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Kinetic analysis of non-isothermal solid-state
reactions: multi-stage modeling without
assumptions in the reaction mechanism

Alexey L. Pomerantsev,*ab Alla V. Kutsenovaa and Oxana Ye. Rodionovaa

A novel non-linear regression method for modeling non-isothermal thermogravimetric data is proposed.

Experiments for several heating rates are analyzed simultaneously. The method is applicable to complex

multi-stage processes when the number of stages is unknown. Prior knowledge of the type of kinetics

is not required. The main idea is a consequent estimation of parameters when the overall model

is successively changed from one level of modeling to another. At the first level, the Avrami–Erofeev

functions are used. At the second level, the Sestak–Berggren functions are employed with the goal to

broaden the overall model. The method is tested using both simulated and real-world data. A comparison

of the proposed method with a recently published ‘model-free’ deconvolution method is presented.

1. Introduction

In a thermogravimetric (TG) analysis, the response variable,
m(t), is a sample mass measured as a function of heating time t.
In the case of a non-isothermal (dynamic) TG experiment, the
temperature T increases

T = T0 + bt,

at a constant heating rate b. Usually, TG measurements are
conducted in a series where each run is performed at a particular
heating rate, bv, v = 1,. . ., V, here V is the number of runs.

Thermo-degradation of a solid sample is a complex process
that generally involves many stages (steps). To employ a kinetic
method of modeling, the raw response m is transformed into a
variable, a, called the extent of conversion or simply conversion.
It is defined as

aðtÞ ¼ mð0Þ �mðtÞ
mð0Þ �mð1Þ: (1)

The kinetic analysis1 of the TG data is based on a conventional
approach where the total conversion a is presented as a sum of
partial conversions ai,

a = b1a1 +� � �+ bIaI, (2)

where bi is the weighting coefficient that represents the contribution
fraction during each stage, and I is the number of stages.

Weights b = (b1,. . .,bI) are naturally constrained: bi Z 0 and
b1 +� � �+ bI = 1.

In general, the kinetics of each single-stage process is
presented by the following equation:

da
dt
¼ kiðTÞfiðaÞ; (3)

where ki is the reaction rate constant, and fi is the kinetic model
of an individual stage. Usually, the function k(T) is described by
the Arrhenius model:

k(T) = A exp(�E/RT), (4)

where A is the pre-exponential factor, E is the activation energy,
and R is the gas constant.

An appropriate kinetic analysis provides for the selection of
all unknown parameters that describe the experimental data in
the best way. Adopting the least squares approach, in case
all kinetic models fi are known, we arrive at the following
optimization problem2

minimize
b;A;E

X
adata � amodelð Þ2; (5)

where adata is the experimental value given by eqn (1), and amodel

is the model value calculated using eqn (2)–(4). Optimization is
performed with respect to the unknown parameters: pre-
exponential factors Ai, the activation energies Ei, and the stage
weightings bi. Considering that i = 1,. . ., I, a total of 3I unknown
parameters are to be estimated using a non-linear regression
(NLR) approach.3

This is a difficult computation task,4 which becomes even
more challenging in the case where the kinetic models fi of the
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individual stages are unknown. For these kinetic models a
number of functions have been proposed, which are widely
presented in the literature, e.g. in ref. 1. Some models have
been developed based on the substantial physico-chemical
assumptions, e.g. the Avrami–Erofeev (AE) kinetics5,6

f (a) = q(1 � a)[�ln(1 � a)]1�1/q. (6)

Other models, e.g. the Sestak–Berggren model (SB)7

f (a) = am(1 � a)n, (7)

have little kinetic meaning, but they facilitate data analysis
serving as a kind of ‘umbrella’ that covers various kinetic
functions.8 Thus, one can obtain a wide selection of models
with different formal properties, varying parameters q in eqn (6),
and parameters n and m in eqn (7).

Thinking in an idealistic way, we can imagine a perfect
approach to the TG data analysis when all functions in eqn (3)
are replaced with the umbrella model given in eqn (7). After
that, the optimization problem, presented in eqn (5), is solved
regarding the three kinetic vectors (A, E, and b), as well as the
two shape vectors (m, and n). Since each of these vectors has a
dimensionality of I, a total of 5I unknowns have to be estimated.
Unfortunately, this approach cannot be utilized due to various
problems. Among them are the computation difficulties, such
as the loss of accuracy when solving differential equations, given
by eqn (3) and (7). However, the most important is the general
problem of multicollinearity. The latter means that the estimates
of several unknown parameters (e.g. A and E, and A and b) are
found to be highly correlated.4,9 In practice, multicollinearity
manifests itself as a degradation of the objective function
(eqn (5)) when its surface looks like a ravine without an explicit
minimum point.10 Another angle of this phenomenon is the
so-called compensation effect,11 which actually has no physical
meaning but reflects an imperfect estimation of the Arrhenius
parameters, A and E.

