
Abstract. The key chemometric methods and models used to solveThe key chemometric methods and models used to solve
the problems of qualitative and quantitative analysis and forthe problems of qualitative and quantitative analysis and for
process analytical technology are considered. The achievements inprocess analytical technology are considered. The achievements in
the field of chemometrics made in the last 20 years are surveyed.the field of chemometrics made in the last 20 years are surveyed.
The trends and prospects for its development are discussed. TheThe trends and prospects for its development are discussed. The
bibliography includes 228 referencesbibliography includes 228 references..

I. Introduction

1. The history of chemometrics and its position in the system
of knowledge
Twenty years have passed since the publication of the Russian
translation of the only (until recently) book on chemometrics;1

much has changed during this period. Currently, chemometric
methods are used in various fields of science and engineering. This
review is mainly devoted to analytical chemistry where three fields
of application of chemometrics can be distinguished: qualitative
and quantitative analysis, process analytical chemistry and design
of experiments.2 The attention is focused on the first application,
the second one receives less attention and the third is barely
considered. This choice of key points is due to the fact that the
awareness of Russian chemists of the chemometric methods
increases in exactly this order. Numerous papers dealing with
design of experiments 3 and metrology 4 are published in Russian
scientific journals.

The number of publications dealing with chemometrics
rapidly grows: 15 years ago*100 papers per year were published,
while now their number is more than 5000 a year. Therefore, when
preparing the review we reasonably restricted its scope. Analysis
of chemical data is the most important direction in chemometrics.
In recent years, it has been rapidly and fruitfully developing;
analytical chemists have proposed not only new methods for data
processing, but also new approaches to experiment setting.

Chemometrics is a synthetic discipline at the boundary of
chemistry { and mathematics. As is often the case with boundary

disciplines, it still lacks a generally recognised definition. Themost
popular definition was proposed by Massart,6 namely, `Chemo-
metrics is the chemical discipline that uses mathematical, statis-
tical and other methods employing formal logic to design or select
optimal measurement procedures and experiments, and to pro-
vide maximum relevant chemical information by analyzing chem-
ical data'. Probably, many people would accept this definition.
However, the scope of science should be determined by the objects
and goals it pursues rather than by the methods and instruments
used. Certainly, the problem of information retrieval from source
data is very important for both practice and the development of
the theory; however, the experiment setup that would give results
containing the required information is equally important. These
two equivalent aspects, i.e., retrieval of information from the data
and collection of data that contain the desired information, have
been reflected in the modern definition of chemometrics proposed
by Wold.7 Chemometrics solve the following problems in chem-
istry:

Ð how to get chemically relevant information out of meas-
ured chemical data;

Ð how to represent and display this information;
Ð how to get such information into data.
The vigorous development of chemometrics in the late 1970s is

correlated with the advent, in the same period, of high-speed
computer facilities, which have become universally available to
scientists and engineers. This allowed implementation of many
complicated algorithms, especially for analysis of data obtained in
multiresponse and multivariate experiments. As a consequence,
more complex equipment capable of performing a much higher
number of measurements appeared. However, it turned out that a
large amount of data does not necessarily mean that there is
enough information. Therefore, analytical chemists have started
to use chemometric methods to retrieve this information and to
confirm that the conclusions drawn are reliable. This led to the
first obvious success. It was found that traditional labour-con-
suming analytical methods that require unique equipment and
expensive chemicals can be replaced by much faster and less
expensive indirect methods. This trend is manifested most clearly
in the use of IR spectroscopy, especially in the near region, which
has previously considered to be of low utility due to high noise
level difficult to eliminate, caused by intense absorption of water
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and by the scattering effect in reflectance spectra.8 Therefore, the
first works in chemometrics were devoted to methods of analysis
of spectroscopic data,9 ± 11 construction of calibration models
(calibrations) by the principal component analysis 12 and projec-
tions to latent structures.13

When speaking about the history of chemometrics, one
cannot but mention the scientists who laid the grounds of the
chemometric approach well before the 1970. Apparently,
K Gauss, who proposed the least-squares method in 1795, is the
first to be mentioned. Gosset (known under the name Student),14

who worked as the analyst at a brewer and used methods for
analysis of chemical data back in the late 19th century, should also
be regarded a first chemometrician. In the early 20th century,
Pearson's study was published 15 in which he proposed the
principal component analysis; the works of Fisher,16 the author
of numerous statistical methods such as the maximum likelihood
method and factor analysis, and the pioneering studies on experi-
ment planning 17 were published somewhat later. Among Russian
scientists, one should mention, first of all, Nalimov,18 who greatly
contributed to the theory of design of chemical experiment.

The chemometrics appeared and has developed for a long
period within the framework of analytical chemistry; specialists in
this field still remain the main users of chemometric methods.
However, a tendency appeared with time regarded by some
researchers as the departure of chemometrics from `under the
wing' of analytical chemistry to become an independent discipline.
Two circumstances provided grounds for this conclusion. The first
one is complication of the mathematical tools used in chemo-
metrics. Ten years ago analytical chemists could learn and accept
the multivariate approach to data analysis, i.e., methods such as
the projection to latent structures 19 or singular value decomposi-
tion.20 However, subsequently, in the period of general enthusi-
asm of chemometricians about new methods of data analysis
(multiway approach,21 wavelet analysis,22 support vector
machines,23 and so on), some gap between chemists and chemo-
metricians started to form: chemists did not understand what and
why chemometricians did, while the latter in turn did not realise
why their new methods are not in demand in analytical chemistry.
Second, numerous applications appeared in which the chemo-
metric approach was successfully used in the fields far from
analytical chemistry, for example in multivariate statistical proc-
ess control,24 image analysis 25 and in biology.26 This lack of
understanding is also obvious from the fact that at the last
conference `Chemometrics in Analytical Chemistry' (CAC-2004,
Lisbon),27 many participants argued whether chemometrics is still
a part of analytical chemistry.

It can be seen from the foregoing that chemometrics is closely
related to mathematics, especially mathematical statistics. Most
analytical chemists understand the necessity of using statistical
methods in chemical analysis and apply them to calculate average
values, deviations or detection limits, to verify hypotheses and so
on. They believe that these simple operations form the basis of
chemometric approach in analytical chemistry. However, only
some of researchers realise that this is not true and can use all
diversity of chemometric methods for the analysis of chemical
data.

It should be noted that for efficient application of chemo-
metrics, it is not necessary to know, for example, the statistical
theory of the principal component analysis; understanding of the
fundamentals and basic ideas of this approach is sufficient.
However, one should indeed know the methods of data prepro-
cessing and variable selection principles, and, what is most
important, know how to interpret correctly the data projections
(loadings and scores) in the principal component space. As shown
by long-term experience, this skill can be applied without in-depth
mathematical knowledge. The idea of this review is to describe the
main principles, methods and achievements of chemometrics
using as little mathematics as possible and with geometric inter-
pretation prevailing over the algebraic one.

Mathematicians 28 consider with every reason that many
methods and algorithms used in chemometrics are poorly sub-
stantiated. Chemometric specialists regard their activity as a
compromise between the possibility and necessity, believing that
a practical result is more important than a theoretical substantia-
tion of its impossibility. Being faced with practical problems of
interpretation of very large and intricately organised data,29 they
create new methods of analysis so quickly that mathematicians,
according to American statistician Friedman,{ have no time not
only to criticise them, but even to merely understand what
happens in chemometrics. This approach is in contrast with the
situation existing in biometrics,30 which can be figuratively called
the `elder sister' of chemometrics. Since Fisher's time, only
approved classical methods of mathematical statistics such as
factor analysis or linear discriminant analysis have been tradi-
tionally used in biometrics. Meanwhile, specialists engaged in
another closely related field, psychometrics,31 are actively devel-
oping new approaches to data analysis. For example, the method
of projection to latent structures, most popular in chemometrics,
has been developed by Wold 32 for application in this field.}

Owing to this vigorous approach to data analysis, chemo-
metrics has found numerous applications in various fields of
chemical science (for example, to study kinetics in physical
chemistry,34 to predict the activity of compounds from their
structure (QSAR) in organic chemistry,35 in polymer chemistry,36

and in theoretical and quantum chemistry 37) and in related and
other fields (for example, in brewing,38 astronomy,39 in forensic
science 40 and quality control of the manufacture of superconduc-
tors 41).}

Some directions of chemometrics were developed in theUSSR
and later in Russia. Back in the 1950s, studies dealing with
mathematical description of equilibria were carried out under
Komar's 43 direction at the Kharkov State University. More
recent relevant publications include the studies by Gribov 44 and
Elyashberg 45 on spectroscopic methods, Mar'yanov 46 on titri-
metric analysis, Derendyaev and Vershinin 47 on computer iden-
tification of organic compounds and Zenkevich 48 on
chromatography. The active use of the chemometric approach is
characteristic 49 of the scientific school of Academician Zolotov.2

QSAR studies related to chemometrics headed by Academician
Zefirov are underway.50 The metrological aspects and control of
the quality of chemical analysis are investigated in Dvorkin's
works.51 A research group headed by Vlasov 52 at the St Peters-
burg State University is working on sensor systems known as the
`electronic tongue', and analogous systems called 'electronic nose'
are developed at the Voronezh Technological Academy.53 All of
these fields actively utilise chemometric methods. Razumov 54, 55

and his colleagues from the Institute of Chemical Physics of the
RAS (Chernogolovka) employ multivariate methods of data
analysis to solve problems of chemical kinetics. In recent years,
new research groups that develop and utilise chemometric meth-
ods appeared in Russia, namely, the groups of Rodionova,56

Pomerantsev,57 Bogomolov 58, 59 (in Moscow); Kucheryavski,60

Zhilin 61 (in Barnaul); Romanenko 62 (in Tomsk) and Shabanova
and Vasil'ev 63 (in Irkutsk).

2. Information and software provision
We have already noted the monograph well-known in Russia,1

which reflects the state-of-the-art in the chemometrics by the mid-

{ J Friedman Boosting and Bagging. Available at http://www.amstat.org/

sections/spes/GRC2001.htm

} It is of interest that in the early 1970s the prevailing opinion was that `the

method seems to have few applications in the physical, engineering and

biological sciences. It can sometimes be useful in the social sciences as a

way of finding effective combination variables' (see Ref. 33).

}Detailed analysis of the use of chemometric methods in various fields is

given in the monograph by Brereton,42 to which an interested reader can

refer.
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1980s. At present, the chemometric methods are described most
comprehensively in a two-volume edition 64, 65 written by a group
of authors headed byMassart. Apart from the detailed description
of the key chemometric methods and techniques, this edition gives
numerous examples of their practical application. In addition,
there are lots of editions meant for different types of readers. The
students and specialists in analytical chemistry who start to
become familiar with chemometrics are advised to resort to the
monograph by Brereton;42 other books 66, 67 would be useful for
the researchers engaged in spectral analysis. A lot of useful
information can be found in the publication by Beebe et al.68

One cannot but mention the monograph by Malinowski,69 which
is still considered to be the best relevant handbook by many
analytical chemists. The theoretical grounds of chemometrics can
be found in other studies.70, 71 Recently, a handbook 72 containing
a brief description of chemometric techniques has been translated
into Russian. An interesting introduction to chemometrics was
written byMaryanov.73 An abridged translation of the handbook
written by Esbensen 74 was published in Russia in a short run (for
the participants of three scientific schools in chemometrics).

Two specialised journals, Journal of Chemometrics and Che-
mometrics and Intelligent Laboratory Systems, are devoted to the
problems of chemometrics. Papers describing the results of
application of chemometric methods for solving applied problems
are routinely published by more than 50 scientific journals, for
example, Analytical Chemistry, Analytica Chimica Acta, Analyst,
Talanta, Trends in Analytical Chemistry, Journal of Chromatog-
raphy, Computers and Chemical Engineering, Vibrational Spectro-
scopy, etc. The number of publications the authors of which use
chemometric methods as themain tool for analysis and processing
of experimental data increases every year (Fig. 1).

Problems of chemometrics are considered at both small
regional conferences and seminars and at regular international
conferences. The conference `Chemometrics in Analytical Chem-
istry' 27 and `The Scandinavian Symposium onChemometrics' are
most prestigious.{ In Russia, international workshops symposia
`Modern Methods of Multivariate Data Analysis' are held
annually starting from 2002.75 ± 77 The theoretical and applied
aspects of chemometrics are widely represented as Internet
resources, mainly, English-language ones;{ however, some Rus-
sian resources are also available.}

The software used in chemometrics includes specialised pro-
gram packages,} which allow fast and vivid data processing in the
interactive mode. General-purpose statistical packages are also
widely used.{ Often, researchers compose the procedures them-
selves, for example, in MATLAB codes,{ and publish them for
free access on the Internet or in books.78

3. Designations and terms
The following designations are used in the review. The scalar
variables are marked by italic, for example, s. The vectors

(columns) are designated by Roman bold lower-case letters, for
example x, while matrices are shown by upper-case letters, for
example, W; the multiway matrices are marked by italic, for
example, G. The array elements are designated by the same but
lower-case letter. For example, wij stands for an element of matrix
W, the subscript i indicating the matrix row and varies from 1 to I;
the subscript j corresponds to the column number and varies from
1 to J. Similar designations have been used for other subscripts,
for example, a=1, ... ,A. The transposition operation is denoted
by superscript t, for example, Xt.

