conventional regression approach is
based on the traditional assumptions of error normality, errorless of
predictors, etc. [26]. These assumptions are rarely held for practical
data analysis of technological and natural systems [27]. The SIC
approach is based on a postulate that all errors involved in the
multivariate calibration problem are limited (sampling errors,
measurement errors, modeling errors etc.). SIC also uses another
mathematical tool (linear programming) in comparison with MVC
problems.

These may be the reasons why the SIC approach is not widely-
spread among the practitioners. The main goal of the paper is to draw
the attention of the analysts to the outcomes that may be obtained
under the assumption of error finiteness and to compare the results,
provided by the interval approach with those yielded by traditional
regression modeling.

The additional goal is to explain the essence of SIC using the
simplest example in a step by step manner.
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At the same time we do not want to oppose the advocated method
to classical MVC approach. The most useful results are yielded when
both methods are applied for multivariate data analyses and the
regression results are supplemented with the SIC results.

This paper consists of four main sections. In the first section the
arguments for the error finiteness are advocated. In the next section
the main SIC conceptions are introduced using the univariate
simulated example. The calculations are so simple that they can be
done even without a computer. In the third section the comparison of
the convergence of interval and maximum likelihood estimators is
presented. In the last section a well-studied real-world example is
described. Basic formulae of the SIC method are briefly reviewed in
Appendix A.

2. Error finiteness

In the course of data analysis, the assumption of normal error
distribution is a commonplace. Sometimes this is expressed
explicitly, but often this is assumed by default. At the same time,
chemometricians do not connect the fact of normal error distribution
with its unboundedness. On the direct question about how often a
researcher takes into account values that are located beyond four
standard deviations (40), the answer is that if such values occurred
they were excluded before data processing. At the same time, the
amount of data in the modern multivariate data analysis is often
greater than 107 ° [28]. Therefore, from the statistical point of view,
there should be some 20-30 values that lie beyond 40. For example,
we can refer to [29] where the authors state that “indeed, in real case
studies, the chemist is often able to select, to some degree, the
samples, and this will lead to more uniform distribution than normal
distribution”.

For illustration, let us consider a typical example. One of the
traditional MVC problems is the wheat quality analysis that is
performed with NIR spectroscopy [1,30]. In the example, NIR
measurements were made using InfralUM FT-10 NIR spectrometer.
X matrix consists of NIR spectra in the range of 908-1120 nm,
recorded at 118 wavelengths; the response y vector includes the
moisture contents of 141 samples as quantified in the laboratory by a
standard analytical method (evaporation loss of weight). The initial
four-component PLS model based on 141 samples explains 98% of X-
variance and 89% of Y-variance.

Fig. 1 shows distribution of the values of water content in wheat
kernels (plot a) and PLS score plot PC3-PC4 (plot b). The
conventional statistic tests show that response values y do not
contradict a hypothesis about normal distribution. Even the three
extreme samples, marked in Fig. 1, look as “admissible” values, as
their probabilities are 0.03, 0.21, and 0.38 respectively. Nevertheless,
following the ordinary MVC procedure analyst excludes all the
samples that are classified as outliers with respect to X variables
only, or to y variables only, or to both [30] (marked as filled dots in
Fig. 1b) and recalibrate the data set. The results of new calibration
with the censored data (124 samples) are shown in Fig. 2. Now, PLS
model with 4 components explains 99% variance in X and 92%
variance in y. Samples are well spread in a score plot (Fig. 2b). At the
same time, the distribution of response values becomes the
truncated normal distribution cut on 4 2.50 from the center.

This example demonstrates that traditional methods of data
(pre) processing lead to limited errors that conforms truncated
normal distribution rather than normal distribution. This could be
immediately apprehended as soon as the essence of the MVC
concept is recalled. All the conventional regression techniques (OLS,
PCR, PLS, or other) employ linear models that are efficacious only in
some neighborhood of the data center. Any outstanding data point
being a statistical meaningful outlier (Y related), or a space
motivated extreme (X related), should be removed in order to
save the desired model linearity. The projection technique even
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Fig. 1. NIR determination of moisture content in wheat kernels. Initial data set, 141
samples. a) Histogram of moisture content, reference values; b) Score plot for PLS
model, PC3 vs. PC4. Filled dots show the “suspicious” objects.

aggravates the situation adding more X related samples in the
outliers' list.

3. Simple explanation of the SIC method. Univariate model
3.1. Simulated example
In this section a simplest univariate regression
y=2xa+e¢ (1)

will be used to explain the essence of SIC method. Here y is a response,
x is a predictor, a is an unknown parameter, and ¢ is an error. The main
assumption of the method is that the error ¢ is limited. This may be
expressed as follows. The probability that absolute value of € exceeds
some constant 3 called Maximum Error Deviation (MED) is zero, i.e.

Prob(le| > B) = 0. 2)

Let us investigate the outcomes that can be drawn from the
postulate given by Eq. (2). In Table 1 (columns 1-2) and in Fig. 3 the
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Fig. 2. NIR determination of moisture content in wheat kernels. Truncated data, 124
samples. a) Histogram of moisture content, reference values; b) Score plot for PLS
model, PC3 vs. PC4.

simulated data for regression model (1) with a=1 are presented. The
error ¢ is simulated using the uniform distribution with the width that
equals 1.4; so in this example 3=0.7. It is worth of mentioning that
column 2 in Table 1 presents the “measured” response value but not
the “true” y value.