There are very few ways to get over multicollinearity. The
majority involve a linear regression, e.g. principal component
analysis and partial least squares. In our opinion, in the case of
NLR, the most promising direction is the Bayesian approach12

when the relevant auxiliary kinetic data are collected and
formalized into a priori information, which afterwards is added
to the objective function given in eqn (5). The authors have not
seen publications that discuss and apply this approach, though.

In the literature, several impressive applications13–15 of the
NLR approach can be found. However, in all cases, the kinetic
models have been selected primarily on a know-how basis, or
chosen from a list of pre-defined models. Several attempts to
develop a general approach based on a generalized logistic
function16,17 have been criticized18 as methods that cannot derive
kinetic parameters with a clear physical meaning. However, recently,
it has been demonstrated19,20 that good fitting (with DSC and TG
data) can be obtained for each curve separately, in such a way that
the fitted parameters are related to the true kinetic parameters.

In chemometrics, methods that utilize substantial physico-
chemical (mechanistic) assumptions in the modeling are termed

as ‘hard’ (or ‘white’) models.21 In contrast, soft-modeling approaches
(a.k.a., ‘black’ models), like multivariate curve resolution,22 are
meant to describe processes without explicitly using the underlying
chemical information. Several soft-modeling approaches to the
TG data analysis have been recently proposed. All these methods
have a common feature. They analyze differential kinetic curves,
that is z = Da/Dt, but not the conversion response, a, itself.
Numerical differentiation of integral data tends to magnify noise,
but, at the same time, it helps to reveal reaction details.

The ‘‘non-parametric kinetics’’ (NPK) is an innovative approach23

that makes use of a singular value decomposition24 to represent
differential data matrix z as the product of two vectors k = k(Tv) and
f = f (aj) (compare eqn (3)) without any prior knowledge about the
kinetic model f (a) and the Arrhenius parameters.

Another soft-modeling method30 employs the empirical SB
model, given in eqn (7), to represent a single-stage kinetics.
Parameters m and n are obtained from the equation

ln z � n ln(1 � a) � m ln(a) = ln cA � E/RT, (8)

that, in an ideal case, should represent a linear dependence
between the left part of eqn (8) and the variable 1/T. To find
these values, the authors suggest a rather strange criterion
based on the Pearson correlation maximization. In this manner,
the slope and intercept of the straight line represent the values
of �E/R and ln(cA), respectively. The application of this method
is given in ref. 31.

These methods have a similar disadvantage – they are
applicable to single-stage kinetics only. In the case of multi-
stage kinetics, the soft methods do not suggest any clear way for
the separation of stages.

A ‘model-free’ method for the analysis of complex over-
lapping processes is proposed in ref. 25. This approach implies
a successive analysis of the differential profiles z(T). Each
profile, obtained at a heating rate bv, is deconvoluted as a
linear combination of suitable peak functions, such as Weibull
distribution26 or Fraser–Suzuki.27 Later on, an individual peak
(stage) is considered at various heating rates with a goal to calculate
the Arrhenius parameters employing some isoconversional method
(e.g. Friedman28 or Kissinger29). The disadvantage of this approach
is the individual deconvolution of each kinetic curve. Therefore,
the Arrhenius parameters calculated using this method should
be taken with care.

Thus, we can conclude that the considered methods of TG
analysis – the idealistic white modeling by NLR and the
heuristic black modeling by anamorphosis – are burdened with
inherent shortcomings which cannot be improved inside the
methods. To surmount these difficulties we have to find a new
way that should lie somewhere in between the White Mountain
and the Black Forest. This could be a grey method of modeling.32,33

This approach aims to develop an empirical model whose
parameters have a direct chemical or physical meaning. This
is achieved by incorporating known chemical or other knowledge
into a model.

In this paper we suggest an example of grey modeling that is
applicable to the S-shaped TG curves.
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2. Method

The core issue of this approach is the employment of the AE
kinetics, given in eqn (6), as a ‘small umbrella’ model34 for the
TG data analysis. The AE kinetics has a unique feature among
the popular kinetic models. If f (a) is an AE function, the
differential equation eqn (3) has an explicit solution, that is

a(t) = 1 � exp[�p(t)q]. (9)

Here

pðtÞ ¼ A

ðt
0

exp
E=R

T0 þ bt

� �
dt (10)

is a well-known ‘temperature integral’.35 In the literature, there
have been many approximations for this function, but we prefer
our own that is inspired by the research of S. Seglets.36 We
employ the approximation

pðxÞ � A
E

bR
x�2e�xGðxÞ; (11)

where

x ¼ E=R

T0 þ bt
; GðxÞ ¼ 0:7284xþ 0:2387x2

1þ 1:2056xþ 0:2387x2
: (12)

This approximation provides the relative accuracy not worse
then 10�4, for x 4 4. A similar approach was used in ref. 37.