No generally accepted set of chemometric terms has been
formed in the Russian literature as yet. Some concepts were
translated incorrectly or inaccurately. In many cases, translators
simply avoided giving Russian names to key concepts of chemo-
metrics, such as scores and loadings and used complex euphe-
misms instead. In our opinion, chemometrics cannot do without
such notions or their analogues.

As in any other field of knowledge, specialists in chemo-
metrics, often use abbreviations, i.e., abridged names of methods,
algorithms and special terms. Below we present the list of the
abbreviations used.

ALS, Alternating Least ± Squares; ANN, Artificial Neural
Network; DASCO, Discriminant Analysis with Shrunk COva-
riance matrices; EFA, Evolving Factor Analysis; GA, Genetic
Algorithm; IA, Immune Algorithm; INLR, Implicit Non-linear
Latent Variable Regression; ITTFA, Iterative Target Transfor-
mation Factor Analysis; KNN, K-Nearest Neighbours; LOO,
Leave One Out; MIA,Multivariate Image Analysis; MSC, Multi-
plicative Signal Correction or Multiplicative Scatter Correction;
MSPC, Multivariate Statistical Process Control; NAS, Net Ana-
lyte Signal; NIPALS, Non-linear Iterative Projections by Alter-
nating Least-Squares; OSC, Orthogonal Signal Correction;
PARAFAC, PARAllel FACtor Analysis; PAT, Process Analyt-
ical Technology; PC, Principal Component; PCA, Principal
Component Analysis; PCR, Principal Component Regression;
PLS, Projection on Latent Structures; PLS ±DA, PLS Discrim-
inant Analysis; PMN, Penalized Minimum Norm projection;
QPLS, Quadratic PLS; QSAR, Quantitative Structure ±Activity
Relationship; RMSEC, Root-Mean Square Error of Calibration;
RMSEP, Root-Mean Square Error of Prediction; SIMCA, Soft
Independent Modeling of Class Analogy; SIMPLISMA, SIM-
PLe-to-use Interactive Self-modeling Mixture Analysis; SIMPLS,
SIMple Partial Least Squares regression; SMCR, Self-Modeling
Curve Resolution; SPC, Statistical Process Control; SVD, Singu-
lar Value Decomposition; SVM, Support Vector Machine; WFA,
Window Factor Analysis.

1974 1979 1984 1989 1994 1999 2004 Year

The number of papers

400
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Figure 1. Diagram illustrating the growth of the number of papers in

chemometrics among the publications in Elsevier periodicals.

{ The 9th Scandinavian Symposium on Chemometrics (SSC9). Available at

http://www.conference.is/ssc9

{Home of Chemometry Consultancy. Available at http://www.chemome-

try.com; Chemometrics Literature Database. Available at http://www.mo-

dels.kvl.dk/ris/risweb.isa (May 1, 2005); Chemometrics World. Available

at http://www.wiley.co.uk/wileychi/chemometrics/Home.html; The Al-

chemist. Available at http://www.chemweb.com/alchemist

}Russian Chemometric Society. Available at http://rcs.chph.ras.ru;

Chemometrics in Russia. Available at http://www.chemometrics.ru

}The Unscramber. Available at http://www.camo.no; Eigenvector Re-

search Inc. Available at http://www.eigenvector.com; Umetrics. Available

at http://www.umetrics.com

{SPSS. Available at http://www.spss.com; STATISTICA. Available at

http://www.statsoftinc.com

{MATLAB. Available at http://www.mathworks.com
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II. Data and models used in chemical analysis

1. Chemical data and information
Experimental data form the key object of chemometrics. Let us
consider a typical structure of chemical data according to a
classification reported previously 79 (Fig. 2).

The simplest case is the case of one-dimensional data (0D), i.e.,
merely a number, for example, the optical density, which could be
obtained using a monochromatic photometer. A more compli-
cated case is represented bymultivariate, one-way data data, i.e., a
set of results from several measurements referring to the same
sample. A spectrum and a chromatogram represent examples of
this type of data. From the mathematical standpoint, they can be
interpreted as a 1D vector (a column or a row), each element of
which corresponds to some variable (wavelength, retention time).
The number of variables stipulates the data dimensionality.

The next frequently encountered type of chemical data are
two-way data. They are represented as a 2Dmatrix. i.e., a table of
numbers comprising I rows and J columns. A typical example is a
set of spectra recorded for I samples at Jwavelengths. Each row in
the 2D matrix represents an object (in this case, a sample), while
each column corresponds to a variable (wavelength). The assign-
ment of data to either objects (samples) or variables (channels) is
highly important for the interpretation. However, this classifica-
tion is not always obvious. For example, when analysing the data
obtained by high performance liquid chromatography with diode
matrix detection, for 30 time points at 28 wavelengths, we can
compose amatrix comprising 28 rows and 30 columns; butwe can
conversely consider the wavelengths to be variables and the
retention times to be the objects. In most cases, in evolution
(developing with time) experiments, the objects correspond to
time instants, i.e., a sample that varies with time is considered as a
series of samples.42

With the progress in the hyphenated methods,2 three-way
(and more) data have started to receive considerable attention.80

They can be represented by a 3D matrix, the geometric image of
which is a parallelepiped with each edge corresponding to a
particular type of variable. Examples of four- and even eight-
way data have been reported.80

The data can be combined into blocks. In the simplest case,
this is a single block X. This case is encountered most often in
qualitative analysis, for example, in curve resolution. Quantitative
analysis based on regression dependences makes use of data
combined in two (or more) blocks. A block of predictors (for
example, a 2D matrix of spectra X) and a block of responses (for
example, a 1D vector of concentrations y) comprise a set of data,
which are used to construct a calibration model

y=Xb.

More complicated structures of the data including three (or
more) blocks can also be found.81 They are analysed using special
methods of path modelling.82

It may seem that this data systematisation Ð dimensionality,
modality and block structure Ð is formal and is of interest only
for mathematicians but not for chemists. However, this is not the
case. During the last years, the criteria of what data can be

regarded large-scale have dramatically changed. Whereas in the
early 1970s, a matrix of data (for example, spectra) has been
considered large if it contained 20 columns (variables, for exam-
ple, wavelengths) and 100 rows (objects, for example, samples),
currently a large matrix is that comprising 1 000 000 columns and
400 000 rows.29 When these arrays are processed, they have to be
divided into blocks and interpreted in turns. A formal division can
be avoided by an experienced chemist who understands the point.
The N-way concept has also been introduced not by mathema-
ticians. This is a natural response to the demand for analysis of the
data of hyphenated and evolution techniques, the number of
which increases following the progress of the instrumentation.
With the advent of new analytical methods such as hyperspectral
measurements 83 and the use of microarrays,84 the structure of
data would become more complicated.

The main task of chemometrics is to retrieve the required
chemical information from data. The notion of information is the
key notion of chemometrics. What is to be treated as information
depends on the problem to be solved. In some cases, it is sufficient
to know that some substance is present in the system, but often
quantitative measurements are also required. The data may
contain the desired information; they can even be redundant, but
they may also contain no information. However, in all cases, the
data include an undesirable component, i.e., noise (for example,
errors), which hides the desired information.

For illustration, let us consider the following idealised experi-
ment. Let there be a system representing a mixture of three
substances A, B and C without admixtures, such that pure (with-
out errors) spectra sA(l), sB(l) and sC(l) of each component are
known. The world `spectra' is used here in the general sense; these
may be any multivariate data, for example, chromatograms in
which l is the retention time. The task is to determine the
component concentrations from the spectrum of the mixture
x(l), which can also be recorded without errors. If each spectrum
contains values for 30 wavelengths (times) l, for solving this
problem one can compose 30 equations with respect to three
unknown concentrations cA , cB and cC :

x(l1)= cAsA(l1)+ cBsB(l1)+ cCsC(l1),
...................................................................

x(l30)= cAsA(l30)+ cBsB(l30)+ cCsC(l30).

Evidently, for retrieving the desired information, one does not
need so many equations; it is possible to retain only three of them
corresponding to any } three wavelengths. Thus, the initial data
(30-variate 1D vector) are excessive with respect to the desired
information: using any three points of the spectrum gives the same
concentrations.

Let us consider a more realistic example by assuming that all
spectra have some random error. In this case, the concentration
determined from different groups of three wavelengths would
differ. These estimates can be averaged to obtain more precise
concentrations. Note that the same result can be attained by
repeated experiments. However, this way is inefficient, as it
requires large effort and time. It is much easier to reduce the
uncertainty of the quantitative analysis by increasing the number
of variables (channels, wavelengths) in one experiment. This
conclusion reflects the first important principle of chemometrics,
namely, the use of multivariate approach in the design of experi-
ments and in the analysis of results.

It has been noted above that data always (or nearly always)
contain noise of different nature. This may be random errors,
which accompany the experiment: shift of the baselines, errors in
signal detection and inaccuracy in experiment preparation and
conduction. In many cases, noise is represented by data that bear
no valuable information. If the concentration of only two sub-
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Figure 2. Graphical view of N-way data.

} Strictly speaking, not any: a necessary condition is that the set has only

one solution.
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stances A and B was to be determined in the above experiment,
then substance C would be an undesirable impurity and its
contribution would be regarded as noise. What is to be attributed
to noise and what should be considered information? This ques-
tion is always solved with allowance for the goal and the methods
used to attain the goal. This is the second principle of the chemo-
metric approach to data analysis.

The noise and data redundancy are manifested through the
correlation relationships between variables. Turning back to the
idealised example, one can notice that in the matrix of `pure'
spectra S with the dimension 3630 [3 rows (samples) by 30 col-
umns (wavelengths)], only three columns would be linearly
independent. Having fixed this triple, any fourth column can be
represented as their linear combination. Naturally, the number
equal to three is not occasional, as the system contains exactly
three components. This number is called the rank of the matrix S
and plays an important role in the chemometric analysis. When
considering the same example in a more realistic version (with
allowance for the errors), additional correlations between the data
can be noted. This would be the case, for example, if the
concentration of the third substance C is much lower than the
error (noise). The data are now inadequate for reliable determi-
nation of all three concentrations and the effective rank of the
matrix is equal to two. Thus, the errors in the data may give rise to
random rather than systematic relationships between variables.
Evidently, the former case deals with correlation relationship,
while the latter case is a causal relationship.}

The notion of effective (chemical) rank and hidden (latent)
variables the number of which is equal to this rank underlies the
third most important principle of chemometrics.69 We shall
illustrate this by the following example. Let there be several (I )
mixtures of substances A, B and C, their pure spectra sA(l), sB(l),
sC(l) being unknown. One can obtain the spectra of these samples
as two-way data and to construct matrix X with the dimension
I630. By usual mathematical analysis, one can determine the
rank of this matrix. This number gives information of how many
components are present in the system or, at least, how many
components can be distinguished.

Thus, chemical data involve most often inner latent relation-
ships between the variables, resulting in numerous correlations,
i.e., multicollinearity. This feature can be manifested as data
redundancy, which increases the quality of estimates. However,
in the case of a faulty method for data processing, the multi-
collinearity can have an adverse effect on the quality of analysis.
For example, multiple linear regression cannot be used with
multicollinearity.74 For regression analysis of this sort of data,
special methods are required, for example, ridge regression 86 or
projection approaches.71

Sampling can be an essential source of noise. The sampling
theory, a substantial contribution to which was made by Jy,87 has
become very popular in recent years.88 Its numerous applications
can be found in a publication 89 completely devoted to this subject.
Yet another problem that may be faced by an analytical chemist is
the gaps in the data,90 caused by various reasons such as instru-
ment failure, going beyond the detection limits, sample deficiency
and so on. Most of chemometric methods to not work with
missing data; therefore, special methods are used to fill the gaps,
a method based on an iteration algorithm being used most often.
Each iteration consists of two steps. In the first step, the model
parameters are estimated as if the datawere known completely. To
this end, the gaps are filled by some a priori permissible values, for

example, average over the surrounding elements of the data array.
In the second step, the model obtained is used to find the most
probable values for the missing data, and the next iteration is
carried out. An approach based on the likelihoodmaximum is also
used to fill the gaps.91 Details of these algorithms largely depend
on the data description model used.