For illustration purposes we use a very small data set, which is
divided into two parts. First four objects (C1-C4) are the calibration
samples and they are used for modeling. These samples are shown by

Table 1

Simulated data and the results of processing.

Samples x y y J= 9t @™ a™* v= vt hge rgc  |r|+h
0 1 2 3 4 5 6 7 8 9 10 1 12
C1 1.0 128 104 086 123 058 198 092 119 019 031 0.51
Cc2 20 168 209 172 246 049 119 185 2.38 0.38 —0.62 1.00
C3 4.0 425 418 343 492 089 124 3.70 476 0.76 0.03 0.79
Cc4 50 532 522 429 615 092 120 462 595 095 0.05 1.00
T1 3.0 335 313 258 369 0.88 135 277 3.57 0.57 0.26 0.83
T2 45 6.19 470 3.86 5.53 122 153 416 536 0.86 2.05 291
T3 55 540 574 472 6.76 085 111 5.08 6.55 1.05 —0.60 1.64
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Fig. 3. Univariate simulated example. c—calibration samples, m—test samples. a) OLS
estimates: == OLS prediction, — confidence interval limits; b) SIC estimates: I I error-
bars, s== SIC intervals' limits.

open dots in Fig. 3. The last three objects (T1-T3) are the test samples,
the response values of which are to be predicted and validated. The
samples T1-T3 are marked by closed squares in Fig. 3. In spite of the
simplicity of the example, it helps to explain all the main properties of
SIC method.

3.2. OLS calibration
Let us begin with the traditional ordinary least square (OLS)
method. Using calibration data (x;, y;), i=1,..., 4 (columns 1 and 2 in

Table 1, samples C1-C4), the OLS estimate for parameter a can be
found

= 1.044, wherex =

>
<l

4 1 4
lei» y= ZZth 3)

and the response value y for any x value, being a calibration, or a test
object can be predicted as

=

y = ax, (4)
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(column 3 inTable 1, bold line in Fig. 3a). Using a well-known formula,
it is also possible to estimate the error variance as

2
s =

W[ —

4
S (vi—9)* =028, (5)
1

and to construct the confidence intervals for y

<

st i

yE =9 ts5 0. (6)
Here t3(P) is the quantile of Student's t-distribution for prob-

ability P with 3 degrees of freedom. These confidence limits are

presented in Table 1 (columns 4, 5); they are also shown in Fig. 3a by

thin lines.

3.3. SIC calibration

Let us see how these data are treated by the SIC method. First, let us
assume that value 3=0.7 is known. (In the most of the real-world data
the situation is more complicated and (3 value is a priori unknown. Later
on it will be explained how to deal with such a problem.)

Applying the assumption of the error finiteness (Eq. (2)) to the
regression model (Eq. (1)) one can easily see that for every object (x;,
y;) from the calibration set (i=1,..., 4) the following inequality is
fulfilled

lyi —ax;| < B, )

or in the equivalent form

g™ < a < ™, (8)
where
:j1in _Yi— B aimax _Ji + ) 9)
Xi X

The values given by Eq. (9) are presented in Table 1 (columns 6, 7).
Inequalities (Eq. (8)) should be satisfied simultaneously for all
calibration samples, i.e. for i=1, 2, 3, 4. Evidently this holds for all
values of parameter a, which belong to the interval

a <a<a (10)

where

d™ = max g™, M = min @™ (11)
1<i<4 1<iz<4

The restraining values are marked by the boldface font in the
corresponding columns (6 and 7) in Table 1.

The interval given by Eq. (10) defines the region of possible values
(RPV) for parameter q, i.e. such values of a that do not contradict the
calibration data. Obviously, when parameter a is changed within the
interval [a™", a™], the corresponding response value y = ax, for an
arbitrary x, is limited by values

v <y<v?h, (12)
where
vo _amin V+ — amaxx (.13)

These limits are presented in Table 1 (columns 8 and 9).

Thus, the interval estimate (Eq. (10)) for parameter a is obtained.
Simultaneously, it becomes possible to construct the prediction
intervals (Eq. (13)) for response y that are valid both for the
calibration samples and for any other (new) sample.

Let us interpret SIC method graphically. Fig. 3b shows the same
data as Fig. 3a, but each point is now presented together with its error
interval. The half-width of these intervals equals 3=0.7. When
calculating the SIC estimates one should consider each possible line
that passes through the origin of the coordinates and crosses/touches
the error intervals of every calibration sample. Fig. 3b shows that the
low limit is defined by the line that goes through the low bound of
sample C4 error interval. The upper limit is determined by the line
that goes through the upper bound of sample C2 error interval.
Obviously, all the lines inside the two limits satisfy the posed
conditions (Eq. (7)), and vice versa, each line that is located outside
this angle conflicts with these inequalities. Boundaries are marked in
Fig. 3b by bold lines. This is the result of SIC modeling. Now for any
new x value (dotted line in Fig. 3b illustrates it) one can calculate the
prediction interval [v*, v™] for y value.

