NIR based approach for counterfeit drugs' detection

Oxana Rodionova

Semenov Institute of Chemical Physics, RAS TCA Moscow

Russian Chemometric Society

October 13, 2011

Outline

What is counterfeit drug?

Forgeries of different 'quality'

Main steps of NIR-based approach
Common Problems

Conclusions

What is counterfeit drug?

A counterfeit medicine is one which is deliberately and fraudulently mislabeled with respect to identity and/or source.

Counterfeiting can apply to both branded and generic products

Counterfeit products may include products with the **correct** ingredients or with the **wrong** ingredients, **without** active ingredients, with **insufficient** active ingredient or with fake packaging

WHO Counterfeit Drugs: Guidelines for the Development of Measures to Combat Counterfeit Drugs, WHO, Geneva, 1999.

Traditional methods

Methods described in pharmacopoeia

Rapid analysis

simplified disintegration test
simple qualitative reactions
thin layer chromatography (TLC).

October 13, 2011

NIR spectroscopy (12500-4000 cm⁻¹ or 800-2500 nm)

NIR spectra are much more complex than relatively easier for interpretation mid-IR spectra.

1. spectrum acquisition is fast compared to other analytical techniques

2. Minimal or no sample preparation

3. Carry information regarding not only chemical but also about physical phenomena

NIR Spectrometry is included in European Pharmacopoeia since 1997 7

NIR-based approach

Measurements	NIR (800 – 2 500nm) reflectance spectra with integrating sphere
Data pre- processing	SNV/MSC + column-wise data centering
Variable reduction	PCA
Supervised pattern recognition	SIMCA+ special critical limits

Forgeries of different 'quality'

1. Easily detected without instruments

Dietary supplements

2. Easily detected by a regular pharmacopeia test as well as by the NIR-based approach

3. Easily detected by NIR-based approach but are not detected by the pharmacopeia tests

4. Various intricate cases for NIR approach and are not detected by the pharmacopeia tests

October 13, 2011

Data Set Overview

N	Description	Genuine batches	Forgery batches	Total
1	Complex antibacterial drug (2 active substances)	5 (5)	5 (5)	50
2	Antispasmodic drug	1 (10)	1 (9)	19
3	Antibiotic drug	17 (5-10)	2 (5)	109
4	Digestive enzyme (Manufacture 1)	4 (5)	1 (10)	30
5	Digestive enzyme (Manufacture 2)	11 (5)	4 (5)	75
6	Sildenafil	3 (5)	-	15

Complex antibacterial drug (2 active substances)

25 <u>original</u> tablets from 5 batches25 <u>counterfeit</u> tablets from 5 batches

Antispasmodic drug

10 original pills9 counterfeit pills

Antibiotic drug

89 <u>original</u> tablets from 17 batches20 <u>counterfeit</u> tablets from 2 batches

Main steps of NIR-based approach

SIMCA (Soft Independent Modeling of Class Analogy)

Independent PCA class - modeling

New object is compared with each class

Score distance (SD), h_i

$$\boldsymbol{u}_i = \mathbf{t}_i^{\mathrm{t}} (\mathbf{T}_A^{\mathrm{t}} \mathbf{T}_A)^{-1} \mathbf{t}_i = \sum_{a=1}^A \frac{t_{ia}^2}{\lambda_a}, \quad i = 1, \dots, I$$

Leverage = $h_i + 1/l$

Mahalanobis = $(h_i)^{\frac{1}{2}}$

Orthogonal distance (OD), *v*_i

 v_i

$$v_i = \sum_{j=1}^{J} e_{ij}^2 = \sum_{a=A+1}^{K} t_{ia}^2 = L_0 - \sum_{a=1}^{A} t_{ia}^2$$

Variance per sample= v_i/J

Q statistics = v_i

$$v_0 = \frac{1}{I} \sum_{i=1}^{I} v_i \equiv \frac{L_0}{I} (1 - R(A))$$

Distribution of distances: DoF?
$$x = \begin{cases} = h/h_0 \\ = v/v_0 \end{cases} \quad x_1, \dots, x_I \sim \chi^2(N)/N \quad \square > N = ? \end{cases}$$

J. Chemometrics 2008; 22; <u>A. Pomerantsev</u>

Acceptance areas for multivariate classification derived by projection methods

Type I error α. *I*=100

Type II error, $\beta_{n/n}$?

Step-by-step classification

23

Classification

NTCA

Classification without batch G25

Test

Calibration

NTCA

N=64, A=3

October 13, 2011

Peculiarity of G25

NIR spectra for G25

NTCA

Common Problems

Variability of genuine drugs Digestive enzyme

Manufacture N1 (Dataset 4)

Manufacture N2 (Dataset 5)

20 <u>original</u> tablets from 4 batches10 <u>counterfeit</u> tablets from 1 batch

55 original tablets from 11 batches

NTCA

October 13, 2011

Pre-processing

Influence of spectral region

Film-coated tablets of Sildenafil

15 **<u>original</u>** tablets from 3 batches

Conclusions

Variability in the genuine drug production should be fully investigated. Batch-to-batch variability should be studed.

The NIR spectra should be preprocessed before chemometric analysis.

The selection of a spectral region should be done for each type of medicine individually. The choice of the spectral region may essentially influence the final classification results.

Conclusions

The model construction requires representative sample distribution between the calibration and the test sets

It is crucial not only to recognize forgeries but also to avoid misclassification of genuine samples. The application of reliable acceptance limits is of great importance

Methods based only on quantitative determination of API are insufficient. It is necessary to investigate a remedy as a whole object

Thank you for attention!

volume 29 issue 8 September 2010 ISSN 0165-9936

NIR based approach to counterfeit-drug detection O.Rodionova, A. Pomerantsev 29 (8), 781-938 (2010)

Raw spectra for two datasets are located at http://rcs.chph.ras.ru/data/