2. General strategy of data analysis. Models and methods
The chemometricmethods of data analysis can be divided into two
groups corresponding to two principal tasks: (i) exploration of the
data, for example, classification and discrimination; (ii) predic-
tion of new values, for example for calibration. The first-group
methods usually operate with one block of data, while the second
one, with at least two blocks (predictors and responses). Depend-
ing on the goals, the methods can be directed to prediction either
within the range of experimental conditions (interpolation) or
beyond this range (extrapolation). The methods are classified into
soft also called `black' and hard or `white'. When formal models
are used,92 the data are described by an empirical dependence
(most often, linear), which is valid in a limited range of conditions.
In this case, one need not know the mechanism of the process
under study. However, this method does not allow solving
extrapolation problems. The parameters of soft models are devoid
of a physical meaning and are to be interpreted using appropriate
mathematical methods. The hard modelling 93 is based on phys-
icochemical principles and permits extrapolating the system
behaviour under new conditions. The parameters of a `white'
model have a physical meaning, and their values can help in
interpretation of the elucidated dependence. However, this
method is applicable only in the case where the model is known
a priori. Each of the approaches has both advantages and draw-
backs,36 and both adherents and opponents. Historically, the hard
method was intensively developed in Russia, while the soft
method was developed more actively in other countries. The
authors of many recent publications consider so-called `grey'
models,94 which combine the advantages of both methods.
Belowwe illustrate different approaches tomodelling by examples
from analytical chemistry.

Titrimetric processes, distinguished by a diversity of chemical
reactions and signals registered, often serve as objects of mathe-
matical modelling in analytical chemistry. The equations for
titration curves are often fairly sophisticated and cannot be
written in an explicit form with respect to the signal registered.
This hampers the use of hard models for solving the inverse
problem, namely, estimation of the parameters from themeasured
points of the curve. Nevertheless, by using modern computing
systems, this problem can still be solved within the framework of
the `white' modelling.95 It has been noted 96 that titration curves
resemble in their shape the plots for reciprocal hyperbolic and
trigonometric functions. Therefore, it has been proposed to use
soft (`black') dependences composed of trigonometric functions
arcsin, arccos, etc. According to the trade-off (`grey') approach
proposed by Mar'yanov et al.,46 a change in variables can trans-
form a hard model into a piecewise-linear one. Subsequently, the
parameters are estimated by the ALS method,97 which implies
progressive approximation of the model to the data: first, linear
parameters are estimated by linear regression methods with non-
linear parameters being fixed, and after that, non-linear para-
meters are estimated in a quickest descent procedure with the fixed
linear parameters found previously. The procedures alternate
until the results converge.

The interest in `black' and `grey' modelling methods is due to
the difficulty of the selection and validation of a hard model. In
many cases, this is reduced tomere enumeration of a small number
of competing dependences, as a result of which a simple model
with the smallest discrepancy is chosen. However, this does not
validate the chosen method and may give rise to gross errors.
Researchers often use models that have been reasonably called
`pink' { based on idealised dependences which poorly comply with
artifacts present in real data such as baseline drifts, anomalous

}The difference between the causality and correlation is amusingly

illustrated in a book,85 which cites an example of high positive correlation

between the numbers of citizens and storks in Oldenburg (Germany) in the

period from 1930 to 1936. Of course, these two variables are related by a

correlation dependence caused by the fact that the system includes a third

latent variable to which they are both related by a causal relationship.
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errors, etc. The formal multivariate linear models and appropriate
methods for their analysis are much better `adapted' to handling
artifacts. These models operate in those cases where the hard
physicochemical approach is by no means applicable. The
grounds for using linear models are provided by the fact that
any, even a very complicated but continuous dependence in a
rather narrow range can be represented as a linear function. In this
case, a fundamental question is what range can be considered
acceptable, in other words, the question of the scope of applic-
ability of the constructed soft model. This question can be
answered by using model validation techniques.

When the model has been properly constructed, the initial
data consist of two rather representative sets obtained independ-
ently of each other. The first set, called training set, is used for
model identification, i.e., for estimation of its parameters. The
second set, called test set, serves only for model validation. The
constructed model is applied to the test set, and the results
obtained are compared with the test data. The results of the
comparison are considered to make decision about the model
validity and accuracy. In some cases, the data array is too small for
such validation. In this case, cross-validation is used.98 According
to this method, the test values are computed by the following
procedure. Some invariable fraction (for example, the first 10%)
of samples are excluded from the initial set of data. Then the
model is constructed using only the remaining 90% of the data
and then applied to the excluded set. In the next cycle, the excluded
data are returned and another part of the data (the next 10%) are
removed. A model is constructed once again and applied to the
excluded data. This procedure is repeated until all data have
functioned as excluded (in our cases, this requires 10 cycles). The
leave-one-out (LOO) cross-validation procedure is used most
often (without reason). Validation by the leverage correction
algorithm is also employed in the regression analysis.74 It is
noteworthy that one or another validation procedure should be
applied not only in quantitative, but also in qualitative analysis in
solving discrimination and classification problems.

The results obtained in the analysis and modelling of exper-
imental data always involve an uncertainty. The quantitative
estimate or qualitative judgementmay be changed after a repeated
experiment as a result of diverse random or systematic errors
either present in the initial data from the very beginning or
introduced during the modelling.99 The uncertainty in the quanti-
tative analysis is described by either a value, i.e., standard
deviation,100 or an interval, i.e., a confidence 101 or prediction
interval.56 In qualitative analysis, verification of statistical
hypotheses is used 102 in which the uncertainty is characterised
by the probability ofmaking awrong decision.103 Themethods for
estimation of the uncertainty during modelling of multivariate 104

and multiway 105 data arouse considerable interest in chemo-
metricians. Various aspects of reliability of an analytical method
are described using special characteristics: specificity, selectivity,
detection limit, signal-to-noise ratio.73 A topical method for their
determination is the approach based on the NAS concept.106

A multivariate NAS vector is defined as a part of the full signal
(spectrum), which is used for modelling and prediction.107 The
remaining part of the signal, which includes errors and contribu-
tions from foreign components, is considered as noise. The NAS
concept was applied to the problem of determining the detection
limit in the analysis of two 108 and three-way 109 data. The
obtained results have found numerous practical applications,
one being considered below.

The reliability of an analytical method largely depends on the
data that have been used to construct and validate the model. The
presence of outliers 110 or spurious data decreases the accuracy of
the model and, conversely, the presence of representative (signifi-
cant) samples in the experiment 111 substantially improves the
model quality. The data significance can be estimated by classical
regression methods 112 or by non-statistical procedures.56 When
the constructed model is used to determine desired parameters,
similar problems arise. The method may prove inapplicable to
some samples (an outlier in the prediction 113) or give inaccurate
results. Estimation of the method uncertainty for particular
samples rather than on average 114 is a complicated task, which is
tackled by a number of research groups.115 Their effort determines
the successful solution of practical problems such as calibration
transfer,116 variable selection 117 and the construction of robust
models for data analysis.118

III. Qualitative analysis methods. Exploration,
classification and discrimination

1. Principal component analysis
Modern instruments easily do a multitude of measurements per
unit time. For example, if a spectroscopic sensor is used in situ to
measure a spectrum at 300 wavelengths every 15 s, then after 1 h it
will produce a 2406300 matrix of data, i.e., 72 000 values.
However, due to the multicollinearity, the fraction of useful
information in this array may be relatively low. To isolate useful
information, data compressionmethods are used in chemometrics
(unlike the traditional approach in which only the results of some,
especially significant measurements are selected from the data).
For representing the initial data, new latent variables are used in
these methods. Two conditions must be fulfilled. First, the
number of new variables (chemical rank) should be much lower
than the number of the initial variables, and, second, the loss
caused by data compression should be commensurable with the
noise. Data compression allows one to represent useful informa-
tion in a more compact form convenient for visualisation and
interpretation.

Data are compressed most often using the PCA technique,19

which underlies other similar chemometric methods including
EFA,119 WFA,120 ITTFA 121 and numerous classification meth-
ods, for example, SIMCA.122 The principal component analysis
implies decomposition of the original 2DmatrixX, i.e., represent-
ing it as a product of two 2D matrices T and P,74

X=TP t+E=
XA
a� 1

tap
t
a +E. (1)

In this equation, T is called the matrix of scores, P is the matrix of
loadings and E is the matrix of residuals (Fig. 3). The numbers of
columns, ta in the matrix T and pa in the matrix P, are equal to the
effective (chemical) rank of the matrix X. This value is designated
by A and is called the number of principal components; naturally,
it is smaller than the number of columns in the matrix X.

To illustrate the PCAmethod, let us turn back to the example
considered in Section II.1. The matrix of the mixture spectra X
can be represented as the product of the concentration matrix C
and the spectrum matrix of pure components S

{ See O N Karpukhin Global (strategic) problems of the practical use of

complex mathematical statistics methods (chemometrics) Report at the

fourth International Symposium `Modern Methods of Analysis of Multi-

variateData' (WSC-4). Chernoholovka, February 14 ± 18, 2005. Available

at http://www.chemometrics.ru/articles/karpukhin
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Figure 3. Graphical view of the principal component analysis.
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X=CSt+E. (2)

The number of rows in matrix X is equal to the number of
samples (I ), each row corresponding to the spectrum of a single
sample recorded for Jwavelengths. The number of rows in matrix
C is also equal to I and the number of columns corresponds to the
number of components in the mixture (A=3). The matrix of pure
spectra is present in expansion (2) in the transposed form, as the
number of its rows is equal to the number of wavelengths (J ),
while the number of columns is equal to A. As noted above, in the
analysis of real data complicated by errors represented by matrix
E, the effective rank A does not necessarily coincide with the real
number of components in the mixture. More often, it is greater
due to the influence of non-concentration factors, for example,
temperature.

The problem of resolution of the experimental matrix X into
`pure' components corresponding to the concentrations C and
spectra S (understood in the generalised sense) is a special field in
chemometrics called curve resolution.123 Two directions can be
distinguished in this field. The first one uses self-model curve
resolution (SMCR) 124 and is mainly applied as a supplement to
hyphenated chromatography.125 The self-model approach is
implemented using soft modelling method, for example, PCA or
EFA, which do not utilise the conceptual knowledge about the
system.Within the framework of this approach, the SIMPLISMA
method can be distinguished,126 which makes use of a simple but
fairly effective procedure based on variable selection.127 Con-
versely, the second direction employs a priori information about
the processes and utilise `grey' models.128 This direction is applied
in the studies of kinetics 34 and thermodynamics.129 The key point
in these problems is determining the chemical rank of the system,
i.e., the number of principal components A.130 In the ideal case,
the predicted spectraS and concentrationsC should be close to the
true values, although they cannot be exactly recovered. The reason
is not only the experimental error, but also the fact that the spectra
can partially overlap. When PCA is used to resolve the data into
the chemically meaningful components, as in Eqn (2), it is also
called factor analysis, unlike the formal principal component
analysis.131

The principal component analysis is efficient not only in the
problems of resolution. It is used to analyse any chemical data. In
this case, the score T and loading P matrices can no longer be
interpreted as the spectra and the concentrations, and the number
of principal components A, as the number of chemical compo-
nents present in the system. Nevertheless, even formal analysis of
the scores and loadings is very useful for understanding the data
structure. Below we present a simple two-dimensional illustration
of PCA.

Data consisting only of two highly correlated variables x1 and
x2 are presented in Fig. 4 a. The same data in new coordinates are
shown in Fig. 4 b. Loading vector p1 of the first principal
component (PC1) determines the direction of the new axis along
which the data change more appreciably. The projections of all
initial points on this axis form vector t1 . The second principal
component p2 is orthogonal to the first one, its direction (PC2)
corresponding to the largest variation in the residuals (shown by
segments perpendicular to the axis p1).

This trivial example shows that principal component analysis
is executed successively, step by step. In each step, the residualsEa

are studied, the direction of themost pronounced change is chosen
among them, the data are projected onto this axis, new residuals
are calculated and so on (NIPALS algorithm).74 According to
another popular data compression algorithm, SVD,132 the same
decomposition (1) is constructed without iterations. The number
of principal components A is chosen (in other words, the iteration
procedure is terminated) based on criteria that show the accuracy
of the decomposition attained. Assume that matrix X has I rows

and J columns and A principal components participate in expan-
sion (1). The values

ma � 100
XI
i� 1

t2ia
XI
i� 1

XJ
j� 1

x2ij

,
, (3)

Ea � 100 1ÿ
XI
i� 1

XJ
j� 1

e2ij
XI
i� 1

XJ
j� 1

x2ij

, ! 
, a � 1; ::: ;A

are called the normalised eigenvalue and explained variance,
respectively. They are usually plotted vs. value a. A sharp change
in these values attests to the required number of principal
components. For a correct choice of A, test-validation or cross-
validation is required.

Equations (1) contain no absolute term; therefore, prior to
data decomposition, data centring (i.e., subtraction of the average
over the column) is often required.