It is very important that SIC calibration is “based” on the two
samples C2 and C4. Only these two samples define the boundaries
(Eq. (10)) of the possible values for parameter a. Thus, these
samples may be called the boundary objects. Other calibration
objects, C1 and C3, are inessential in the example. These samples
can be removed from the training set and SIC calibration model will
not change. This is an important property of the SIC method. Hence,
it can be seen that all calibration objects can be divided into two
classes: the most important boundary samples, which determine
the calibration model, and inessential samples, insiders, that may
be removed from the calibration data without model deterioration.
A more detailed object classification is presented in the next
section.

3.4. Object status

Let us consider what happens to the SIC model, or better to say to
RPV, if a new sample is added to the calibration set. Obviously, that
RPV cannot increase; it can either decrease, or not change. For
example, if object T3 is added, then the upper limit (line v*) moves a
little bit lower in such a manner that the line touches the upper
bound of the T3 error interval. In this case, a™** changes from 1.19 to
111 (see Table 1). This property of the SIC method is called
consistency (Eq. (A8) in Appendix A) and it is very important from
theoretical point of view as it shows that the more samples are added
to the calibration model the more accurate the SIC estimates are.
Moreover, if an estimate of MED is selected in a proper way, i.e. it is
not less than S, then the true parameter values a are always located
inside the RPV (Eq. (10)). This property is called unbiasedness (Eq.
(A5) in Appendix A). This is also important for the understanding of
the SIC method, as this testifies that SIC estimates tend to the true
parameter values a. However, not every new calibration sample
improves the model. For example, sample T1 does not change it. This
may be seen from Fig. 3b, where the prediction interval (two bold
lines) is fully located inside the T1 error interval (the bar). Another
case is for sample T2. Its error interval does not intersect with area
limited by the boundary lines, i.e. the prediction intervals. Therefore,
the addition of T2 to the calibration data destroys the model, as the
system of inequalities (Eq. (7)) becomes inconsistent for the given
value of B. As it can be easily seen from Table 1, after the addition of
T2, the maximum over column 6 (1.22) becomes greater than the
minimum over column 7 (1.19).

Thus, new samples can be divided into three groups regarding
their influence on the model in case they are included in the
calibration set. First of all, all the new samples, which do not change
the model after being included in the calibration set, can be
classified as insiders; those, which do change the model can be
classified as outsiders. Moreover, among outsiders a group of out-
liers can be distinguished. The outliers cannot be included in the
calibration set for the given [ value because they destroy the
model.
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3.5. SIC object status classification

The investigation of an object status in the X-Y plot is inconvenient
in the univariate case; moreover, in the multivariate case it is
impossible. To make this analysis available in general, two numerical
characteristics that reflect the object properties are introduced. They
are the SIC residual r

e
mwzéQ_Lﬁ%LE» (14

which is calculated as the difference between the center of the
prediction interval and the reference value (scaled by 3); and the SIC
leverage h

o
hwzlcwsz> (15)

which is defined as the width of prediction interval, divided by
calibration error. As soon as the prediction interval (Eq. (12)) is
calculated, it is very easy to obtain the SIC residual r and SIC leverage
h. In our example, the values of r and h are presented in columns 10, 11
of Table 1, and they are also shown in the Object Status Plot (OSP) in
the r-h plane (Fig. 4a).

In Fig. 4a the calibration samples are denoted by open dots, and the
new (test) samples are denoted as filled squares, in the same way as in
Fig. 3. Bold open polygon ABCDE restricts the various object status
areas. The form of this zigzag line is defined by two fundamental
statements (Eqgs. (A13) and (A15), in Appendix A) that establish the
relation between h and r.

From Fig. 4a it may be seen that all calibration samples are located
inside triangle BCD, so they are insiders. For these objects, | r | +h<1
(Table 1, column 12). The samples C2 and C4 are located on the border
of the triangle and therefore they are called boundary samples. For
them | r |+h=1 (Eq. (A12) in Appendix A). The new object T1 lies
inside the triangle, for T1, | r |+ h<1, hence it may be classified as
insider too. The sample T2 is located above line AB; this means that T2
is an outlier. For T2, | r |—h=1.19>1 (see Eq. (A14) in Appendix A).
Object T3 is an outsider. From Fig. 4a it may be seen that sample T3
cannot be shifted into the insiders' area with a new value of r (or
equivalently with new y value). For T3, h=1.05> 1. This testifies that
such x value contains some essentially new information that has not
been presented in the calibration data. Such samples are called abso-
lute outsiders (see Eq. (A15) in Appendix A).

Thus, it was shown that the SIC approach introduces an effective
method for classification of all MVC objects (calibration samples, as well
as new, or test samples). This classification is termed [ 18] as Object Status
Classification (OSClas). It is based on definitions (Eqgs. (14)-(15)) and
statements (Eqs. (A11)-(A15) from Appendix A. OSClas may be applied
to a problem with any dimensionality as it is reduced to calculation of
values r and h for each object with their subsequent allocation in OSP.

It should be mentioned that a triangular shape of the insider's area
in OSP (Fig. 4a) might appear somewhat similar to the conventional
influence plot (Fig. 4b), in which the same samples are presented in
coordinates OLS leverage (hors) vs. OLS residual (rors) [24]. The latter
ones are calculated as follows

hois = X (th) 71x = "2/ inzy fos = z(V — 9.