In this way we come to a closed-form solution of eqn (2) that
can be explicitly calculated in the elementary functions for any
given values of predictors: t, b, T0, and parameters: A, E, b, and q.
The optimization problem, given in eqn (5), becomes relatively
simple since it contains no differential or integral equations
that should be numerically calculated. The number of stages I is
not known in advance, so the TG data analysis is conducted by
successively increasing the I values, until the solution becomes
acceptable.

The proposed ‘grey’ approach combines two important
advantages. The first one comes from the black side, and it is
a fast and stable way of the model computation. The second
benefit is from the white side, because the employed models
have a clear kinetic meaning, which ensures reasonable estimates
of the Arrhenius parameters: A and E.

The AE kinetics with an additional ‘scaling’ factor C can be
used for the approximation of different models conventionally
employed for the TG data analysis. Table 1 demonstrates

several examples. For the selection of the optimal parameter
q, we used the L2 norm criterion, that is

Q(q) = 8CfAE(a, q) � f (a)8/8 f (a)8, (13)

where hk k2 ¼
Ð 0:95
0:05h

2ðaÞda.
At the same time, the SB function multiplied by factor C

provides a bigger umbrella that covers even more kinetic
models. That is why the proposed ‘grey’ method can be naturally
extended in the following way. Each of the AE kinetics, optimized
with respect to eqn (5) along with its estimated parameter q, can
be fitted to the scaled SB model. In the result, every stage of the
analyzed TG process is presented as a differential equation,
eqn (3). In general, the optimization of the multi-stage kinetic
data, which stages are given in the form of differential equations,
is a difficult computation task. Using the values of the unknown
parameters, found in the frame of the AE approach, as an initial
guess essentially increases the convergence. An overview of the
entire approach is shown in Fig. 1.

3. Computational aspects

The critical issue for a successful and stable solution of the
optimization problem given in eqn (5) is the pertinent trans-
formation of variables and parameters. The objective of this
pretreatment is to decrease correlations between the estimates
of the model parameters. The main target is the correlation
between the estimates of the paired Arrhenius parameters: the
activation energy Ei and the corresponding pre-exponential
factor Ai,

ri = corr(Êi, Âi), (14)

where i is the stage index. These correlations directly affect the
multicollinearity phenomenon – the less correlation, the low
the conditional number. The formal definition of the conditional
number, Nc, is the ratio of the maximal and minimal eigenvalues
of the Hessian matrix calculated for the NLR objective function in
the optimal point. The following rule of thumb explains the role
of Nc as an important characteristic of an NLR problem.

Suppose that our computer ensures an accuracy of n decimal
digits in conventional arithmetic calculations. In case Nl =
log10(Nc) = k, up to k digits of accuracy would be additionally
lost due to numerical methods used in optimization. Therefore,
the total assured accuracy is n � k. In practice, k4 10 obstructs

Table 1 Kinetic models which can be approximated by the scaled Avrami–Erofeev function

Reaction model Code f (a) q C Q (%)

First order (Mampel) F1 (1 � a) 1 1 0
Second order F2 (1 � a)2 0.81 0.51 10
Third order F3 (1 � a)3 0.72 0.31 14
Fourth order P2 (1 � a)4 0.66 0.20 16
Phase boundary controlled reaction (contracting area) R2 (1 � a)1/2 1.22 1.55 12
Phase boundary controlled reaction (contracting volume) R3 (1 � a)2/3 1.12 1.32 7
One-dimensional diffusion D1 1/2a�1 0.57 1.11 12
Two-dimensional diffusion D2 [ln(1 � a)]�1 0.54 1.65 6
Three-dimensional diffusion (Jander) D3 3/2(1 � a)2/3[1 � (1 � a)1/3]�1 0.52 5.69 2
Three-dimensional diffusion (Ginstling–Brounshtein) D4 3/[2(1 � a)�1/3 � 1]�1 0.53 6.76 4
Random scission of polymer chain L = 2 L2 2(a1/2 � a) 1.39 0.91 5
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the solution of a regular NLR problem. In this paper4 it has been
shown that an appropriate scaling and a tuned re-parameterization
can yield an essential reduction in Nc, and, in this way, improve the
steadiness of the optimization problem.3

Scaling of the variables aims to make all variables (factors)
dimensionless and to be close to 1. For example, time (min)
is divided by

�
t = 60 (min), and temperature (K) is divided by

1000 (K). In this way we obtain the following ranges of the
scaled variables: 0 o t o 1, 0.4 o T o 1.2, and 0.4 o b o 1.2.
This is an outer type of transformation that directly changes
the data.