The principal component analysis can be interpreted as data
projection onto a subspace with a lower dimensionality. The
residuals E thus arising are regarded as noise containing no
significant chemical information. In this subspace, one can
introduce a sample dissimilarity measure called Mahalanobis
distance,133 which helps to solve many problems of qualitative
analysis. Yet another potent method for data analysis in a
projection subspace is the Procrustean rotation method.134

When exploring the data by PCA, the attention is focused on
score and loading plots. They bear information on the data
structure. In the score plot, each sample is depicted in the (ti , tj)
coordinates, most often, (t1 , t2). The proximity of two points
implies their similarity, i.e., positive correlation. The points
located at a right angle are uncorrelated, while those located in
the opposite positions have a negative correlation. By using this
approach in chromatographic analysis,42 one can find out, for
example, that the linear section in the score plot corresponds to the
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Figure 4. Graphical illustration of the principal component analysis.

(a) data in the initial coordinates, (b) data in the principal component

coordinates.
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regions of pure components in the chromatogram, the curved
sections are regions of peak overlap, and the number of such
sections corresponds to the number of components in the system.
Whereas the score plot is used for analysis of sample relationships,
the loading plot is used to study the role of variables. In the
loading plot, each variable is reflected by a point in the (pi , pj)
coordinates, for example, (p1, p2). By analysing this plot similarly
to the scope plot, one can understand which variables are
interconnected and which are independent. A joint investigation
of pair score and loading plots also helps to retrieve useful
information from the data.74

Consider an example of practical use of PCA in chemical
analysis. The possibility of using near-IR spectroscopy for detec-
tion of counterfeit drugs has been considered.135 Samples of true
(N1, 10 items) and fake (N2, 10 items) tablets of a popular
antispasmodic agent have been studied. Twenty diffuse reflec-
tance spectraR(l) were recorded on a Bomem MB160 instrument
with a Powder Sampler attachment in the 3800 ± 10 000 cm71

range (1069 wavelengths) without special sample preparation.
The initial data were converted to 7logR, centred and prepared
by theMSC procedure (Fig. 5).74 The negative values of the signal
are due to the use of different gain settings for the background and
the sample spectra.

In the PCA score plot (t1, t2) for these spectra (Fig. 6 a), one
can clearly see two groups of points corresponding to the true and
counterfeit tablets. The scatter of points in group N2 (counterfeit)
is much greater than in group N1 (original). This may be
attributed to a better quality control in the legal production. In
this example, it is sufficient to use only two principal components
for which m1=94%, m2=4.9%, E2=99%.

2. Classification and discrimination
The example considered above refers to classification problems.
This is a rather extensive class of problems of qualitative chemical
analysis with the goal of attributing a sample to a particular class.
Classification problems can be subdivided into two groups. One
group includes so-called unsupervised problems that use no
training set; they can be regarded as a sort of explorative analysis.
This approach has been used in the above example with counter-
feit tablets. The problems of the second group referred to as
supervised classification are also called discrimination problems.
They are solved using a training set of samples, which are known
a priori to belong to particular classes. The methods for unsuper-
vised classification are mainly based on PCA decomposition
followed by analysis of distances between classes,136 construction
of dendrograms, the use of the fuzzy set,137 etc. Procrustean
rotation 138 and Mahalanobis distance 139 ± 141 have been used for

these purposes. However, if discrimination is possible, these
methods should be preferred.

A training set of samples is used to construct a classification,
i.e., a set of rules that can be used to assign a new sample to one or
another class. When the model (or models) has been constructed,
it has to be test- or cross-validated to determine the degree of its
precision. If the validation is successful, the model is ready for
practical use. In analytical chemistry, multicollinear data (spectra,
chromatograms) are usually classified; therefore, the discrimina-
tionmodel is nearly alwaysmultivariate and is based on projection
approaches, PCA and PLS. Note the use of linear discriminant
analysis in the near-IR spectroscopy 142 and canonical discrim-
inant analysis.143 The SIMCA method 144 developed by Wold 122

is very popular.
The SIMCA method is underlain by the assumption that all

objects that belong to the same class have both similar and
distinctive features. When constructing a discrimination model,
one should take into account only the similarity, while the
distinctive features should be rejected as noise. To this end, every
class from the training set is modelled independently using PCA
with different numbers of principal components A. After that,
distances between the classes and the distances between each class
and the new object are calculated. Two values are used as distance
functions. The distance from the object to a class (d ) is found as
the root-mean-square value of the residuals e arising upon
projecting an object onto the class

d �
�������������������������
1

Jÿ A

X
j� 1

e2j

s
.

This value is compared with the root-mean-square residue within
the class

d0 �
����������������������������������������������������

1

�Iÿ Aÿ 1��Jÿ A�
X
ij

e2ij

s
.
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Figure 5. Spectra transformed by the MSC procedure.135

Here and in Fig. 6 the following designations are used: N1 are true tablets,

N 2 are fake tablets.
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The second value, the distance from the object to the centre of
the class (h), is found as the leverage (the squared Mahalanobis
distance)

h � 1

I
�
XA
a� 1

t2a
ttata

,

where ta is the projection of a new sample (score) on the principal
component a, and ta is the vector containing scores for all training
samples in the class.

The use of the SIMCA method for tablet discrimination is
illustrated in Fig. 6 b. As the class, true tablets were used; the plot
shows the distances d and h from counterfeit samples. The vertical
and horizontal lines dictate the rules that can be applied to assign a
new item to the class of true tablets. It can be seen than all samples
of fake tablets are located far away from the true class; therefore,
they can be readily discriminated. On the given scale, the points
that correspond to true samples converge into one point, which
almost coincides with the origin of coordinates.

Apart from SIMCA, a similar DASCO method,145 as well as
KNN,146 SVM147, 148 and many other methods are used for
discrimination of chemical data. The PLS ±DA method is a
powerful tool.149 The basic idea is that the discrimination rules
for K classes are specified by linear regression of the form

XB=D,

where X is the full matrix of all initial data (I6 J ), B is the matrix
of unknown coefficients (J6K ), andD is a special matrix (I6K)
composed of zeros and ones. During the construction ofmatrixD,
ones should be placed only in those rows (samples) that belong to
the class corresponding to the number of the column. The
regression problem is solved by the PLS method (see below),
which allows one to use subsequently the constructed regression to
predict the assignment of new samples. For this purpose, the
response of a new sample is predicted and the result is compared
with zero or one.

3. Three-way methods
Principal component analysis has been developed for the analysis
of data that can be represented as a two-way 2Dmatrix. However,
in recent years analytical chemists deal more and more often with
three (and higher) way data with a more complex structure. These
data are gained, for example, by using hyphenated 150, 151 and
evolution methods.152 The data are compressed using special
approaches three of which (usedmost often) are briefly considered
in this Section. The most comprehensive and systematic descrip-
tion of these methods with numerous examples of their applica-
tion to chemical analysis can be found in a monograph.80 A brief
review of methods and algorithms used for analysis of three-way
data has been reported.153 The same algorithms are used to
process the data obtained by hyperspectral measurements 83 and
for image analysis.21

The unfolding method 154 is the simplest method of analysis of
three-way data used to unfold 3D matrix X with dimension
I6 J6K into a usual 2D matrix uX with the dimension I6 JK
(Fig. 7). The value I is called the basic mode. After unfolding, the
principal component analysis can be applied (see Section III.1).
This approach is often efficient (see, for example, a study 36),

although it suffers from a number of drawbacks; first, any of three
directions can be chosen as the basic mode, i.e., unfolding involves
uncertainty; second, the connection between neighbouring points
is lost, since on passing from a 3D to a 2D matrix, it is no longer
taken into account that the measurements xikj and xik+lj are
neighbouring, which may be important.

The Tucker3 algorithm 155 allows processing three-way data,
while maintaining their initial structure and, hence, the sequence
of measurements, for example, the order of wavelengths in the
spectrum or the time sequence of points in a chromatogram. The
initial 3D data X are presented as three conventional 2D loading
matrices (A, B, C) and a three-way core array G. The pattern of
such data expansion is shown in Fig. 8. Each element of the initial
3D matrix X can be written as the sum

xijk �
XP
p� 1

XQ
q� 1

XR
r� 1

aipbjqckrgpqr � eijk , (4)

where a, b and c are elements of the loadingmatrices, each of them
corresponding to a particular way; g are elements of the core array
G. The number of principal components along each direction
(P, Q, R) can be different.

The PARAFACmethod 153 differs from the Tucker3 model in
the fact that each way is represented by the same number of
principal components R. The expansion is constructed to mini-
mise the sum of squares of the residuals eijk

xijk �
XR
r� 1

airbjrckr � eijk . (5)

The major advantage of this method is the uniqueness of expan-
sion. If a mixture of several chemical substances was studied, then
with a correct choice of the number of principal components, the
loading matrices are pure spectra of the initial compounds. The
graphical scheme of the PARAFAC method is shown in Fig. 9.

The MATLAB codes of the PARAFAC algorithm can be
found in a publication.150 Since the loading matrices in expan-
sion (5) are determined by an iteration procedure, this method
requires a very large amount of computation. Studies aimed at
acceleration of computation procedures are now in progress.
A critical analysis of the most recent achievements in this field
has been reported.155 The algorithms of all the considered
methods for decomposition of three-way data are documented.156
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IV. Quantitative analysis methods. Calibration

1. Linear calibration
Two blocks of data are used to solve problems of quantitative
analysis.2 The first block X is the matrix of analytical signals (for
example, spectra, chromatograms and so on); the second block Y
is the matrix of chemical parameters (for example, concentra-
tions). The number of rows (I ) in these matrices is equal to the
number of samples, the number of columns (J ) in the matrix X
corresponds to the number of channels (wavelengths) in which the
signal is recorded, and the number of columns (K ) in matrix Y is
equal to the number of chemical parameters, i.e., responses. The
purpose of calibration is to construct a mathematical model that
would relate blocks X and Y and could be subsequently used to
predict parameters y over a new row of analytical signals x.13

A simplest calibration model is one-dimensional regression
(J=1, K=1) 157

y= a+bx,

which corresponds to a single channel of the analytical signal.
Using classical regression analysis, it is possible to construct a
more complex multiple regression (I> J,K=1) involving several
channels,33

y=Xb.

Using these models normally implies that factors xij are
known exactly, errors being present only in block y. Therefore,
two approaches to the model construction can be distinguished:
the first is called direct calibration and the other is inverse
calibration.158 In the first approach, chemical parameters
(X=C) are used as independent parameters, while spectral
measurements (Y=S) are used as responses. Previously, it has
been believed that the direct model fits better to the assumption of
the lack of errors in block X and, in addition, it is in agreement
with the Bouger ±Lambert ± Beer law.72 In the second approach,
Y=C, X=S. This approach currently prevails in chemometrics,
because it is more practically convenient, as it directly predicts the
required analytical parameter (for example, the concentration C)
from the measured signal (spectrum S). In addition, modern
regression methods (PCR, PLS) make it poosible to handle data
with errors present in both blocks.

To illustrate various calibration methods, let us turn back to
the example considered in Section II.1. Now we fill this with a
particular content by simulating data X and Y. Let there be a
mixture of two substances A and B (K=2) and an instrument that
measures an analytical signal s (spectrum) at 101 channels
(J=101). The spectra of `neat' substances (cA=1, cB=1) are
presented in Fig. 10 a (curves A and B). The spectra significantly
overlap; therefore, it is impossible to distinguish `selective' chan-
nels for estimating the concentrations. Figure 10 b shows nine
simulated spectra (I=9) of various mixtures of substances A and
B in which a random error has been introduced with a standard
deviation of 0.05. They will be used as the training set.

To construct a one-dimensional calibration, we took the
intensities s(l50) of nine signals for channel 50 and plotted them
in Fig. 10 c as functions of concentrations cA and cB of A (points
1) and B (points 2). The calibration dependence s= bc is shown by
a straight line.

The calibration accuracy is usually characterised by the
RMSEC value

RMSEC �
��������������������������������XI
i� 1

�yi ÿ ŷi�2 F=

vuut , (6)

where yi and ŷi are the measured and predicted values of a
chemical parameter (concentration) for the training samples
i=1, ... , I; F is the number of degrees of freedom:42 F= I71
for one-dimensional regression without an absolute term. Evi-
dently, the lower the RMSEC, the more accurate the description
of the training data. In addition, the quality of calibration is

characterised by correlation coefficientR2 between values y and yÃ :
the closer this to unity, the higher the calibration quality. The
corresponding values are given in the caption to Fig. 10 c. The
graphical dependences show that due to low instrument selec-
tivity, the one-dimensional calibration is unsatisfactory. The
calibration using multiple regression is considered below.

Consider the application of a multivariate model constructed
by the PCR method.86 The PCR method uses inverse calibration,
so that Y=C, X=S. In terms of the PCA method, the matrix X
can be expanded using formula (1); in our example, A=2.
Loading vectors p1 and p2 thus found are shown in Fig. 10 a
(curves PC1 and PC2). By comparing the plots presented in
Fig. 10 a,b, one can see that the first principal component
describes a smooth trend in the data, whereas the second compo-
nent shows the noised deviations from this trend. The obtained
score matrix T is used as the block of independent variables
(predictors) in the regression to the response blockY, i.e.,Y=Tb.
The results of PCR calibration are presented in Fig. 10 d, which
shows the predicted concentrations yÃ as functions of the measured
values y (points 1 for substance A and points 2 for substance B)
and the regression lines, which coincide. The RMSEC and R2

values demonstrate that PCR provides high `mathematical' selec-
tivity and gives estimates for the concentrations of A and B with
much higher accuracy than the one-channel calibration. In the
PCR method, the number of degrees of freedom appearing in
Eqn (6) equals

F= I ±A.