I
™ =

In reference [24, p. 286] it is written that: “Large leverage alone or
large studentized residual alone is not necessary enough for the
observation to be influential. At least a moderate contribution from
each of these quantities is required for the influence to be large”. This
finding is very much along the same lines as the one developed here.
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Fig. 4. Definition of the influence of each object for the univariate simulated example.
¢—calibration samples, l—test samples. a) SIC Object Status Plot; b) OLS influence plot.

Certainly, similarity between the influence plot and OSP is not a
coincidence. This comes from a well-known basic statistical relation-
ship [24], which relates the modeling accuracy (RMSEC), precision
(SEC), and bias (BIAS):

RMSEC?~SEC* + BIAS”. (16)

In the SIC approach, where MED value, 3, is the calibration
accuracy, SIC leverage, h, stands for the (normalized) precision, and
SIC residual, r, is responsible for the (normalized) bias, this equation
may then be represented in a form:

B = Bh(x) + Bl (x.y), (17)

which actually conforms to Eq. (A12) in Appendix A. At the same time,
we should recognize a substantial difference between Eqs. (16) and
(17), as the former one makes sense only for the whole data set, i.e., on
average, while the latter equality is valid for every sample in the data
set.

In conclusion of this section we demonstrate the plots that show
the relationship between the OLS and SIC characteristics of object
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importance. Fig. 5a illustrates a very high correlation (R?>=0.999)
between the OLS residuals and the SIC residuals. The relationship
between the leverages is more complicated (Fig. 5b). Even higher
correlation (R?=1.000) is observed between the square root of OLS
leverage and SIC leverage. This can be explained by the following. The
OLS leverage is proportional to the prediction variance [25] that
defines the size of the confidence interval, which is proportional to the
square root of the variance. In its turn, the SIC leverage is proportional
to the prediction interval width. Of course, for more complicated
problems the relationships between OLS and SIC characteristics are
not so simple, but the main tendencies are kept. Different aspects of
similarities and dissimilarities of OLS and SIC methods as well as
comparison of SIC prediction intervals and OLS confidence intervals
have been investigated in [19].

3.6. Unknown MED value and how it can be estimated

The total procedure of 3 estimation is rather complicated and it is
briefly described in Appendix A. The more detailed explanation may
be found in [17]. For general understanding of the matter it is
important to note that an estimate of 3 (denoted by b) always framed

a) 1.5

T2

OLS residual

1.0 A

0.5 A

C3
SIC residual
2
R
b) |5
s
08 1 = c4
g T3
2
2 c3
061 2 T2
0.4 1 T
c2
0.2 A C1
SIC leverage
0 T T
0.0 0.5 1.0

Fig. 5. Object characteristics in the univariate example. C—calibration objects, m—test
objects. a) Comparison between OLS residuals and SIC residuals; b) Comparison
between OLS leverages and SIC leverages.

by 20-40, where o is the error variance. Evidently, for any truncated
error distribution, the (3 value cannot be less that 20; the smallest
B=1.710is for the uniform distribution. Then, for an ordinary sample
set (say, less than 1000 objects), one cannot expect an extreme
samples farther than 30. At last, the 40 limit gives an assurance that
any sample will cross this border. In the example under consideration
B=2.50. This is greater than the value of 1.71, which corresponds to
the uniform distribution applied for the error simulation, but this
could be expected as only four points were available for calculation of
the standard deviation s.

It is natural to consider whether such variations in MED estimation
have an influence on the results and conclusions of OSClas. The
answer is negative, inasmuch as the main SIC quality measures, r and
h, are defined as the relative ratios; see Eqs. (14) and (15)). SIC
prediction intervals are quite another matter. They grow with b, and
when b=_3, these intervals have the covering probability of 1 by
definition. At the same time, it can be shown, see e.g. [17], that the
same intervals constructed with the estimated MED, bgc (for
P=0.90), instead of the true (3 value, display the covering probability,
which in any case is not less than 0.9999. This result confirms that not
only the proposed OSClas alone, but also the whole SIC theory, in
general, can be used in practice [18].

To illustrate this statement let us compare the OLS estimates and
the SIC estimates in our univariate example. Comparing plots a) and b)
in Fig. 3 one can see that each 95%-confidence interval for OLS
prediction is wider than the correspondent SIC interval. If one
calculates the probability of SIC interval using Eq. (6), it appears
equal to 0.91. It is worth of mentioning that there we used a rather
high value 3=2.50, which corresponds to the normal probability
Prob[— 2.5, +2.5] =0.99. As a result, our simple example reveals two
important issues. First, the application of unlimited (normal) distribu-
tion for the confidence estimation leads to unreasonable wide intervals.
Secondly, even for a small sample set, the SIC method provides us with
the reasonable prediction intervals, which coincide with practical
experience. To confirm the latter statement, 100,000 repeated simula-
tions have been performed with our example, and the true value y =x
always fell into the SIC prediction intervals.