Reparameterization is an inner type of transformation. It
has no influence on the data themselves, but it affects the
structure of the reaction model. Consider a stage with index i.
Let Ei and Ai be the Arrhenius parameters of this stage. We
introduce new parameters

ai ¼ lnð�tAiÞ �
Ei

R �Ti

; Fi ¼
Ei

�Ei

; (15)

where
�
Ei and

�
Ti are the ‘mean’ values of temperature and

energy, which are selected for each stage i separately, and
�
t is

the time scaling factor. Using the introduced parameters, the
reaction rate constant ki, given in eqn (4), can be represented as
follows:

ki = exp(ai � Fiu), (16)

where

u ¼
�Ei

R

1

T
� 1

�Ti

� �
(17)

is a ‘local reciprocal temperature’ valid at stage i.
For model fitting and estimation of unknown parameters we

use software FITTER.3 This program utilizes the modified
gradient search method with the recurrence algorithm for the
inversion of the Hessian matrix.38,39 On each iteration, the method
provides the conditional number and completeness of search. A
distinct feature of FITTER software is the analytical calculation of
derivatives, which ensures a high precision of computing.

4. Experiment

For illustration of the proposed method we consider two
examples based on both simulated and real-world data.

4.1. Simulated data

The first example is modeled as a two-stage data set simulated
for heating rates 5, 10, and 20 1C per minute in the range of
200–900 1C. The stage kinetics are selected from Table 1: the F2
model is used for the first stage, and the R2 model is employed
for the second stage. These models are chosen because their
approximations by the AE kinetics are not perfect – the relative
errors are 10% and 12%, respectively. The parameters used in
the simulation are presented in Table 2 (column ‘Simulation’).
The goal of this experiment is to demonstrate that a complicated
procedure of the TG data analysis shown in Fig. 1 – from the AE
to SB modeling – is able to restore the initial model. Therefore,
we do not disturb the data with errors. The simulated data are
shown in Fig. 2 by means of markers.

4.2. Polycarbonate samples

The second example is a real TG experiment with a poly
bisphenol A carbonate material. Polycarbonate (PC) is a widely
used polymer known for its excellent electrical resistance and
thermal stability.

Thin films of PC, 10–20 mm, were prepared as follows.
Powder of non-stabilized commercial grade PC (KazanOrgSynthesis,
Russia, Mn = 30 000) was dissolved in chloroform. The solution
was spread on a polished glass surface. Traces of the solvent
were removed by keeping the films in a vacuum chamber at
room temperature for 24 hours. The PC films were subjected to
TG analysis, which was carried out using a Q-1500D (MOM
Budapest, Hungary) derivatograph combined with an Ecochrom
(Russia) attachment. The weight loss, m(t), was recorded as a
function of temperature and time. Experiments were conducted
in air, at constant heating rates of 5, 10, and 20 1C per minute in
the temperature range of 200–880 1C. The m(t) data were
pretreated using exponential smoothing and transformed into
conversion response a(t) using eqn (1).

The pretreated TG data are shown in Fig. 4 by means of
markers. It can be seen that the conversion processes at the
higher heating rates (10 and 20 1C min�1) are not completed.
This creates additional difficulties for the TG analysis.

Fig. 1 Summary of a three-level approach for simultaneous fitting of the
complex multi-stage TG data.
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5. Results
5.1. Simulated experiment

The simulated data set is analyzed using the proposed method
illustrated in Fig. 1. In this particular case, the number of
stages, I, is known, so iterations at Level 1 are not required. Certainly,
in this case, we applied scaling and the re-parameterization proce-
dure explained in Section 3. However, we will not go into such details
now, but will return to them in the next subsection, where a case of
the real world data is considered. Here, all estimated parameters are
shown in Table 2 in their natural units. In the expression a � b, b
means standard deviation. The last three columns demonstrate the
results obtained at Levels 1, 2 and 3 as described in Fig. 1.

The first row in Table 2 shows values of the residual sum of
squares (RSS) for the objective function introduced in eqn (5). The
RSS values correspond to the minimum of the sum of the residuals
achieved at the optimal values of the sought parameters. Naturally,
the RSS value obtained for the simulation model equals to zero. At
Level 1, RSS = 0.008. This reflects the fact that the AE kinetics differ
from the models used in the simulation. At the same time, the
activation energies and the pre-exponential factors for the AE models
are somehow close to the initial values given in column ‘Simulation’.
Fig. 2 presents the solution found at Level 1. Open markers stand
for the TG values a(T) ‘acquired’ at the heating rates 5 (1, blue),

10 (2, green), and 20 1C min�1 (3, red). The corresponding solid
curves demonstrate the obtained AE kinetic models. The dashed
curves represent two parallel stages at three heating rates, biai(T, bv),
that is, i = 1 and 2, and v = 1, 2, and 3. The colors of the dashed curves
correspond to the colors of the solid curve. This means, for example,
that the sum of two blue dashed curves gives the solid blue curve 1.

In line with the procedure shown in Fig. 1 (Level 2), we
approximate the found AE kinetics with the determined parameters
(rows q1 and q2 in column ‘Level 1’) by the SB models. These
approximations are shown in Fig. 3.

The optimization yields the SB model parameters m and n
(rows m1, n1, m2, and n2), and the scaling factors C1 and C2.
These factors are used to correct the pre-exponentials A1 and A2,
found at Level 1, to be used in the SB models. These corrected
parameters are shown in column ‘Level 2’. They are used as an
initial guess in the final optimization procedure, which is
labeled Level 3 in Fig. 1. The final estimates are shown in
column ‘Level 3’ in Table 2. From these results we can conclude
that the goal of this example has been achieved – the final
model is equivalent to the initial model with high accuracy.