It has been noted above that each chemometric model requires
a proper validation. In our example, the validationwas carried out
using a test set (test validation) comprising five samples (mixtures
of A and B). The validation results for substance B are shown in
Fig. 11a. The data for nine samples participating in calibration
and five test samples are given in the `measured ± predicted'
coordinates. The RMSEC andRMSEP values and the correlation
coefficients for the training (R2

c ) and test (R2
t ) sets are also given.
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Figure 10. Examples of the construction of various calibrations.

(a) spectra of pure (curves A, B) and principal components (curves PC1,

PC2); (b) model spectral data; (c) one-dimensional calibration,R2
A =0.50,

RMSEC=0.26, R2
B =0.46, RMSEC=0.219; (d) PCR calibration,

R2
A =0.999, RMSEC=0.011, R2

B =0.998, RMSEC=0.012.
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The RMSEP values are calculated similarly to RMSEC [see
Eqn (6)] but only for test samples. The number of degrees of
freedom F is equal to the number of these samples. It can be seen
that the principal component analysis passed the validation: the
calibration and validation lines coincide.

Let us consider in this context the calibration by means of
multiple regression. The training set consists of nine samples;
therefore, not more than eight channels can be used for model
construction (I> J ); for example, the first, fourteenth, twenty-
seventh, etc. The calibration and validation results for multiple
regression are presented in Fig. 11 b. Since the number of samples
is greater than the number of the channels only by one, the
calibration line passes exactly through all points of the training
set (points 1); therefore, RMSEC=0 and R2

c =1. However,
validation showed an unsatisfactory quality of this calibration:
the accuracy is ten times worse than than the accuracy in the PCR
method, and the validation straight line does not coincide with the
calibration line. This is a typical example of model overfitting:71

the accuracy of calibration is much higher than the accuracy of
prediction.

The problem of balancing of data calibration is considered in
many publications by HoÈ skuldsson,159 which introduced a new
modelling concept, the so-called H-principle. According to this
principle, the accuracy of modelling evaluated by the RMSEC
parameter and the prediction accuracy evaluated by RMSEP are
interrelated. A better RMSEC entails a poorer RMSEP; hence,
they must be considered together. For this reason, the multiple
linear regression, which always involves a redundant number of
parameters, yields unstable models unfit for practical use.

Currently, PLS is the most widely used method for multi-
variate calibration in chemometrics. It resembles the PCR
method; however, an important distinction is that PLS implies
simultaneous decomposition of matrices X and Y

X=TPt+E, (7)

Y=UQt+F.

The projections are constructed in coordination, in such a way
as to maximise the correlation between the X-score (ta) and
Y-score (ua) vectors. Therefore, the PLS regression describes
much better the complex relationships using a smaller number of
principal component. The PLS method has been considered in
detail in a book.74 This approach has served as the basis for
numerous calibration methods used in chemometrics, for exam-
ple, SIMPLS,160 PMN,161 robust PLS,162 ridge-PLS 163 and
other.164

However, all these methods give predictions as point esti-
mates, whereas in practice, an interval estimate including the
prediction uncertainty is often required. The construction of

confidence intervals by traditional statistical methods is impos-
sible due to the problem complexity,114 while the use of simulation
methods 98 is hampered due to the long computation time.101

Kantorovich 165 proposed to replace minimisation of the sum of
squared deviations by a set of inequalities, which is solved by
linear programming. In this case, the prediction gives an interval;
therefore, thismethodwas called `simple interval calculation'.36, 56

Several works in analytical chemistry have been performed using
this method.166

2. N-Way regression
Themutivariate calibrationmethods are naturally extended to the
case where blocks X and Y are represented by N-way matrices.80

The regression can be constructed in different ways. Using
PARAFAC and Tucker3, the predictor block X is represented as
a product of 2D loading matrices, which are used to estimate the
parameters. These methods can be regarded as extension of PCR
to multiway data. An extension of PLS is the Tri ± PLS decom-
position of the 3D matrix X, which can be represented as
follows:167

uX&T uP.

Here uX is a 2D matrix (with the dimension I6KJ ) obtained by
unfolding of the 3DmatrixX (with the dimension I6K6 J ) (see
Fig. 7); T is the 2D score matrix (with the dimension I6A); uP is
the 2D weight matrix (with the dimension A6KJ ), which in turn
represents the unfolding for the 3D matrix P, represented as the
tensor product of two 2D matrices

P= JP
 KP.

The decomposition of block Y is carried out in a similar way

uY&U uQ.

Here, as in the usual PLSmethod, the scoresT are chosen in such a
way as to maximise the correlation between vectors ta and ua . The
regression problem U=TB is solved by the conventional proce-
dure.

The mathematical tool used in the multiway calibration is
rather complex. However, the currently existing software { allows
chemists to overcome mathematical difficulties. Numerous exam-
ples of using multiway calibration in chemical analysis have been
documented. For example, this method is used in spectrophoto-
metry to determine pesticides,168 in high performance liquid
chromatography with diode matrix detection for peak resolu-
tion,169 to determine trace concentrations of metals,170 etc.

The use of gas chromatography ±mass spectrometry to deter-
mine traces of clenbuterol in biological samples has been
described.171 In recent years, this method has been widely used
to analyse traces of organic compounds. However, due to the
complexity of biological products and low content of the analyte,
the estimated detection limit depends appreciably on the method
of mathematical processing of experimental data. In the study
cited, seven standard samples with known clenbuterol concen-
trations were prepared. The mass-spectrometric detection was
carried out both in the full-scanningmode (210 ions) and for eight
particular ions. The obtained data are three-way, the first way
being the samples, the second, the mass spectra and the third,
chromatograms. The full-scanning mode gave a 3D predictor
matrix X with the dimension 76210637; the separate ion
detection mode gave a 768622 matrix. The response block is a
1D vector y, which includes seven concentrations.

The calibration was constructed using various three-way
algorithms: PARAFAC, PARAFAC2, Tucker3 and Tri ± PLS.
The Tri ± PLS method proved to be the method of choice as this
gave the lowest detection limit. A comparison of the results
obtained by this method and a standard univariate procedure

{ See R Bro, C A Andersson The N-Way Toolbox for MATLAB. Version

2.02 (2003). Available at http://www.models.kvl.dk/source
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Figure 11. Validation of the calibrations in the model example using the

principal component regression (a) and multiple regression (b).

(a) R2
t =0.999, RMSEC=0.008, R2

c =0.998, RMSEC=0.12;

(b) R2
t = 0.86, RMSEC=0.14, R2

c =1.0, RMSEC=0; (1) training set,

(2) test set.
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showed a pronounced decrease in the detection limit, in particular,
from 283 to 20.91 mg kg71 in the full-scanning mode and from
73.95 to 26.32 mg kg71 for scanning of particular ions. The
detection limits were calculated in terms of the NAS concept.124

3. Non-linear calibration
In some cases, for example, in the titration problems considered
above, it is impossible to build a linear calibration. In addition, the
linear technique requires a large number of data, which are not
always available. Two alternative approaches are possible. One
implies multiple non-linear regression, while the other, multi-
variate non-linear calibration. Both approaches are considered
below.

The non-linear regression analysis 172 can be successfully used
to solve problems of quantitative analysis if the variables are few
in number. In addition, a conceptual model relating the blocks X
and Y is required. Apparently, the scope of such problems is not
wide, including mainly kinetic (in particular, titration) prob-
lems.95 This approach was employed, for example, in the analysis
of the activity of antioxidants,36 in solving the inverse kinetic
problem 34, 94 and for the above-mentioned titration.173, 174 A
detailed analysis of the problems faced by a researcher who uses
this approach has been reported.57

An alternative to the classical regression is the soft approach,
which does not require the knowledge of a hard model but implies
the presence of a large number of data.78 To take into account
non-linear effects, the INLR,175 GIFI ± PLS 176 and QPLS 177

methods representing the upgraded PLS method have been
proposed.81 In addition to non-linear PLS, the ANN
method 178, 179 simulating signal propagation in the cerebral
brain cortex is used in chemometrics. This method is used
successfully for function interpolation. About 10 years ago the
neural network method attracted attention of chemists, which
started to use it for classification,180 discrimination 53 and calibra-
tion.181, 182 However, more recently, the interest somewhat atte-
nuated and the use of ANN in chemometrics became more
seldom. The reason is the above-noted model overfitting. When
using neural networks, it is very difficult to evaluate correctly the
degree of complexity of the model, which results in an unstable
and unreliable prediction. Yet another interesting version of non-
linear modelling that simulates biological processes is the GA
method.183, 184 This method and its modification, the IA method,
are useful in those cases where the chemical analysis problem fails
to be formalised in terms of the usual objection functions, for
example, for resolution of overlapping multicomponent chroma-
tograms.185 Examples of practical application of non-linear
approaches in chemiluminescent analysis have been reported.186

V. Data preprocessing and signal processing

1. Data preprocessing
An important condition for correct modelling and, hence, suc-
cessful chemical analysis is the preliminary data preprocessing,
which includes various transformations of the initial (`raw')
experimental values. The simplest transformations include
centring and scaling.187 Centring is subtraction of some matrix
M from the initial matrix X

XÄ =X7M.

Usually, centring is carried out by columns: for each vector xj
the average values are calculated

mj �
xlj � . . .� xIj

I
.

Then

M=(m1l, ... , mJ l),

where l is a vector of ones with the length I. In some cases, centring
by rows is also carried out: the average values for the rows are

calculated and these values are subtracted from the corresponding
rows xti . In the case of multiway data, centring can be carried out
separately for each way. Centring is required if the model is
uniform, i.e., has no absolute term, as in Eqns (1) and (7). After
this operation, the chemical rank of the model decreases by unity
and the accuracy of description may increase. Centring may be
considered as projecting onto a zero principal component,13

hence, it is always used in the PCA and PLS methods. However,
centring should not be employed if there are gaps in the data.

The second simplest transformation of data is scaling. Unlike
centring, this transformation does not change the structure of the
data but only the weight of their parts on processing. Scaling can
be carried out for each mode. Scaling by columns is multiplication
of the initial matrix X by matrixW on the left

XÄ =WX,

where W is a diagonal matrix with the dimension J6 J. Usually,
diagonal elements wjj are equal to the reciprocal of the standard
deviation

dj �
����������������������������������XI
i� 1

xij ÿmj

ÿ �2
I=

vuut
along column xj . Normalisation by rows is multiplication of
matrix X by diagonal matrixW on the right

XÄ =XW.

The dimension ofW is I6I, while its elementswii are the reciprocal
values of the standard deviations of the rows xti . A combination of
centring and scaling by columns

~xij �
xij ÿmj

dj

is called autoscaling.
Data scaling is often used in order to equalise the contribution

of variables to the model (for example, in the liquid chromato-
graphy ±mass spectrometry hyphenated method), to take into
account the heteroscedastic errors, or for combined processing of
different blocks of data. Scaling can also be considered as a
method that allows one to stabilise the computation algorithms.71

However, this type of transformation should be usedwith caution,
because it can distort the results of qualitative analysis.42

Apart from linear transformations, non-linear transforma-
tions of experimental results are also used. For example, in
analysis of the data of near-IR spectroscopy, the Kubelka ±
Munck transformation is often employed.188 The purpose of this
and other transformations, for example, the Box ±Cox trans-
formation,33 is model linearisation. Simple operations with the
data such as taking the logarithm 56 or extraction of the root 36 can
often markedly improve the model.

Almost in all cases, the initial data contain errors both random
and systematic. In order to reduce the influence of random noise,
variousmethods of data smoothing are used, for example, moving
average, the Savitzky ±Golaymethod.42, 189 Reducing the effect of
systematic errors, i.e., removal of the systematic shift of the data,
is more difficult. If this shift is invariable, it can be removed using
centring. In the case of linear or square dependence on the variable
(for example, wavelength), numerical differentiation may prove
useful. In the case of more complex dependences, special methods
are used; two of these are considered below.

The multiple signal correction method, called also multi-
plicative scattering correction (MSC),70 was first developed 190

for near-IR spectroscopy and was based on ideas stated by
Kubelka and Munck.188 The MSC transformation procedure is
simple. First, the `basic spectrum' is determined as the average
over all rows of matrix X.

mt � xt1 � . . .� xtI
I
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Then a regression is constructed for each row xti

xti = ai+ bimt+ eti

and the coefficients ai and bi are determined. The transformed
data are obtained from the equation

~xti �
xti ÿ ai

bi
.