4. Convergence of interval estimates

One more elementary example is used for comparison the proper-
ties of interval (SIC) estimator to traditional maximum likelihood (ML)
estimator. Let us consider a sample set X = (xj,..., X,) from normal
distribution N(c,o 2), truncated on the interval [c— 3, o+ ], B = ko.
Parameter k= 3/0 determines the truncation level (see Fig. 6). The
task is to construct an estimator for the unknown parameter o with
known values of 8 and k and to investigate the estimator convergence,
i.e. the dependence of estimate accuracy on the sample size.

Let us start with the traditional approach. It is well known that the
ML estimator for parameter « is calculated as

1 n
avL = EZ Xi

i=1

(18)

To characterize the ayy accuracy the confidence interval may be
used

Prob(|ay, — o <Bhy) = P.
Here

X05(1—p
b (P) = =2 = (k)
is the normalized half width of the confidence interval (ML leverage),
and x, is the quantile of the normal distribution.

(19)
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Fig. 6. Several truncated normal distributions with various k values.

At the same time the SIC estimator for parameter a is calculated as

Asic = [Max(x; — f3), min(x; + B)]. (20)

For confidence probability P, the half width (SIC leverage) of
interval (Eq. (20)) is calculated as

In(1— P)

hge(P) = — TZJI(K)- (21)

Functions ¢(k) and s(x) depend on parameter K, which deter-
mines the way of distribution truncation (k=0.2, 1, 2, 3, 4). When
Kk=0.2, the distribution under consideration is close to the uniform
one, and for k=4 the distribution is hardly distinguished from normal
distribution.

Comparing Eqgs. (19) and (21) the following conclusions can be
drawn.

1. In general, the width of uncertainty interval for the SIC estimator
decreases /n times faster than for the ML estimator.

2. For small sample sizes and/or high k values conclusions are not
that straightforward. Direct calculations show that, the SIC
estimator is more efficient than the ML estimator beginning from
some ng value that, in its turn, depends on K.

Fig. 7 helps to compare the interval width (Egs. (19), (21)) with the
sample size and k value. For k<1, and n> 10, hgyc is less than hyy. For
k> 1 and small sample sizes the width of uncertainty intervals for the
ML estimator is less than that for the SIC estimator. However, the
situation changes as the sample size increases. For example, when
k=2 and confidence probability is P=0.9, the width of the SIC
uncertainty interval becomes less than the ML interval when the
sample size is greater than 100. As to <= 3, the same result is reached
only when the sample size is greater than 3500 (Fig. 7b).

Recently, a new property of the SIC estimator has been found [31].
Let f(x) be a symmetric finite density of error ¢ distribution; such that f
(x) =0 at |x|> . The condition for effectiveness is f (3) # 0. This means
that in case of uniform distribution, the SIC estimator is more effective
than in case of triangular (Simpson's) distribution. For the latter
distribution the SIC estimator has the same effectiveness as the ML
estimator.

In case of multivariate linear regression expressions given by Egs.
(19) and (21) should become much more complicated; the interval
width depends on predictor matrix X, but not on n only. In such a case the
proof of a similar statement turns into a challenging mathematical task.

5. Real-world example. Multivariate model
5.1. Data

In order to demonstrate the feasibility of SIC approach when
applied to the real-world, and even multicollinear data, we use the
well-known didactic “Octane Rating” [32] example. The X predictors
are NIR-measurements (absorbance spectra) over 226 wavelengths in
the range of 1100-1550 nm, while the responses y are the
corresponding reference measurements (from the laboratory test-
ings) of octane number. There are two sample sets: the calibration and
test sets. In both sets the octane numbers vary from 87 to 93. The
calibration set consists of n =24 production gasoline samples and it is
used for modeling. We also have an access to the genuine test set of 13
new samples, which is used for prediction testing only. In fact, this set
includes four samples with alcohol added in them (Nos. 10-13). The
sets without, or including these samples, are called the short test set
(Nos. 1-9) and the long test set respectively (Nos. 1-13).

a)
04 91 h

hsic
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b)

hsic

0.2 A
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0.1 A

0 : : . ;
5 25 45 65 g5 n

Fig. 7. Half width of the uncertainty intervals vs. sample size. Confidence probability
P=09.a) k=2;b) k=3.
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5.2. Methods

Matrix X is rank deficient and as it is mentioned in Appendix A
some regularization procedure should be used before application of
the SIC method. For this particular NIR octane problem the calibration
model carries two PLS-components

y=myl + Ta + ¢,

where mg is the mean value of y and T is the nx 2 score matrix. This
model explains 97.5% of X-variance and 98.1% of y-variance;
RMSEC=0.28, RMSEP =0.31.

5.3. Calibration

To apply the SIC method it is necessary to evaluate the value of
MED, B. It may be estimated as described in Appendix A. Here one
should take into account that the projection methods always increase
the total error deviation by the modeling errors, which are ascribable
to the fact that bilinear (PLS, PCR) models are merely approximations
to the complex systems. Thus 3 is necessarily always greater than an
estimate of the measurement error alone.

Applying formula given by Eq. (A18) in Appendix A we obtain
bmin = 0.484. This means that for the given data set SIC method cannot
be applied when b is less than 0.484, because the RPV will be empty.
This is the lower bound of the MED estimate and its upper bound bsc
should be evaluated as well. According to Eq. (A20), bsic =0.880. This
value is used in all the subsequent calculations in this example. In
addition, it can be concluded that for the given calibration set

048 < B < 0.88. (22)

Calculating s=RMSEC=0.268, it is possible to compare the
accuracy of modeling by PLS and SIC methods. Here b,/s=1.81
and bs[c/S =3.28.