Fig. 2 Fitting of the simulated TG data (open markers) with the AE kinetic
models (solid curves). Numbers and colors represent the heating rates:
5 (1, blue), 10 (2, green), and 20 1C min�1 (3, red). Contribution of stages is
shown by the dashed curves.

Table 2 The results of the simulated data analysis by means of grey modeling

Parameter Simulation Level 1 AE models Level 2 SB models Level 3 SB models

RSS 0.000 0.008 0.007 3 � 10�18

A1 (s�1) 1.33 � 10+5 (0.88 � 0.39) � 10+5 0.68 � 10+5 (1.33 � 0.00) � 10+5

E1 (kJ mol�1) 100.0 99.2 � 0.16 99.2 100 � 0.00
q1 — 0.79 � 0.01 — —
m1 2 — 1.11 2.0 � 0.0
n1 0 — �0.27 0.0 � 0.0
b1 0.7 0.63 � 0.02 0.63 0.7 � 0.0

A2 (s�1) 0.23 0.99 � 0.14 1.26 0.23 � 0.00
E2 (kJ mol�1) 40.0 47.28 � 0.13 47.28 40.0 � 0.00
q2 — 1.26 � 0.05 — —
m2 0.5 — 0.92 0.5 � 0.0
n2 0 — 0.21 0.0 � 0.0
b2 0.3 0.37 � 0.02 0.37 0.3 � 0.0

Fig. 3 Simulated data. Fitting of the AF kinetics (markers) with the SB
model (curves) at stages 1 and 2.
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5.2. PC thermogravimetry

The second example is analyzed in a similar way. In this case,
the number of stages, I, is unknown. Therefore, multistage TG
models based on the re-parameterized AE kinetics are investigated
at the increasing number of stages (Level 1 in Fig. 1). The
results are shown in Table 3, which contains the dimensionless
parameters explained in Section 3.

The first row in Table 3 shows the RSS values. At I = 3 (three
stages), we obtain RSS = 0.01, which seems rather low. To assess
this, it is reasonable to compare this result with the corresponding
value of 0.02, which has been obtained as the sum of the other
squared residuals, adata� araw, where araw values represent the raw,
non-smoothed TG data. We can conclude that the accuracy of the
NLR solution obtained for the three-stage AE model is comparable
with the experimental error. Therefore, this is the ultimate solution
that does not require a more complex description. This solution is
shown in Fig. 4. The layout of this plot is similar to Fig. 3 with the
difference that in this case we have a three-stage model.

Observing this plot we can understand the role of the third stage
in the entire kinetic process. At the heating rate of 10 1C min�1

(green), we have measured only the initial part of the kinetics of the
third stage with conversion that is less than a half of the stage
equilibrium (green dashed 2-3). At the rate of 20 1C min�1, we had
no chance to obtain the data reflecting this stage, because its
contribution is smaller than the experimental error. That is why
the corresponding red dashed curve 3-3 is completely located on the
T-axis. This finding is a good affirmation of the power of the
proposed method. The third stage was revealed only due to an
integral approach to the TG data processing, when all heating rates
and all probable stages were analyzed simultaneously using the

entire kinetic model. There is no doubt that any partial modeling,
when the rates and stages are analyzed separately, is not able to find
this very hidden stage correctly. We discuss this in detail in Section 6.

From Table 3 we can see that all paired Arrhenius parameters ai

and Fi, given in eqn (15), are close to 1, and their correlations, ri,
presented in eqn (14), are rather low. This has been achieved by a
proper selection of the scaling values,

�
Ei and

�
Ti. In the result, we

obtain small values of Nl, and an excellent steadiness of the NLR
solutions. It should also be noted that when the model complexity,
that is the number of stages, is increased, the Nl values also
increase. This reflects the loss of precision in computations of the
model that is becoming more complex. Scaling of the variables
and re-parameterization have a crucial role in compensation for
this effect. For example, in case we employ the Arrhenius para-
meters A and E in their ‘natural’ units, which are s�1 and J mol�1,
the model manifests the following outcomes: Nl = 15, r1 = 0.999,
r2 = 0.988, and r3 = 0.996. This implies a high degree of multi-
collinearity that makes the NLR solution practically unattainable.

The outcomes of the application of the AE kinetics look very
promising. Nevertheless, we are going to improve it further using
a wider umbrella function, which is the SB model. The procedure
is shown in Fig. 1 as Levels 2 and 3. The ultimate results are given
in Table 4, the layout of which is similar to the layout of Table 2.
In this particular case, we observe no significant improvement in
the model fitting, but several kinetic parameters have changed.

6. Discussion
6.1. Kinetics of PC degradation

The results presented in Table 4 can give us some ideas regarding
the kinetic mechanism of the thermo-oxidative destruction of PC.