The MSC parameters ai and bi can be found only for some
(floating) window rather than for all variables.191

The second method (more precisely, a group of methods),
OSC 192 differs in the fact that the predictor matrix X is trans-
formed using the response block Y. This method is applied for
data preprocessing in solving problems of quantitative analysis.
The idea of OSC is to remove, from block X, all the systematic
dependences not related to the modelled response, i.e., the part of
matrix X that is orthogonal to matrix Y. This should result in an
increase in the correlation coefficient R2 and decrease the number
of PLS components A needed for data modelling. There are many
versions of thismethod, whichwas first proposed byWold et al.193

and developed by other researchers.194, 195 The OSC procedure,
like the PLS procedure, is accomplished successively by steps. In
each step, a part of matrix X related to one OSC component is
removed. The part of the matrix

X=X1+X2 ,

orthogonal to Y, i.e., such that

Z=YtX2=0,

is determined using an algorithm similar to PLS. TheOSCmethod
and MATLAB codes have been described in detail in a publica-
tion.195

An approach that improves the model quality by selection of
variables is an alternative to the MSC and OSC methods. The
utility of selection, i.e., elimination of some columns xj from the
initial data X, was confirmed by both theoretical investigations
and experimental results. This approach is used in both qualita-
tive 196 and quantitative analysis.197 The variable selection is
performed using a number of methods, in particular,198 Pareto
optimisation 199 and `jack knife'.117 Of special importance is
variable selection in those cases where the analytical signal
continuously depends on the channel, for example, in the analysis
of spectrometric data.200 In this case, variables are selected by
blocks, as in methods considered in Refs 195, 201. Apart from
variable selection, the selection of samples, i.e., rows xti in matrix
X (together with the corresponding values in the response matrix
Y), is also used. The sample selection may also improve the model
quality, but it is especially important for detection of outliers,113

for calibration transfer from one instrument to another.116, 202, 203

The new approach to sample classification and selection has been
reported.56

2. Signal processing
The processing of analytical signals using various transformations
and filters plays an important role in chemical analysis.204, 205 The
Fourier transform has actually revolutionised NMR, IR and
X-ray spectroscopy during the last 20 years. The initial data are
not recorded as primary spectra but as temporal series in which all
the spectroscopic information is mixed, and recovery of the
spectra requires a mathematical processing. A main reason for
using Fourier spectrometry is increasing the signal-to-noise ratio;
in addition, the experiment can be carried out about 100 times
faster than with a conventional spectrometer. For example, this
allowed 13C NMR spectroscopy to become a routine analytical
method, despite the low sensitivity of the 13C nuclei to an external
magnetic field. Using pulse NMR spectroscopy, one can accumu-
late and sum up signals for a large number of pulses. Simulta-
neously with Fourier transform spectroscopy, numerous methods
appeared for improving the quality of data. These methods

include the so-called Fourier deconvolution (signal separation),
some operations with the initial data in the temporal domain and
the subsequent use of the Fourier transform.

Yet another modern method for signal processing is wavelet
analysis.206 This allows encoding, compression and modelling of
large data containing thousands of variables. This analysis is a
natural development and continuation of the Fourier method.
A drawback of the Fourier method is that its basis functions
depend continuously on time; therefore, they cannot be used to
present time-dependent data. Wavelet analysis employs basis
functions with a limited range of variation of the argument,
which satisfy special requirements of a scaled range. These
functions shift along the signal axis and the spectra obtained
upon verification provide a time-and-frequency representation
with different resolutions depending on the rangewidth. If wavelet
analysis precedes the PCA or PLS method, these methods can be
applied to analyse very large data without loss of information.207

Wavelet analysis is also used for compression and smoothing of
mono- and two-way IR spectra and NMR spectra.208

In some cases, it is necessary to perform a fast signal smooth-
ing in real-time. The Kalman filter is a method developed for this
purpose. It can be used, for example, to model the variation of the
kinetics during a process. The general idea of the Kalman filter is
correction of the model following the process development. As
soon as new data become available, the model is supplemented
and improved. With the advent of fast and powerful computers,
the Kalman filter has become of virtually no use, although some
works performed with this tool still appear (see, for example,
Ref. 209).

VI. Conclusion

1. Process analytical technology
Wehave considered the key achievements of chemometrics during
the last 15 ± 20 years and their applications in analytical chem-
istry. Many topical issues and applications both related to and far
from analytical chemistry remained beyond the scope of the
review. One issue deserves special attention, as it reflects most
vividly the trends and prospects of the development of chemo-
metrics and analytical chemistry, in particular, we are speaking
about methods for the process analytical technology.

In the 1930s, the American statistician Shewhart 210 proposed
to use statistical methods for the control of industrial processes.
His idea is very simple: if data on a normally operating industrial
process over a long period are collected and statistically processed,
then for a controlled operating parameter x, a range can be
established, [xmin , xmax], in which the process operates normally.
The departure of the parameter x beyond these limits gives
warning about some emergency that requires immediate interven-
tion. Thismethodwas called statistical process control. It has been
successfully used in practice (Shewhart charts). However, sub-
sequently, as the process technology became more complicated, it
turned out that each parameter xi cannot be monitored separately
independently of other parameters. This often resulted in faulty
decisions such as false alarms, off-spec products, etc. The point is
that the measured operating parameters x1 , x2 , ... , are usually
interrelated (correlated) with each other and they should be
considered together. The situation largely resembles analysis of
multichannel chemical data (e.g., spectra). Taking into account
this analogy, MacGregor 211 developed a new approach to the
solution of this problem, MSPC.212 He proposed to use the PCA
method for the analysis of multivariate data and to construct
control limits in the score space by means of the Mahalanobis
distance. The idea proved highly fruitful and found numerous
supporters. Chemometric specialists developed methods for the
multivariate control of batch (for example, biochemical) processes
based on the three-way calibration;24 hierarchical,213 block 214 and
path 82 methods have been developed for the analysis of complex
processes. The authors of some studies proposed not only to
monitor but also to optimise the processes.215 These theoretical
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results have been used in practice, first of all, in the food 216 and
pharmaceutical 217 industries. Systems for the quality control in
the production of polymers,218 non-ferrous metals 219 and semi-
conductors 41 have been developed.

Thus, a new trend appeared in chemometrics 220 dealing with
problems far from the problems of analytical chemistry. However,
it was found that sensors and transducers used traditionally in
various branches of industry do not provide information neces-
sary for the control of complex (first of all, pharmaceutical)
processes. There appeared urgent need for methods of real-time
or even in situ monitoring of chemical reactions.221 Traditional
analytical methods, first of all, UV 94 and IR 222 spectrometry
proved suitable for this purpose. The chemometric methods for
the resolution of curves and estimation of kinetic constants from
spectroscopic 223 and chromatographic 224 data were found to be
useful for monitoring of chemical reactions and processes.
A combination of MSPC with analytical monitoring and with
process analytical chemistry 225 gave an impetus to the develop-
ment of a new line of research in analytical chemistry, process
analytical technology (PAT).226 PAT is a system for designing,
analysing and controlling the manufacture through timely meas-
urements (i.e., during processing) of critical quality and perform-
ance attributes of raw and in-processmaterials and processes, with
the goal of ensuring final product quality

Themajor problem faced bymodern industry is to ensure high
quality of the final product. In view of the increasing global
competition and fluctuating market demands, the necessity of
effective control of industrial processes in real-time becomes
obvious, and chemometrics plays a crucial role in solving this
problem. The USA Food and Drug Administration 227 confirmed
this role legislatively in September, 2004.

Within the framework of chemometrics, remarkable methods
and algorithms have been created; however, they were approved
very slowly and reluctantly by the regulating authorities of all
developed countries. This is attributable to the fact that ideas of
the multivariate approach are more difficult to perceive and
visualise than the traditional univariate methods, which are not
always able to reflect the full situation. For example, it is much
easier to state that the product quality is described by the height of
some peak at a particular wavelength than to explain that this
quality is determined bywhether or not the projection of thewhole
spectrum falls into a definite area in the PLS-score space found
using the Mahalanobis distance, etc.

Throughout the whole history of the development of chemo-
metrics, only one regulatory document has been adopted in this
field.228 After the PAT document is approved, chemometrics will
necessarily become a legitimate tool for any company willing to
follow the FDA guideline principles. In our opinion, approval of
this regulatory document wouldmark a crucial turn in technology
and a new industry paradigm, the mission of which is to to build
quality into products. A fundamental distinction of this paradigm
from the existing one is replacement of the standardisation and
unification principles by flexible on-line control of the future
product quality at every stage of the manufacture starting from
raw material analysis. Consider a simple example: the products of
catering facilities that work with the `standardisation' paradigm
have an obviously poorer quality than home-made food, which is
produced with flexible on-line control. However, with the intro-
duction of the PAT system, large-scale producers would be able to
ensure the same high quality while maintaining large output.

2. Prospects of development
What is the role of analytical chemistry in the formation of this
new technological paradigm?What can be chemists' answer to this
question? In our opinion, the following trends would prevail in the
development of analytics. First, the objects of analysis would
become more complex and complicated. The industry require-
ments would not put peripheral questions such as how much of
substance X is present in a sample but general questions of
whether a product with the required quality will be obtained

from the given raw material or whether the chemical reaction in
the given column develops in a right way. Second, methods of
analysis will be changed to gain the required data directly in the
plant in real-time (in line) rather than in the laboratory (at line).
Third, the amount of multiway and multivariate data will sharply
increase. The role of hyphenated and composite methods of
analysis will grow. Fourth, the desired chemical information will
be deeply hidden in these data; moreover, it will be less formalised,
which will call for the use of fine methods for its retrieval. Fifth,
the organisation of the analytical experiment will change: instead
of analysis of a single sample in one experiment, it will be
necessary to use a system approach according to which numerous
samples are analysed simultaneously by different methods in an
automated mode under different conditions. This large-scale
computer-assisted experiment (which already exists, for example,
in the microarray approach) will become a routine analytical
practice. Sixth, the analytical investigation will be focused on
biological objects and biochemical processes and on industrial
processes as a whole.

All these trends are already visible in analytical chemistry. The
role of analytical chemist will change: he will inevitably become
more an analyst than a chemist. The problems tackled by the
researcher will be reduced to two key problems. The first is to set
up an experiment that could give data suitable for retrieving the
required information. The desired information may be a prog-
nosis for the final state of the system rather than a quantitative
(concentration) or qualitative (yes/no) result. The second problem
is how to retrieve the desired information from the data and
interpret it from the utility and quality standpoints. To solve these
problems, a researcher must use the experience and tooling of
chemometrics. Thus, chemometrics as an inherent part of ana-
lytical chemistry will largely determine the trends of its develop-
ment.}

It should be emphasised that the pronounced extension of the
scope of analytical methods should be based on close cooperation
of chemometric specialists not only with chemists but also with
other scientists, first of all, mathematicians, physicians and
biologists.

The authors are grateful to O N Karpukhin (Institute of
Chemical Physics, Moscow) and A Yu Bogomolov (EMBL,
Hamburg) for valuable advice during preparation of the review
and to K Esbensen (Aalborg University Esbjerg, Denmark) for
his effort aimed at popularisation of chemometrics in Russia.

References

1. M Sharaf, D Illman, B Kowalski Chemometrics (New York:

Wiley, 1986)

2. Yu A Zolotov Analiticheskaya Khimiya: Problemy i Dostizheniya

(Analytical Chemistry: Problems and Achievements) (Moscow:

Nauka, 1992)

3. Yu V Granovskii Vestn. Mosk. Univ., Ser. 2, Khim. 38 211 (1997) a

4. Yu A Karpov, T M Polkhovskaya Standartizatsiya i Metrologiya

vMetallurgicheskom Proizvodstve (Standardisation andMetrology

in Metallurgy) (Moscow: Moscow Institute of Steel and Alloys,

1989)

5. P Geladi, K Esbensen Chemom. Intell. Lab. Syst. 7 197 (1990)

6. D L Massart Chemometrics: a Textbook (New York: Elsevier,

1988)

7. S Wold Chemom. Intell. Lab. Syst. 30 109 (1995)

8. M Blanco, I Villarroya Trends Anal. Chem. 21 240 (2002)

9. B G Osborne, T Fearn Near Infrared Spectroscopy in Food

Analysis (Harlow, Essex: Longman Scientific and Technical, 1986)

}When applying the foregoing to the practical training of specialists in

chemometrics, note that it would be expedient to develop university classes

in this discipline. Obviously, raising an issue of starting the corresponding

specialties in the master specialisation and of the formation of Candidate

and Doctor Councils is also justified.