Having the £ value estimated with b=0.880, one can proceed to
the SIC model calibration. In general, it is not necessary to construct
the RPV explicitly, and in case when model complexity is greater than
two this is a very complex problem. In the octane rating example
p=2. Therefore, for illustration purposes, and in order to explain
the SIC techniques, the RPV shape is presented in Fig. 8a.

In the same way as in the above univariate case, the RPV is formed
not by all the calibration samples, but with the boundary objects only.
There are six boundary samples (Nos. 7, 9, 13, 14, 18, 23), which are
marked with closed dots in Fig. 8b that presents OSP for the
calibration set. All boundary samples fall on the border of the triangle,
i.e. for them | r | + h=1. Only these objects form RPV as it is shown in
Fig. 8a, where each line corresponds either to equation t{a =y; —my +
b (marked with “+” subscript) or to equation tj@=y; —my—b
(marked with “—" subscript). The numbers near these lines represent
the boundary samples numbers.

So, the results of the SIC calibration are the estimate of 3, and the
set of boundary samples that form the RPV.

5.4. Prediction

Now, let us consider the SIC prediction intervals. For each sample
from the test set, one should calculate the values v~ and v* (Eq. (A10)
in Appendix A) that determine the limits of individual prediction
interval. This optimization problem is solved using the linear
programming methods that could give the problem solution in
general, without explicit RPV presentation.

The problem of linear programming [33] is to minimize/maximize
a linear function of continuous real variables, subject to linear
constraints. The function that is being optimized is called the objective

a)
28 1

24 4

SIC Residual
(=]

7 13

1 4 SIC Leverage

Fig. 8. Octane rating PLS model with 2 components. Training set. a) RPV in parameter
space: =— boundary line, ¢—vertex; — — prediction, solution of the optimization
problem. b) SIC object status plot. ¢—insiders, @—boundary samples.

function. For purposes of describing and analyzing algorithms, the
problem is often stated in the restricted normal form that is

min {cfa, subject to Ta = d and a > 0},

where a€R? is vector of unknowns, cERP is so-called cost (known)
vector, and TER"*P is the constraint matrix. The feasible region
described by the constraints is a polyhedron, and the solution lies at a
vertex of this polyhedron (Fig. 8a). Any system of linear inequalities
may be translated to a restricted normal form using additional
variables: slack variables are added to a problem to eliminate ‘less-
than’ constraints, and surplus variables are added to a problem to
eliminate ‘greater-than’ constraints. Moreover, any maximization
problem may be converted to a minimization problem by changing
the signs of the ¢ coefficients in the objective function [34].

To solve the minimization problem the well-known Simplex
method [33,34] is applied. This method generates a sequence of
feasible iterates by repeatedly moving from one vertex of the feasible
set to an adjacent vertex with a lower value of the objective function.
When it is not possible to find an adjoining vertex with a lower value

This article is protected by the copyright law. You may copy and distribute this article for your personal use only. Other uses are only allowed with written permission by the copyright holder.



72 0.Y. Rodionova, A.L. Pomerantsev / Chemometrics and Intelligent Laboratory Systems 97 (2009) 64-74

of ¢'a, the current vertex must be optimal, and termination occurs. To
aid finding the first feasible solution (any vertex of the polyhedron)
the artificial variables are added. The algorithm does not demand
constructing the polyhedron explicitly, but calculates vertexes
algebraically using the pertinent systems of linear equations. As a
result, we get the optimal solution, i.e. vector a, which is both feasible
(satisfying the constraints) and optimal (obtaining the smallest
objective value). The simplex method is well elaborated and it is
included in many math packages.

In our example, the polyhedron formed by the linear constrains
is RPV, which has six vertexes. For illustration purposes, each vertex
in Fig. 8a is numbered. Let us find the prediction interval for the
first test sample, which will be later marked with 0 sub-index.
Using conventional PLS procedure its score vector, to= (—0.0689;
0.0343), can be calculated. To find the limits of prediction in-
terval that are v~ and v, it is necessary to solve two optimization
problems
v_ = mintya, v = maxtya,

a a
where parameter vector a satisfies the constrains given by the
calibration data (y, T),

yi—myg—p < tia <y —my+p i=12..24

This means that vector a lies within RPV shown in Fig. 8a. Solving
the problems, we yield the prediction interval for response yo=mg+
téa, as

Vid+my <y < vt +m,

These solutions are indicated by the dashed lines in Fig. 8a.

Table 2 presents the related values calculated in the each vertex of
RPV. It can be seen that prediction interval v— =88.30 and v = 89.01
ensues from vertex 5 (minimum) and vertex 3 (maximum). Values for
corresponding rows are marked by the boldface font.

Actually, in a complex problem, there is no need to examine each
vertex, as this is inefficient and very time-consuming method. To find
the optimum value the standard Simplex algorithm is used. The first
feasible solution found by Simplex method is vertex 1. To find v~
value, the algorithm moves in the following way: vertex 1— vertex
6—vertex 5; to find v* value, the algorithm moves as vertex
1—vertex 2 — vertex 3 (Fig. 8a).