The first stage of this process has a principal practical meaning
and therefore it has been studied in numerous publications
described in ref. 40. The authors report rather different values of
activation energy, and our estimate fits this range very well. It has
been shown41 that the first stage involves oxidative hydrogen
cleavage from the isopropylidene linkage followed by a carbon–
carbon bond scission. In our model, the stage reaction mechanism

Table 3 The results of the PC data analysis by means of the re-parameterized
AE models at the increasing number of stages

Parameter 1 stage 2 stages 3 stages

RSS 1.38 0.09 0.01

a1 0.87 � 0.03 1.4 � 0.02 1.37 � 0.01
F1 0.96 � 0.08 1.04 � 0.04 1.01 � 0.01
q1 0.87 � 0.07 1.77 � 0.07 2.10 � 0.04
b1 1 0.63 � 0.01 0.55 � 0.00
r1 �0.02 0.09 �0.10�
T1 0.715 0.675 0.67�
E1 6.0 9.0 9.1

a2 — 0.08 � 0.02 0.66 � 0.04
F2 — 0.89 � 0.03 1.01 � 0.04
q2 — 2.11 � 0.14 1.12 � 0.05
b2 — 0.37 � 0.01 0.29 � 0.01
r2 — 0.03 0.06�
T2 — 0.73 0.74�
E2 — 3.0 5.2

a3 — — �0.35 � 0.01
F3 — — 1.03 � 0.06
q3 — — 7.33 � 0.49
b3 — — 0.16 � 0.01
r3 — — �0.05�
T3 — — 0.66�
E3 — — 1.0

Nl 1 3 5

Fig. 4 Fitting of the PC TG data (open markers) with the kinetic models
(solid curves). Numbers and colors represent the heating rates: 5 (1, blue),
10 (2, green), and 20 1C min�1 (3, red). The contributions of stages are
shown by the dashed curves. The third stage is outlined with solid dashes
and labeled 1-3, 2-3, and 3-3.
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is defined by the SB function with parameters: m1 = 0.85 and n1 =
0.56. It can be noted that this function can be fitted using the
random scission kinetic model42 with L = 2.3. Parameter L denotes
the minimum length of the polymer that is not volatile.

The second stage is not presented in the literature. We found
a trace of this process in a publication,40 where the authors
noted that after the completion of the main degradation step,
the residue continues to degrade in air, eventually going to zero.
Considering that the residue remains constant in nitrogen, we
can suppose that the kinetics of the second stage is mostly
caused by an oxidative degradation of the residues of the first
stage. In our model, we obtained the first order kinetics (m1 =
1.02 and n1 = 0.06) that can be explained by the oxygen excess.
The rate of the second stage is rather low, and it is eventually
limited with the yield of the first stage residues.

The kinetics of the third stage are absolutely opaque because
of the difficulty and complexity of the analysis of the residues
involved in this process of degradation. We can only note that
the stage activation energy is extremely low, about 4.5 kJ mol�1,
and could even be zero. This may be explained by the following
considerations. The kinetic rate of the third stage is much
higher than the second one. Therefore, the degradation of the
residues is much faster than their input, hence the kinetic rate
does not depend on the heating rate.

These findings can be collected in the following gross
kinetic scheme:

stage 1 PC �!k1 R1 þ V1 Ln random scission

stage 2 R1 þO2 �!k2 R2 þ V2 first order

stage 3 R2 �!k3 V3 ?

(18)

where Rs are non-volatile, and Vs are volatile products.

The PC data were modeled by means of this mechanism in
its simplest form: parallel stages, and an easily computable
random scission model at L = 2. The result is shown in Fig. 5.
The layout of this plot is similar to the plot shown in Fig. 4
with the difference that a time axis is depicted instead of a
temperature axis. Due to the usage of the simplified model, the
fitting quality is worse, RSS = 0.03, compared to the one at Level
2, where RSS = 0.01. As shown in the last column of Table 4,
the first stage activation energy, E1 = 88.1 � 1.7 (kJ mol�1), is
close to that defined at Level 2. The second stage energy,
E2 = 98.2 � 10.8 (kJ mol�1), changes materially. The most
interesting thing is that the third stage energy is now estimated
to be zero, in line with our considerations above. This finding is
demonstrated in Fig. 5, where the third stage kinetics – dashed
curves labeled as 1-3, 2-3, and 3-3 – are superimposed for all
heating rates.

We have achieved the main goal of this paper, which is the
demonstration of the abilities of the new method. A further
development of the proposed kinetic scheme of PC degradation
will be presented in a subsequent work.