284 O Ye Rodionova, A L Pomerantsev



10. M Blanco, J Coello, H Iturriaga, S Maspoch, E Rovira J. Pharm.

Biomed. Anal. 16 255 (1997)

11. A Espinosa, D Lambert, M Valleur Hydrocarbon Process. 74 86

(1995)

12. T Nñs, C Irgens, H Martens Appl. Stat. 35 195 (1986)

13. H Martens, T Nñs Trends Anal. Chem. 3 204 (1984)

14. W S Gosset (`Student') Biometrika 6 1 (1908)

15. K Pearson Philippine Mag. 2 (6) 559 (1901)

16. R A Fisher Statistical Methods for Research Workers (Edinburgh:

Oliver and Boyd, 1925)

17. R A Fisher The Design of Experiments (Edinburgh: Oliver and

Boyd, 1935)

18. V Nalimov Primenenie Matematicheskoi Statistiki pri Analize

Veshchestva (Application of Mathematical Statictics in the

Analysis of Substances) (Moscow: Fizmatlit, 1960)

19. S Wold, K Esbensen, P Geladi Chemom. Intell. Lab. Syst. 2 37

(1987)

20. G Golub, C van Loan Matrix Computations (Baltimore: John

Hopkins University Press, 1996)

21. P Geladi, H GrahnMultivariate Image Analysis (Chichester:

Wiley, 1996)

22. B Walczak, D L Massart Trends Anal. Chem. 16 451 (1997)

23. A I Belousov, S A Verzakov, J von Frese J. Chemom. 16 482

(2002)

24. P Nomikos, J F MacGregor AIChE J. 40 1361 (1994)

25. P Geladi, K Esbensen J. Chemom. 5 97 (1991)

26. M Schaeferling, S Schiller, H Paul, M Kruschina, P Pavlickova,

M Meerkamp, C Giammasi, D Kambhampati Electrophoresis 23

3097 (2002)

27. M M C Ferreira J. Chemom. 18 385 (2004)

28. I E Frank, J H Friedman Technometrics 35 109 (1993)

29. S Wold, A Berglund, N Kettaneh J. Chemom. 16 377 (2002)

30. G Molenberghs Biometrics 61 1 (2005)

31. A G Shmelev Vopr. Psikhol. (5) 34 (1982)

32. H Wold, in Perspectives in Probability and Statistics (Sheffield:

University of Sheffield, Applied Probability Trust, 1975) p. 117

33. N R Draper, H Smith Applied Regression Analysis (New York:

Wiley, 1981)

34. O Ye Rodionova, A L Pomerantsev Kinet. Katal. 45 485 (2004) b

35. H-L Koh,W-P Yau, P-S Ong, A HegdeDrug Discov. Today 8 889

(2003)

36. A L Pomerantsev, O Ye RodionovaChemom. Intell. Lab. Syst. 79

73 (2005)

37. L Gribov Matematicheskie Metody i EVM v Analiticheskoi Khimii

(Mathematical Methods and Computers in Analytical Chemistry)

(Moscow: Nauka, 1989)

38. K J Siebert J. Am. Soc. Brew. Chem. 59 147 (2001)

39. K Varmuza, W Werther, F R Krueger, J Kissel, E R Schmid Int.

J. Mass Spectrom. 189 79 (1999)

40. G W Johnson, R Ehrlich Environ. Forensics 3 59 (2002)

41. B M Wise, N B Gallagher, E B Martin J. Chemom. 15 285 (2001)

42. R G BreretonChemometrics: Data Analysis for the Laboratory and

Chemical Plant (Chichester: Wiley, 2003)

43. N P Komar' Osnovy Kachestvennogo Khimicheskogo Analiza

(Foundations of Qualitative Chemical Analysis) (Kharkov:

Kharkov State University, 1955)

44. L A Gribov, V I Baranov, M E Elyashberg Bezetalonnyi

Molekulyarnyi Spektral'nyi Analiz. Teoreticheskie Osnovy

(Standardless Molecular Spectral Analysis. Theoretical

Foundations) (Moscow: Editorial URSS, 2002)

45. M E ElyashbergUsp. Khim. 68 579 (1999) [Russ. Chem. Rev. 68 525

(1999)]

46. B M Mar'yanov, A G Zarubin, S V Shumar Zh. Anal. Khim. 58

1126 (2003) c

47. V I Vershinin, B G Derendyaev, K S LebedevMetody

Komp'yuternoi Identifikatsii Organicheskikh Soedinenii (The

Methods of Computer Identification of Organic Compounds)

(Moscow: Nauka, 2002)

48. I G Zenkevich, B KraÂ nicz Chemom. Intell. Lab. Syst. 67 51 (2003)

49. I V Pletnev, V V Zernov Anal. Chim. Acta 455 131 (2002)

50. N M Halberstam, I I Baskin, V A Palyulin, N S Zefirov Usp.

Khim. 72 706 (2003) [Russ. Chem. Rev. 72 629 (2003)]

51. V I DvorkinMetrologiya i Obespechenie Kachestva Kolichest-

vennogo Khimicheskogo Analiza (Metrology and Quality Support

of Quantitative Chemical Analysis (Moscow: Khimiya, 2001)

52. Yu G Vlasov, A V Legin, A M Rudnitskaya Usp. Khim. 75 141

(2006) [Russ. Chem. Rev. 75 125 (2006)]

53. A V Kalach, Ya I Korenman, S I Niftaliev Iskusstvennye

Neironnye Seti Ð Vchera, Segodnya, Zavtra (Artificial Neuron

NetworksÐYesterday, Today and Tomorrow) (Voronezh: State

Technological Academy, 2002)

54. S P Kazakov, A A Ryabenko, V F RazumovOpt. Spektrosk. 86

537 (1999) d

55. V F Razumov, M V Alfimov Zh. Nauch. Prikl. Foto

Kinematograf. 46 28 (2003)

56. O Ye Rodionova, K H Esbensen, A L Pomerantsev J. Chemom.

18 402 (2004)

57. E V Bystritskaya, A L Pomerantsev, O Ye Rodionova

J. Chemom. 14 667 (2000)

58. A Bogomolov, M McBrien Anal. Chim. Acta 490 41 (2003)

59. US P. 0126892-A1 (2004)

60. S Kucheryavski, V Polyakov, A Govorov, in Progress in

Chemometrics Research (Ed. A L Pomerantsev) (New York:

NovaScience Publishers, 2005) p. 3

61. N M Oskorbin, A V Maksimov, S I Zhilin Izv. Alt. Univ. (1) 35

(1998)

62. S V Romanenko A G Stromberg, E V Selivanova,

E S Romanenko Chemom. Intell. Lab. Syst. 73 7 (2004)

63. I E Vasil'eva, A M Kuznetsov, I L Vasil'ev, E V Shabanova

Zh. Anal. Khim. 52 1238 (1997) c

64. D L Massart, B G Vandeginste, L M C Buydens, S De Jong,

P J Lewi, J Smeyers-Verbeke Handbook of Chemometrics and

Qualimetrics. Part A (Amsterdam: Elsevier, 1997)

65. B G Vandeginste, D L Massart, L M C Buydens, S De Jong,

P J Lewi, J Smeyers-Verbeke Handbook of Chemometrics and

Qualimetrics. Part B (Amsterdam: Elsevier, 1998)

66. T Nñs, T Isaksson, T Fearn, T DaviesMultivariate Calibration

and Classification (Christerer: Wiley, 2002)

67. R Kramer Chemometric Techniques for Quantitative Analysis

(New York: Marcel Dekker, 1998)

68. K R Beebe, R J Pell, M B Seasholtz Chemometrics: a Practical

Guide (New York: Willey, 1998)

69. E R Malinowski Factor Analysis in Chemistry (2nd Ed.)

(New York: Wiley, 1991)

70. H Martens, T NñsMultivariate Calibration (New York: Wiley,

1989)

71. A HoÈ skuldsson Prediction Methods in Science and Technology

Vol. 1 (Copenhagen: Thor Publishing, 1996)

72. R A Kellner, J-M Mermet, M Otto Analytical Chemistry. The

Appoved Text to the FECS Curriculum Analytical Chemistry

(Weinheim: Wiley-VCH, 2001)

73. B M Mar'yanov Izbrannye Glavy Khemometriki (Selected

Chapters of Chemometrics) (Tomsk: Tomsk State University,

2004)

74. K Esbensen Analiz Mnogomernykh Dannykh (Analysis of

Multivariate Data) (Chernogolovka: Institute for Problems of

Chemical Physics, Russian Academy of Sciences, 2005)

75. K Esbensen, O Rodionova, A Pomerantsev, O Startsev,

S Kucheryavski J. Chemom. 17 422 (2003)

76. O Ye Rodionova Chemom. Intell. Lab. Syst. 67 194 (2003)

77. S Kucheryavski, C Marks, K Varmuza Chemom. Intell. Lab.

Syst. 78 138 (2005)

78. L Eriksson, E Johansson, N Kettaneh-Wold, S WoldMulti- and

Megavariate Data Analysis (UmeaÊ : Umetrics, 2001)

79. E Sanchez, B R Kowalski J. Chemom. 2 247 (1988)

80. A Smilde, R Bro, P GeladiMulti-way Analysis with Applications

in the Chemical Sciences (Chichester: Wiley, 2004)

81. S Wold, J Trygg, A Berglund, H Antti Chemom. Intell. Lab.

Syst. 58 131 (2001)

82. A HoÈ skuldsson J. Chemom. 58 287 (2001)

83. P Geladi, J Burger, T Lestanderet Chemom. Intell. Lab. Syst. 72

209 (2004)

84. G H W Sanders, A Manz Trends Anal. Chem. 19 364 (2000)

85. G E P Box, W G Hunter, J S Hunter Statistics for

Experimenters (New York: Wiley, 1978)

Chemometrics: achievements and prospects 285



86. E Z Demidenko Lineinaya i Nelineinaya Regressii (Linear and

Non-liniar Regressions) (Moscow: Finansy i Statistika, 1981)

87. P Jy Sampling for Analytical Purposes (Chichester: Wiley, 1989)

88. W Kleingeld, J Ferreira, S Coward J. Chemom. 18 121 (2004)

89. Chemom. Intell. Lab. Syst. 74 (Special Issue) 1 (2004)

90. B Walczak, D L Massart Chemom. Intell. Lab. Syst. 58 15

(2001)

91. P R C Nelson, P A Taylor, J F MacGregor Chemom. Intell.

Lab. Syst. 35 45 (1996)

92. H Haario, V-M Taavitsainen Chemom. Intell. Lab. Syst. 44 77

(1998)

93. E F Brin, A L Pomerantsev Khim. Fiz. 5 1674 (1986) e

94. S P Gurden, J A Westerhuis, S Bijlsma, A K Smilde

J. Chemom. 15 101 (2001)

95. A L Pomerantsev, Doctoral Thesis in Physico-matematical

Sciences, Institute of Chemical Physics, Russian Academy of

Sciences, Moscow, 2003

96. D A Morales J. Chemom. 16 247 (2002)

97. A de Juan, M Maeder, M Martinez, R Tauler Chemom. Intell.

Lab. Syst. 54 123 (2000)

98. B Efron Ann. Stat. 7 1 (1979)

99. EURACHEM/CITAC Guide, Quantifying Uncertainty in

Analytical Measurement (2nd Ed.) (Lisbon: EURACHEM,

2000)

100. K Faber, B R Kowalski Chemom. Intell. Lab. Syst. 34 283

(1996)

101. A L Pomerantsev Chemom. Intell. Lab. Syst. 49 41 (1999)

102. A Pulido, I RuisaÂ nchez, R BoqueÂ , F X Rius Trends Anal.

Chem. 22 647 (2003)

103. V I Vershinin Accredit. Qual. Assur. 9 415 (2004)

104. N M Faber Chemom. Intell. Lab. Syst. 64 169 (2002)

105. N M Faber, R Bro Chemom. Intell. Lab. Syst. 61 133 (2002)

106. A Lorber Anal. Chem. 58 1167 (1986)

107. J FerreÂ , N M Faber Chemom. Intell. Lab. Syst. 69 123 (2003)

108. R BoqueÂ , N M Faber, F Xavier Rius Anal. Chim. Acta 423 41

(2000)

109. R BoqueÂ ; J FerreÂ , N M Faber, F Xavier Rius Anal. Chim.

Acta 451 313 (2002)

110. I Berget, T Nñs J. Chemom. 18 103 (2004)

111. D Jouan-Rimbaud, D L Massart, C A Saby, C Puel Anal.

Chim. Acta 350 149 (1997)

112. M Meloun, J MilitkyÂ , M Hill, R G Brereton Analyst 127

433 (2002)

113. J A F Pierna, F Wahl, O E de Noord, D L Massart

Chemom. Intell. Lab. Syst. 63 27 (2002)

114. K Faber Chemom. Intell. Lab. Syst. 52 123 (2000)

115. N M Faber, X-H Song, P K Hopke Trends Anal. Chem. 22 330

(2003)

116. E Bouveresse, D L Massart Vib. Spectrosc. 11 3 (1996)

117. F Westad, H Martens J. Near Infrared Spectrosc. 8 117 (2000)

118. M Hubert, S Verboven J. Chemom. 17 438 (2003)

119. H R Keller, D L Massart Chemom. Intell. Lab. Syst. 12 209

(1992)

120. E R Malinowski J. Chemom. 6 29 (1992)

121. P J Gemperline Anal. Chem. 58 2656 (1986)

122. S Wold Pattern Recogn. 8 127 (1976)

123. J-H Jiang, Y Liang, Y Ozaki Chemom. Intell. Lab. Syst. 71

1 (2004)

124. F C Sanchez, B van de Borgaert, S C Rutan, D L Massart

Chemom. Intell. Lab. Syst. 34 139 (1996)

125. H Shen, B Grande, O M Kvalheim, I Eide Anal. Chim. Acta

446 313 (2001)

126. W Windig, J Guilment Anal. Chem. 63 1425 (1991)

127. A Bogomolov, M Hachey, in Progress in Chemometrics

Research (Ed. A L Pomerantsev) (New York: Nova Science

Publishers, 2005) p. 119

128. J Diewok, A de Juan, M Marcel, R Tauler, B Lendl Anal.

Chem. 76 641 (2003)

129. A Yu Bogomolov, T N Rostovshchikova, V V Smirnov

Zh. Fiz. Khim. 69 1197 (1995) f

130. H A Seipel, J H Kalivas J. Chemom. 18 306 (2004)

131. S R Crouch, A Scheeline, E S Kirkor Anal. Chem. 72 53 (2000)

132. R I Shrager Chemom. Intell. Lab. Syst. 1 59 (1986)

133. R DeMaesschalck, D Jouan-Rimbaud, D L Massart Chemom.

Intell. Lab. Syst. 50 1 (2000)

134. J M Andrade, M P Gomez-Carracedo, W Krzanowski,

M Kubista Chemom. Intell. Lab. Syst. 72 123 (2004)

135. O Ye Rodionova, L P Houmùller, A L Pomerantsev,

P Geladi, J Burger, V L Dorofeyev, A P Arzamastsev Anal.