5.5. Results

In this section the SIC prediction will be compared with the results
calculated by PLS model s (Fig. 9a). To evaluate the PLS prediction
uncertainty the traditional technique is applied, in which the root
mean square error of prediction (RMSEP) is the average prediction
error estimated at the validation stage. If new test samples are of the
same kind and in the same range as the calibration samples, one
should expect roughly the same average prediction error. In the
example, it is exactly the case for the short test set. RMSEP calculated
by leave-one-out cross validation is equal to 0.322. The correspondent

Table 2

Construction of SIC prediction interval.

Vertex # a a, tha Yo

1 13.91 16.36 —0.398 88.85
2 14.22 18.36 —0.351 88.90
3 16.79 26.66 —0.244 89.01
4 19.91 26.61 —0.461 88.79
5 20.41 13.16 —0.956 88.30
6 17.43 13.51 —0.739 85.52

a)
94 A
92 A I
|
[+1] 1
2 I
E o . 3
£ 90 | i i !
Q ! I [ : | 1
: el IR
1] i ! : | " 'R !
%] [ o | N !
= Lo . .
38" [ | I ! ! | { L
] I I ! I ! | [
I | | \ | | 1 | | | 1 I
| | | | | | I | | | I |
I | | | | 1 1 | | | | 1
! 1 I I | | I : | : | |
} | | I | : I i | | [ I
! | 1 1 I | I | 1 1
86 : N B 4 ¢ &F 4 & 1 )
12 3 4 5 6 7 8 9 10 11 12 13
Test samples
b)
2
13
12
= R
81 1 o
s
o 10
= Q
3] v :
«n 2 SIC leverage

-2

Fig. 9. Octane rating PLS model with 2 components. Test data. a) Prediction: @—
reference values, [l —SIC prediction intervals, ¢—PLS prediction, ] —uncertainty bars;
b) SIC object status plot: m—Nos. 1-9, &—Nos. 10-13.

intervals [Jes; £ 2RMSEP] are shown in Fig. 9a as dark bars. To avoid
the wrong results, such a technique obviously cannot be applied to the
samples that are treated as outliers in PLS. The external validation
[24], i.e. calculation of RMSEP on the test set, leads to the similar
result, RMSEP = 0.250. Of course, for this calculation the short test set
(without outliers) should be used.

For the last four test samples very large SIC prediction intervals are
obtained (Fig. 9a). This is because such samples contain alcohol, and in
that way they are different from the calibration set. In the conven-
tional projection approach, such samples are treated as outliers. These
samples may be easily determined also in OSP (Fig. 9b). The OSClas
treats them as the absolute outsiders, i.e. the samples that are non-
similar to the calibration samples.

Studying Fig. 9a, one can see that the reference values (closed dots),
as well as the results of PLS prediction (open dots), lie inside the SIC-
prediction intervals (light bars) and the uncertainty intervals derived
from PLS model (dark bars) agree with SIC intervals for the ‘normal
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case’ (test samples Nos. 1-9). At the same time, the SIC prediction
intervals are individual for each new sample and therefore they are
more informative in comparison with average value calculated for all
samples by PLS. For the absolute outsiders (test samples Nos. 10-13),
SIC intervals immediately signal their abnormality. It is also worthy of
mentioning that for the ‘regular’ samples SIC intervals are smaller than
the confidence intervals by PLS.

This example demonstrates how the SIC approach answers the
main questions that are of great importance for an end-user.

1. Maximum error deviation (MED [3) estimate represents the
calibration accuracy and in this way characterizes the reproduci-
bility for all samples that are similar to the calibration ones.

2. SIC prediction intervals present the uncertainty of each individual
new sample.

3. The position of each sample in the Object Status Plot (OSP)
determines whether this or that object is similar to the calibration
set samples, i.e. it determines the sensible range for the model
application.

If we are only working out a standard method for octane rating by
NIR measurements, this could be cautious to state that such a
technique may be applied to those samples, which are insiders. Just in
this case we can guarantee that prediction uncertainty is not worse
than calibration accuracy, which approximately is equal to the
precision of the traditional ASTM based measurements. On the other
hand, if we are developing a method for research investigations, it
would be enough to warn that the method may not be applied for the
absolute outsiders, because such samples are seriously different in
their predictors' structure.

6. Conclusions

We believe that the presented SIC approach for the prediction
interval construction may be useful in many practical applications
within the multivariate calibration and data analysis. The validity of
the method with respect to the above-mentioned assumptions is
beyond all doubts. The main advantages of the SIC method are as
follows. The method

- does not depend on the form of error distribution, although the
efficiency of the estimate depends on the distribution form, more
precisely on the heaviness of its tails;

- presents the results in the interval form with all uncertainties
included;

- comprises the internal object classification approach, which can
distinguish the reliable ‘insiders’, the doubtful ‘outsiders’, the
significant ‘boundary samples’, the irrelevant ‘absolute outsiders’,
and the destructive ‘outliers’.

- uses no extra parameters, which cannot be evaluated by the data
and have to be set a priori.