6.2. Comparison with an alternative method

To illustrate the advantages of the proposed method, we
compare it with an alternative approach presented in ref. 25.
As described in the Introduction, the latter method analyzes
differential profiles and separates individual stages by a formal
peak deconvolution. The application of the Fraser–Suzuki
function27 for fitting the individual stages is employed. Each
differential TG curve, which corresponds to a particular heating
rate, is processed separately. The number of individual stages is
defined by an analyst within the possibilities of the data fitting
algorithm. This method is further referred to as the disjoint
deconvolution. To compare this method with the above presented

Table 4 The results of the PC data analysis by means of the grey modeling

Parameter Level 1 AE models Level 2 SB models Level 3 SB models

RSS 0.0095 0.0098 0.0091

A1 (s�1) (0.93 � 0.15) � 10+3 (1.21 � 0.22) � 10+5 (1.33 � 0.23) � 10+5

E1 (kJ mol�1) 76.10 � 0.88 76.06 � 0.97 76.18 � 0.93
q1 2.10 � 0.04 — —
m1 — 0.79 � 0.05 0.85 � 0.05
n1 — 0.53 � 0.02 0.56 � 0.02

b1 0.55 � 0.00 0.55 � 0.00 0.54 � 0.00
A2 (s�1) 37.85 � 11.31 40.62 � 13.98 49.40 � 19.99
E2 (kJ mol�1) 43.49 � 1.77 43.22 � 2.36 44.54 � 2.79
q2 1.12 � 0.05 — —
m2 — 0.95 � 0.09 1.02 � 0.07
n2 — 0.10 � 0.06 0.06 � 0.07

b2 0.29 � 0.01 0.29 � 0.01 0.30 � 0.01
A3 (s�1) (5.62 � 0.49) � 10�2 (2.78 � 0.69) � 10�1 (1.78 � 0.45) � 10�1

E3 (kJ mol�1) 8.57 � 0.47 5.45 � 0.81 4.68 � 0.77
q3 7.33 � 0.49 — —
m3 — 0.67 � 0.16 0.33 � 0.14
n3 — 0.88 � 0.02 0.83 � 0.03
b3 0.16 � 0.01 0.16 � 0.01 0.16 � 0.01

Nl 5 6 6
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grey modeling approach, we also decompose the same data using
the individual stages obtained in the previous section. Further this
method is referred to as the joint deconvolution.

Both methods are applied to the differential data, that is
z(T) = Da/Dt. Using the established number of stage, I = 3, we fit the
data by means of the disjoint deconvolution. This is performed by
the minimization of the sum of squared differences between z(T)
and the linear combination of the Fraser–Suzuki functions. In the
case of the joint method, the deconvolution is obtained directly,
using the SB models found in the previous section – see Table 4.
The example of deconvolution obtained for the heating rate
5 1C min�1 is shown in Fig. 6.

The plots demonstrate that the disjoint method approximates
experimental data more accurately. In fact, here we have RSS =
0.22, versus RSS = 1.07 obtained for the joint method. The main
discrepancy is seen in the right plot in the area around a = 0.5.
However, the inconsistency that looks substantial in Fig. 6b can
be hardly noticed in Fig. 4, where the integral TG data fitting is
presented. This finding is a good illustration of the well-known
fact that a good fitting of the differential data does not mean a
good fitting in the integral data.

Deconvolution of stages is only a preliminary step, but not the
ultimate goal in the considered approach. Applying the Kissinger

method,29 the activation energy Ei for each individual stage is
determined.

The results in Table 5 show that a formal but exact approxi-
mation of each differential TG curve separately can lead to a
poor estimation of the activation energy for individual stages.
For example, the E1 values are rather similar. At the same time,
the values for E2 differ greatly, and the activation energy E3

found by the disjoint deconvolution is negative. The quality of
estimates is rather poor; the standard deviations are about ten
times larger than those obtained in the grey modeling. At the
same time, the activation energy estimates calculated by the
joint deconvolution are in agreement with the corresponding
values presented in Table 4. The obtained results show that the
disjoint deconvolution of the TG data should be done with care.

7. Conclusions

The distinct feature of the proposed approach is the simultaneous
analysis of all TG processes using a general kinetic model that
incorporates several individual stages. The number of stages, as
well as the share of each individual stage, is determined in the
course of data fitting by means of a non-linear regression
technique. The Arrhenius parameters for each stage are estimated
together for all temperature programs and thus do not contradict
each other. The proposed method of re-parameterization and
scaling of the variables presents a way to reduce the degree of
multicollinearity and increases the stability of fitting.

Computational difficulties related to the non-linear fitting of
the multistage data are overcome by the consequent estimation
of the unknown parameters, when the overall model is

Fig. 5 Fitting of the PC TG data (open markers) with the kinetic model
shown in eqn (18) (solid curves). The plot layout is similar to Fig. 4.

Fig. 6 Deconvolution of the TG data for the heating rate of 5 1C min�1. Curves 1, 2, and 3 represent stages, curve 4 stands for the sum of the stages,
open dots (5) demonstrate data points. The left plot (a) is for the disjoint deconvolution, and the right plot (b) is for the joint deconvolution.