Chim. Acta 549 151 (2005)

136. L X Sun, K Danzer J. Chemom. 10 325 (1996)

137. A J Myles, S D Brown J. Chemom. 17 531 (2003)

138. D GonzaÂ lez-Arjona, G LoÂ pez-PeÂ rez, A G GonzaÂ lez Talanta 49

189 (1999)

139. H Mark Anal. Chem. 59 790 (1987)

140. P J Gemperline, N R Boyer Anal. Chem. 67 160 (1995)

141. H L Mark, D Tunnell Anal. Chem. 57 1449 (1985)

142. U Indahl, N S Sing, B Kirkhuus, T Nñs Chemom. Intell. Lab.

Syst. 49 19 (1999)

143. G Downey, J Boussion, D Beauchene J. Near Infrared

Spectrosc. 2 85 (1994)

144. G R Flaten, B Grung, O M Kvalheim Chemom. Intell. Lab.

Syst. 72 101 (2004)

145. T Nñs, U Indahl J. Chemom. 12 205 (1998)

146. J McElhinney, G Downey, T Fearn J. Near Infrared Spectrosc.

7 145 (1999)

147. S Zomer, R Brereton, J F Carter, C Eckers Analyst 129 175

(2004)

148. V V Zernov, K V Balakin, A A Ivaschenko, N P Savchuk,

I V Pletnev J. Chem. Inf. Comput. Sci. 43 2048 (2003)

149. M Sarker, W Rayens J. Chemom. 17 166 (2003)

150. A Herrero, S Zamponi, R Marassi, P Conti, M C Ortiz,

L A Sarabia Chemom. Intell. Lab. Syst. 61 63 (2002)

151. R Manne, B-V Grande Chemom. Intell. Lab. Syst. 50 35 (2000)

152. S Bijlsma, A K Smilde J. Chemom. 14 541 (2000)

153. R Bro Chemom. Intell. Lab. Syst. 38 149 (1997)

154. H Kiers J. Chemom. 14 151 (2000)

155. N M Faber, R Bro, P K Hopke Chemom. Intell. Lab. Syst. 65

119 (2003)

156. C A Andersson, R Bro Chemom. Intell. Lab. Syst. 52 1 (2000)

157. F J del Rio, J Riu, F X Rius J. Chemom. 15 773 (2001)

158. R G Brereton Analyst 125 2125 (2000)

159. A HoÈ skuldsson J. Chemom. 2 211 (1988)

160. S de Jong Chemom. Intell. Lab. Syst. 18 251 (1993)

161. B Li, A J Morris, E B Martin Chemom. Intell. Lab. Syst. 72 21

(2004)

162. M Hubert, K Vanden Branden J. Chemom. 17 537 (2003)

163. E Vigneau, M Devaux, M Qannari, P Robert J. Chemom. 11

239 (1997)

164. P Geladi Chemom. Intell. Lab. Syst. 60 211 (2002)

165. L V Kantorovich Sib. Mat. Zh. 3 701 (1962)

166. V M Belov, V A Sukhanov, F G Unger Teoreticheskie i

Prikladnye Aspekty Metoda Tsentra Neopredelennosti

(Theoretical and Practical Aspects of the Uncertainty Centre

Method) (Novosibirsk: Nauka, 1995)

167. R Bro J. Chemom. 10 47 (1996)

168. Y Ni, C Huang, S Kokot Chemom. Intell. Lab. Syst. 71 177

(2004)

169. Z P Chen, J Morris, E Martin, R-Q Yu, Y-Z Liang, F Gong

Chemom. Intell. Lab. Syst. 72 9 (2004)

170. F M FernaÂ ndez, M B Tudino, O E Troccoli Anal. Chim. Acta

433 119 (2001)

171. I Garcia, L Sarabia, M C Ortiz, J M Aldama Anal. Chim. Acta

515 55 (2004)

172. Y Bard Nonlinear Parameter Estimation (New York: Academic

Press, 1974)

173. D M Barry, L Meites Anal. Chim. Acta 68 435 (1974)

174. B Mar'yanov, in Khimiki TGU na Poroge Tret'ego Tysyache-

letiya (The Chemists of Tomsk State University at the Threshold

of the Third Millenium) (Tomsk: Tomsk State University, 1998)

p. 48

175. A Berglund, S Wold J. Chemom. 11 141 (1997)

176. A Berglund, N L U Kettaneh, S Wold, N Bendwell,

D R Cameron J. Chemom. 15 321 (2001)

177. S Wold Chemom. Intell. Lab. Syst. 14 71 (1992)

178. J Zupan, J Gasteiger Anal. Chim. Acta 248 1 (1991)

286 O Ye Rodionova, A L Pomerantsev



179. J Zupan, J Gasteiger Neural Network for Chemists.

An Introduction (Weinheim: VCH, 1993)

180. W Wu, B Walczak, D L Massart, E Heuerding, F E Erni,

I R Last, K A Prebble Chemom. Intell. Lab. Syst. 33 35 (1996)

181. J R M Smits, W J Melssen, L M C Buydens, G Kateman

Chemom. Intell. Lab. Syst. 22 165 (1994)

182. W J Melssen, J R M Smits, L M C Buydens, G Kateman

Chemom. Intell. Lab. Syst. 23 267 (1994)

183. D B Hibbert Chemom. Intell. Lab. Syst. 19 277 (1993)

184. R Leardi J. Chemom. 15 559 (2001)

185. X Shao, Z Chen, X Lin Chemom. Intell. Lab. Syst. 50 91 (2000)

186. L A Tortajada-Genaro, P CampõÂ ns-FalcoÂ , J VerduÂ -AndreÂ s,

F Bosch-Reig Anal. Chim. Acta 450 155 (2001)

187. R Bro, A K Smilde J. Chemom. 17 16 (2003)

188. P Kubelka, F Munck Z. Tech. Phys. 12 593 (1931)

189. A Savitzky, M J E Golay Anal. Chem. 36 1627 (1964)

190. P Geladi, D MacDougall, H Martens Appl. Spectrosc. 3 491

(1985)

191. T Isaksson, B Kowalski Appl. Spectrosc. 47 702 (1993)

192. J Trygg, S Wold J. Chemom. 17 53 (2003)

193. S Wold, H Antti, F Lindgren, J OÈ hman Chemom. Intell. Lab.

Syst. 44 175 (1998)

194. T Fearn Chemom. Intell. Lab. Syst. 50 47 (2000)

195. A HoÈ skuldsson Chemom. Intell. Lab. Syst. 55 23 (2001)

196. Q Guo, W Wu, D L Massart, C Boucon, S de Jong Chemom.

Intell. Lab. Syst. 61 123 (2002)

197. M Forina, S Lanteri, M C Cerrato Oliveros, C Pizarro Millan

Anal. Bioanal. Chem. 380 397 (2004)

198. R Leardi, R Boggia, M Terrile J. Chemom. 6 267 (1992)

199. J H Kalivas Anal. Chim. Acta 505 9 (2004)

200. N Benoudjit, E Cools, M Meurens, M Verleysen Chemom.

Intell. Lab. Syst. 70 47 (2004)

201. U Indahl, T Nñs J. Chemom. 18 53 (2004)

202. R N Feudale, N A Woody, H Tan, A J Myles, S D Brown,

J FerreÂ Chemom. Intell. Lab. Syst. 64 181 (2002)

203. E L Sulima, V A Zubkov, L A Rusinov, in Progress in

Chemometrics Research (Ed. A L Pomerantsev) (New York:

Nova Science Publishers, 2005) p. 196

204. J-H Jiang, Y Ozaki, M Kleimann, H W Siesler Chemom. Intell.

Lab. Syst. 70 83 (2004)

205. P W Hansen J. Chemom. 15 123 (2001)

206. C K Chui Introduction to Wavelets (New York: Academic

Press, 1992)

207. J Trygg, S Wold Chemom. Intell. Lab. Syst. 42 209 (1998)

208. S-P Reinikainen, in Progress in Chemometrics Research

(Ed. A L Pomerantsev) (New York: Nova Science Publishers,

2005) p. 21

209. Y Pan, C K Yoo, J H Lee, I-B Lee J. Chemom. 18 69 (2004)

210. W A Shewhart Economic Control of Quality of Manufactured

Product (New York: Van Nostrand, 1931)

211. J MacGregor, Th Kourti Contr. Engin. Pract. 3 403 (1995)

212. A L Pomerantsev, O Ye RodionovaMetod. Menedzh. Kachest.

6 15 (2002)

213. Th Kourti, J MacGregor Chemom. Intell. Lab. Syst. 28 3 (1995)

214. J A Westerhuis, Th Kourti, J F Macgregor J. Chemom. 12 301

(1998)

215. A L Pomerantsev, O Ye Rodionova, in Progress in Chemo-

metrics Research (Ed. A L Pomerantsev) (New York: Nova

Science Publishers, 2005) p. 209

216. R Bro Chemom. Intell. Lab. Syst. 46 133 (1999)

217. J Gabrielsson, N-O Lindberg, T Lundstedt J. Chemom. 16 141

(2002)

218. C K Yoo, J-M Lee, P A Vanrolleghem, I-B Lee Chemom.

Intell. Lab. Syst. 71 151 (2004)

219. M Baroni, P Benedetti, S Fraternale, F Scialpi, P Vix,

S Clementi J. Chemom. 17 9 (2003)

220. H Martens, M MartensMultivariate Analysis of Quality:

an Introduction (Chichester: Wiley, 2001)

221. R M Dyson, M Hazenkamp, K Kaufmann, M Maeder,

M Studer, A Zilian J. Chemom. 14 737 (2000)

222. K PoÈ llaÈ nen, A HaÈ kkinen, S-P Reinikainen, M Louhi-

Kultanen, L NystroÈ m Chemom. Intell. Lab. Syst. 76 25 (2005)

223. T J Thurston, R G Brereton, D J Foord, R E A Escott

Talanta 63 757 (2004)

224. E Bezemer, S C Rutan Chemom. Intell. Lab. Syst. 59 19 (2001)

225. J Workman Jr, K E Creasy, S Doherty, L Bond, M Koch,

A Ullman, D J Veltkamp Anal. Chem. 73 2705 (2001)

226. S P Gurden, E B Martin, A J Morris Chemom. Intell. Lab.

Syst. 44 319 (1998)

227. Guidance for Industry PATÐ a Framework for Innovative

Pharmaceutical Development, Manufacturing, and Quality

Assurance U.S. Department of Health and Human Services

Food andDrugAdministration Center for Drug Evaluation and

Research (CDER) Center for Veterinary Medicine (CVM)

Office of Regulatory Affairs (ORA), September 2004,

Pharmaceutical CGMPs

228. ASTM Standard E1655 Standard Practices for Infrared

Multivariate Quantitative Analysis, 1997

a ÐMoscow Univ. Bull. (Engl. Transl.)
b Ð Kinet. Catal. (Engl. Transl.)
c Ð J. Anal. Chem. (Engl. Transl.)
d Ð Opt. Spectrosc. (Engl. Transl.)
e Ð Chem. Phys. Rep. (Engl. Transl.)
f Ð Russ. J. Phys. Chem. (Engl. Transl.)

Chemometrics: achievements and prospects 287