We started with the assumption that all errors are limited, and
this assumption resulted in RPV, which is a volumetric estimate of
unknown model parameter. In its turn, the application of RPV gave
the results of prediction directly in the interval form. The specific
calculation aspects of the SIC method are rather simple, since they
are based on the well-designed procedures for linear programming
and do not demand elaboration of new algorithms. Now, the SIC
method is implemented in MATLAB script-language [37]. This is a
beta release of the program that can be downloaded and used for
free.

Appendix A
The SIC method is described in details in [17] and the object status

classification is considered in [18]. Only basic features of the SIC
method essential for the current paper are presented here.

A.1. Region of possible values

Let us consider a linear regression model

y=3Xa+e, (A1)

where y is the n-dimensional response vector; a is the p-dimensional
parameter vector; X is the (nxp)-predictor matrix, € is the error
vector. It is presumed that error ¢ is limited that means that there
exists such a value 3> 0, called maximum error deviation (MED), that

3B > 0Prob{|e|] > B} =0, and for any 0<b<B Prob{|e| > b} > 0, (A2)

where Prob{e} denotes the probability that an event occurs. 3
considered to be common for all objects however this is not critical.

According to Eq. (A2), for each calibration object (i=1,..., n) and
known 3 value the following inequalities are fulfilled

=yi+pB

As the true parameter vector e, is unknown, it is possible to
consider all the vectors a, which agree with the inequalities. All such
vectors a, for a given i, form a strip S(x;, y;) in the space of parameters
RP. Any vector a satisfies all inequalities given by Eq. (A3)
simultaneously, if and only if (later ‘if and only if is abbreviated as
‘iff’) it belongs to all strips S(x;, y;).

A region of possible values (RPV) A for parameter a is a set in
parameter space determined by the intersection of all strips, i.e.

(A3)

v <xa<yt, oy =y-B v’

n
A= 0 SEy). (A4)

Region A is a closed convex polyhedron [34], delineated by the
boundaries of intersecting strips. This is a random set because the RPV
is constructed using random values y.

A.2. The RPV properties for model Eq. (A1)
1. The region A is an unbiased estimator of parameter o.
Prob{acA} = 1. (A5)

2. The region A is bounded iff rankX = p [34]. To apply the SIC method
a standard technique [17,24] should be used to project the initial
data on a lower-dimensional subspace

y=TPa+f="Tc+f, (A6)
where the score matrix T has the full rank k<p.

3. The region A is a consistent estimator of e, i.e.
Prob{Ana} =1asn— «, (A7)
under the same traditional weak conditions
Ap —@asn— o, (A8)

as for the OLS estimate.
The RPV is formed not by all objects from the calibration set, but by
a subset of boundary objects only.

A.3. Predicting the response

Consider a response prediction for any new vector x using model in
Eq. (A1). If parameter a varies over the RPV A, the predicted value
y=x'a belongs to the interval

V:[v_,v+], (A9)
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where

v o= meigl(xta), vt = max(xta)

T na (A10)

Interval V is the result of the SIC prediction. The solutions of
optimization problems given by Eq. (A10) may be obtained by the
linear programming methods [33,34], which are commonly used [35].

A.A4. List of statements for SIC object status classification

Statement 1. All calibration samples satisfy inequality
Ir(x.y)| < 1— h(x). (A11)

Statement 2. Calibration object (x;, ;) is a boundary object, iff

[r(®;, 1) | = 1= h(x;). (A12)
Statement 3. An object (x,y) is an insider, iff

Irx.y)| < 1—h(x). (A13)
Statement 4. An object (x,y) is an outlier, iff

[r(x,y)| > 1 + h(x). (A14)
Statement 5. An object (x,y) is an absolute outsider, iff

h(x) > 1. (A15)

Applying statements given by Eqs. (A11)-(A15), one can construct
an object status plot (OSP), which is a two-dimensional plot for any
dimensionality of the initial data (X, y) and for any number of model
parameters.

A.5. Estimation of MED

As a rule, the MED value is unknown and some estimate b is used
instead of 3. In this case RPV A depends on b and A(b) is extended
monotonically with increasing of b

by > b, = A(b;)2A(b,). (A16)

Therefore, it can be claimed that for a sequence of consistent 3
estimates by >b,>...>[3, properties (A5)-(A8) are true for A(b,) as
well. Furthermore,

A(0) =9, A(x)#0. (A17)

From Eqgs. (A16)-(A17) it follows that there exists minimum b such
that A(b) # @. This minimum value can be taken as an estimator for
the unknown parameter 3

bmin = min{b, A(b)# O}. (A18)

Estimate in Eq. (A18) is a consistent but biased (b, </3), and it is
the low limit of all possible /3 values.

Applying the traditional statistical approach [36], it is possible to
find such an estimator b that Prob{b>3}>0.95 and b is as close to 3
as possible. Let us consider a—some point (regression) estimate of
parameter a, residuals e=y — Xd, and statistics

breg = max(le;|, ... leq]). (A19)

Statistical simulations help to construct the enhanced estimator
bsic

bSIC = bregc<n752) (AZO)

as the 0.95 upper limit for 3. Empirical function C[17] depends on n that
is the number of objects in the calibration set, and on the residual variance
5%, which characterizes the heaviness of tails of the error distribution.
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