Table 5 Activation energies calculated using the two deconvolution
methods

Disjoint deconvolution Joint deconvolution

E1 (kJ mol�1) 102.6 � 9.9 84.9 � 4.4
E2 (kJ mol�1) 20.2 � 11.9 65.1 � 14.2
E3 (kJ mol�1) �23.3 � 15.6 13.7 � 11.6
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successively changed from one level of modeling to another. At
the first level, the application of the explicit expression for
the AE kinetic model notably simplifies the calculations. At the
second level, the employment of the SB functions broadens the
model to allow the inclusion of kinetic reactions that are poorly
approximated by the AE functions. The obtained parameters
are used as the starting values for the final data fitting of the
differential equations. This way of modeling significantly
improves convergence of the final procedure.

The TG data are considered in the natural integral form,
without numerical differentiation. This helps to avoid additional
disturbances in the data. The analysis of the simulated and real
world data sets demonstrates the efficiency of the proposed
approach in application to a wide range of models with the
S-shape kinetics.

The comparison of the results obtained using the proposed
method with those yielded using the deconvolution method
demonstrates the superiority of the grey modeling approach.

In this work we focused on thermo-gravitational analysis,
but the scope of this approach could be extended to more general
dynamical problems. For instance, the proposed method can be
applied to diffusion in multi-component mixtures,43 where several
exponentially decaying kinetics are simultaneously present.
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C. Popescu and N. Sbirrazzuoli, ICTAC Kinetics Committee
recommendations for performing kinetic computations on
thermal analysis data, Thermochim. Acta, 2011, 520, 1–19.

2 J. J. Opfermann, Kinetic analysis using multivariate non-
linear regression. i. basic concepts, J. Therm. Anal. Calorim.,
2000, 60, 641–658.

3 E. V. Bystritskaya, A. L. Pomerantsev and O. Y. Rodionova,
Nonlinear regression analysis: new approach to traditional
implementations, J. Chemom., 2000, 14, 667–692.

4 O. E. Rodionova and A. L. Pomerantsev, Estimating the
Parameters of the Arrhenius Equation, Kinet. Catal., 2005,
46, 305–308.

5 M. J. Avrami, Kinetics of phase change. I general theory,
Chem. Phys., 1939, 7(12), 1103–1112.

6 B. V. Erofeyev, A generalized equation of chemical kinetics
and its application in reactions involving solids, Dokl. Akad.
Nauk SSSR, 1946, 52(6), 515–518.

7 J. Sestak and G. Berggren, Study of the kinetics of the
mechanism of solid-state reactions at increased temperature,
Thermochim. Acta, 1971, 3, 1–12.

8 L. A. Perez-Maqueda, J. M. Criado and P. E. Sanchez-
Jimenez, Combined kinetic analysis of solid-state reactions:
a powerful tool for the simultaneous determination of
kinetic parameters and the kinetic model without previous

assumptions on the reaction mechanism, J. Phys. Chem. A,
2006, 110, 12456–12462.

9 A. L. Pomerantsev and O. Y. Rodionova, Hard and soft
methods for prediction of antioxidants’ activity based on
the DSC measurements, Chemom. Intell. Lab. Syst., 2005, 79,
73–83.

10 O. Y. Rodionova and A. L. Pomerantsev, Prediction of
rubber stability by accelerated aging test modeling, J. Appl.
Polym. Sci., 2005, 95, 1275–1284.

11 R. K. Agrawal, The compensation effect: a fact or a fiction,
J. Therm. Anal., 1989, 35, 909–917.

12 A. L. Pomerantsev, Successive Bayesian estimation of reaction
rate constants from spectral data, Chemom. Intell. Lab. Syst.,
2003, 66(2), 127–139.

13 A. Marcilla and M. Beltran, Thermogravimetric kinetic study
of poly(vinylchloride) pyrolysis, Polym. Degrad. Stab., 1995,
48, 219–229.

14 T. Rieckmann, S. Volker, L. Lichtblau and R. Schirra, Investigation
on the thermal stability of hexanitrostilbene by thermal analysis
and multivariate regression, Chem. Eng. Sci., 2001, 56, 1327–1335.

15 P. Budrugeac and A. Cucos, Application of Kissinger, iso-
conversional and multivariate non-linear regression methods
for evaluation of the mechanism and kinetic parameters of
phase transitions of type I collagen, Thermochim. Acta, 2013,
565, 241–252.

16 S. Naya, R. Cao, I. Lopez de Ullibarri, R. Artiaga, F. Barbadillo
and A. Garcia, Logistic mixture versus Arrhenius for kinetic
study of material degradation by dynamic thermogravimetric
analysis, J. Chemom., 2006, 20, 158–163.

17 R. Cao, S. Naya, R. Artiaga, A. Garcia and A. Varela, Logistic
approach to polymer degradation in dynamic TGA, Polym.
Degrad. Stab., 2004, 85, 667–674.

18 A. K. Burnham, Use and misuse of logistic equations for
modeling chemical kinetics, J. Therm. Anal. Calorim., DOI:
10.1007/s10973-015-4879-3.
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